A GEOMETRIC CONDITION WHICH IMPLIES BMOA

David A. Stegenga

1. INTRODUCTION

The space BMOA is the collection of analytic functions on the unit disc D which are in the Hardy space H^1 and whose boundary values belong to the space BMO of John and Nirenberg [6].

Recently, Hayman and Pommerenke [5] discovered a geometric characterization of all regions Ω with the property that an analytic function with values in Ω will belong to BMOA. Their characterization uses logarithmic capacities.

At about the same time I independently discovered the sufficiency result along with several applications and generalizations to known results. These applications are given below along with the best norm result which involves a property of logarithmic capacity which may be of independent interest.

2. STATEMENT OF THE RESULTS

The geometric characterization given in [5] is that there exist an $r > 0$ and $\delta > 0$ such that $\text{Cap}(D(w, r) \setminus \Omega) \geq \delta$ for all w in Ω. Here $D(w, r)$ is the closed disc of radius r centered at w and "Cap" denotes the logarithmic capacity of a set.

For a region Ω (Ω is an open, connected subset of \mathbb{C}) let

$$\phi(r) = \inf_{w \in \Omega} \frac{\text{Cap}(D(w, r) \setminus \Omega)}{\text{Cap}(D(w, r))}$$

so that $0 \leq \phi \leq 1$. We could replace the denominator with r since the capacity of a disc is its radius. If in the definition of ϕ we replace Cap with a measure, then the condition $\phi(r_0) = \delta > 0$ would not imply a stronger result for large r, i.e., the ratio could remain constant. Surprisingly, the situation with capacities is quite different.

THEOREM 1. For a region Ω, $\lim_{r \to \infty} \phi(r) = 1$ provided that $\phi(r) \neq 0$ for some $r > 0$. In addition, there exists an $r > 0$ with $2^{-5} \leq \phi(r) \leq 2^{-1/5}$.

The next is a refinement of that given in [5].

Received October 4, 1978. Revision received June 13, 1979.
The author is partially supported by a grant from the National Science Foundation.

THEOREM 2. There are positive functions $c_1(t)$ and $c_2(t)$ defined on $[0, 1)$ satisfying the following conditions:

Let Ω be a region with $0 < a \leq \phi(r) \leq b < 1$ for some $r > 0$. Then

$$c_1(b)r \leq \sup ||f||_* \leq c_2(a)r$$

where the supremum is taken over all analytic functions on D with values in Ω and $||\cdot||_\ast$ denotes the BMO norm.

Moreover, $c_2(a)$ is dominated by a constant multiple of $\log 2/a$ and $c_1(b)$ is bounded from below by a positive constant on the interval $(0, 1/2]$ but tends to zero as b tends to one.

We remark that the above result restricted to the case where b is small can be obtained by the methods in [5]. However, for small b the constants c_1, c_2 are not comparable and Theorem 1 is needed to guarantee that $\phi(r)$ can be chosen sufficiently large so that these constants are comparable.

COROLLARY 1. Let Ω be a region with $\phi(r_0) > 0$ for some r_0. Then there exist an $r > 0$ with $2^{-5} \leq \phi(r) \leq 2^{-1/6}$ and the supremum of $||f||_\ast$ for f with values in Ω will be comparable to r.

We now give some geometric conditions of a more elementary nature which imply BMOA. Let $m_w(t)$ denote the Lebesgue measure of the set of numbers r, $0 \leq r \leq t$, for which the circle $|z - w| = r$ is contained in Ω.

COROLLARY 2. The condition $\sup_{w \in \Omega} \frac{m_w(r)}{r} = d < 1$ implies that $\phi(r) \geq 1/4 (1 - d)$.

Proof. The circular projection mapping z into $|z|$ decreases distances and hence decreases capacity, see Pommerenke’s book [7, Theorem 11.3, p. 337]. Taking w to be the origin we see that the circular projection of $D(w, r) \setminus \Omega$ is a set whose complement in the interval $[0, r]$ has measure $m_w(r)$. Since the capacity of linear set is at least one quarter of its length the result follows.

COROLLARY 3. If the image $f(D)$ of an analytic function f does not contain circles centered in $f(D)$ of radius larger than r then f is in BMOA and $||f||_\ast \leq cr$ for some constant c independent of f and r.

COROLLARY 4. If the vertical cross-sectional measures of $f(D)$ are bounded by d then f is in BMOA and $||f||_\ast \leq cd$.

Proof. Take $\Omega = f(D)$ and $r = d$ then $D(w, r) \setminus \Omega$ contains a linear set of measure at least equal to d.

