A TRULY ISOLATED UNIVALENT FUNCTION
Douglas M. Campbell

Let R denote the space of functions

(D f@) =7, a,?"

that are holomorphic in the unit disc D and let the space R be metrized by the
metric

2) I 7l = sup |a,|*"".

Let S denote the subset of R which consists of the functions 2a, 2" that are univalent
(but not necessarily normalized) in D. Hornich [2] studied the structure of the
subset S. In [3] he exhibited a function f in S with the following property: for
some positive number r none of the functions f(z) + ¢z (0 < |c| < r, ¢ not positive)
belongs to S. Hornich’s example suggested that S may have isolated points. Piranian
[6] claimed there is a function f(z) = Za,z" which belongs to S and lies at a
distance one from S — { f}. His proof relied heavily on certain geometric constructions
for which it is difficult to obtain detailed proofs. The following proof is much
simpler and the claim is much stronger. Instead of a suggestive geometric argument
it utilizes known geometric properties of normal analytic functions together with
an explicit analytic construction.

THEOREM. Let LS denote the set of functions in R which are locally univalent
in D. Then there exists a univalent function f(z) in R which lies at a distance
one from LS — {f}.

Thus not only is this univalent function isolated from other univalent functions,
it is even isolated from all other locally univalent functions. The proof also provides
a univalent function such that no function % in R with |2 — f|] < 1 is univalent
(or even locally univalent) in any sector of the unit disc, a result which Piranian
observed would be at best tedious to derive from his geometrical approach [5,
p. 238].

We first prove a lemma which provides a simple explicit construction of an
analytic function without finite radial limits.

o

LEMMA 1. Let h(2) = 2 25" where g(n) = 2*". Then h(z) has no finite

, n=1
radial limits and furthermore (1 — |z|) |h’(2)] = 2.
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Proof. The high index theorem of Hardy [1, p. 215, Corollary 1] shows that
h(2) has no finite radial limits. Clearly

(1= 2D ek ()] = (2 |z|") ( g(n) |z|g‘"’)

=0

= Em: ( > g(n)) |2|*

=1 gn)<k

=23 klel* = 20z| (1 - |2])
k=1

which implies (1 — |2]) |A'(2)| = 2.

Proof of the theorem. Let f(z) be the solution of f”(z)/f'(z) = h'’(2)/3,
f'(0) =1, f(0) = 0, where A(z) is the function of lemma 1. Since

A=z | f"=)/f (2)) =2/3<1,

the function f(z) is univalent and even has a quasiconformal extension to C [6,
p. 172, 294]. Since log f'(z) = h(z)/3, lemma 1 guarantees that log f'(z) is a
normal analytic function with no finite radial limits. Thus f’(z) can have only
0 and « as radial limits. We claim that f(z) is the desired isolated function.

Let g(z) be any function in R with ||f — g|| < 1 and write g(z) as f(z) + k(2)
where k(z) is analytic on a region which contains |z| = 1 since ||k] < 1. Since
k'(z) is analytic on |2| = 1 there are only a finite number of points on |z| = 1
at which %’ (2) vanishes. Choose any e‘® such that 2’(e”®) # 0 and any neighborhood
N of e*® such that |k’ (2)| > |k’ (e’®) /2| for all z in N.

We now prove that g’(z) = f’(z) + k’(z) has a zero in N N D. Suppose to
the contrary that f'(z) + £’(z) # 0in N N D. We first note that 2’ (z) is bounded
in |z| < 1, since it is analytic on |z| =< 1, while f’(z) is normal, since it is the
derivative of a univalent function [6, p. 262]. The sum of a bounded analytic
function and a normal function is normal. The reciprocal of a normal function
is normal. Therefore, the assumption that f'(z) + £'(z) # 0 in N N D would
force (f'(z) + k’(2))"" to be normal analyticin N N D. Since normal analytic
functions are in MacLane’s class & = % = . [4] we can find a neighborhood
N* of e, N* C N, with N* N dD an arc, and [(f(z) + k(z)) "' | =M <o on
aN* N D.

We now prove that (f/(2) + 2’(z)) "' must be unbounded in N* N D. Suppose
(f'(2) + k’(2))"" were bounded in N* N D. Since (f'(z) + k' (2)) ' &= (¢’ (z)"" in
N* N D and since both would be bounded analytic functions in N* N D, there
would be a point (in fact a set of positive measure) on N* N 9D on which

(f'(2) + k' )7

and (&’ (z)) ! would have different nonzero radial values. But this would violate
the fact that f’ (z) has only 0 and « as radial values.

!
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Thus (f’(z) + k’(z))"! is unbounded in N* N D and we can choose a point
z,in N* N D such that

[(f'(2o) + k' (20))7"| > max {4|(R' (e*°))™'|, M}.

Consider the infinite ray t(f’(z,) + k' (2,)) ", ¢t = 1. We lift (f'(z,) + k' (z5)) 7%,
the beginning point of this ray, back to a point in N*. We continue to lift along
this ray as far as we can. The lift is a path v in N* which can not go to
ON* N D since |(f'(z) + k' (2))"'| =M on dN* N D. Since (f'(2) + k'(z))"" is
a normal function the path can not form a Koebe arc [6, p. 267]. Therefore -y (¢)
must end at a point, say e®, of N* N oD. Thus (f'(z) + k'(z)) has a finite
asymptotic value along v(t) ending at e’®'. Since f’(z) + k’(z) is normal the
asymptotic value is a radial value [6, p. 268] with modulus less than |k’ (*®)|/4.
On the other hand, k£’ (z) has a radial value ate‘* of modulus greater than |k’ (e*°)| /2.
Therefore f’(z) will have a finite radial value of modulus greater than |k’ (e*®)|/4.
This violates f’ (z) having radial limits of 0 and o only.

Thus g’(z) = f'(z) + k’(2) must have a zero in every neighborhood of e*°
which proves g(z) is not locally univalent in any sector of the unit disc. This
concludes the proof of the theorem.

I wish to acknowledge many stimulating conversations with George Piranian
on this matter as well as a simplification of the proof suggested by Stephen Dragosh.
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