We remark that Corollary 3 is a generalization of Pommerenke’s result [8] that a univalent function f is in BMOA if and only if $f(D)$ contains no discs of arbitrary large radii. Obviously, if a circle is contained in a simply connected region then the entire disc is also. Also, Corollary 4 is a generalization of Baernstein’s result [2] that a nonvanishing univalent function f satisfies $\log f \in$ BMOA. In this case $\log f(D)$ has vertical cross-sectional measures bounded by 2π. See also [9].
Finally, let $\Omega_w(r)$ be the component of $D(w, r) \cap \Omega$ containing w.

COROLLARY 5. If Ω is a region and $\sup_{w \in \Omega} \frac{\text{area}(\Omega_w(r))}{\pi r^2} = d^2 < 1$ for some $r > 0$ then $f(D) \subset \Omega$ implies that f is in BMOA and $\|f\|_* \leq c r \log \frac{2}{1 - d}$.

Proof. A calculation shows that $\pi m_w(r)^2 \leq \text{area}(\Omega_w(r))$ and hence Corollary 2 and Theorem 2 imply the norm estimate.

A special case of Corollary 5 is the case that area $(f(D))$ is finite and the resulting norm inequality is that $\|f\|_* \leq c (\text{area } f(D))^{1/2}$. This problem was first considered in [1, Theorem 1] where it is shown that finite area implies H^2. Later, this result was improved in [3] to all H^p for $p < \infty$. Since BMOA is contained in H^p for all $p < \infty$, see [6], the above corollary generalizes these results.

3. PROOFS OF THE THEOREMS

The proofs of Theorem 1 and Theorem 2 are based on the following lemmas.

LEMMA 1. There is a positive constant t_0, satisfying

\[(*) \quad \phi(2tr) \geq \exp \left(-\frac{1}{t - 2} \left[\log \frac{t}{\phi(r)} + 4 \right] \right) \]

whenever $\phi(r) > 0$ and $t \geq t_0$.

Proof. Assume that $\phi(r/2) = \delta > 0$ then $\text{Cap}(D(w, r/2) \setminus \Omega) \geq \delta r/2$ for all w in Ω. It follows that $\text{Cap}(D(w, r) \setminus \Omega) \geq \delta r/2$ for all w in \mathbb{C}. Fix an odd integer $n = 2k + 1$ and $R \geq (1 + n/3) r$. Put

\[A_m = \left\{ z : R - 2r \leq |z| \leq R; \frac{2\pi}{n} \left(m - \frac{1}{2} \right) \leq \text{arg } z \leq \frac{2\pi}{n} \left(m + \frac{1}{2} \right) \right\} \]

for $m = 0, 1, \ldots, n - 1$. If n is sufficiently large a computation shows that A_m contains a disc of radius r and hence there is a subset E_m of $A_m \setminus \Omega$ with $\text{Cap}(E_m) \geq \delta r/2$. Then there exist a positive measure μ_m on E_m with unit mass and such that the potential

\[U^\mu_m(z) = \int \log \frac{1}{|z - \zeta|} d\mu_m(\zeta) \]

is bounded by $\log [2/\delta r]$ [4, p. 235].

If $\mu = \frac{1}{n} \sum_m \mu_m$ then the inequality $\sup_{z \in E} U^\mu(z) \leq c$ where $E = \bigcup_m E_m$ implies the lower bound $\text{Cap } E \geq e^{-c}$. Since $E \subset D(0, R) \setminus \Omega$ this will result in a lower bound estimate for $\phi(R)$.
Let \(z \in E_{m'} \), then for \(U_m = U^m \) we have

\[
U^m(z) = \frac{1}{n} \left[U_{m'-1}(z) + U_{m'}(z) + U_{m'+1}(z) + \sum_{\text{rest}} U_m(z) \right]
\]

\[
\leq \frac{1}{n} \left[3 \log \frac{2}{\delta r} + \sum_{\xi \in F_m} \log \frac{1}{\|z - \xi\|} \right]
\]

\[
\leq \frac{1}{n} \left[3 \log \frac{2}{\delta r} + 2 \sum_{m=2}^{k} \frac{\log \left(\frac{1}{(R - 2r)e^{2\pi i(m-1)/n} - 1} \right)}{(R - 2r)e^{2\pi i(m-1)/n} - 1} \right]
\]

\[
\leq \frac{1}{n} \left[3 \log \frac{2}{\delta r} + 2n \int_0^{(k-1)/n} \log \frac{1}{(R - 2r)e^{2\pi it} - 1} \, dt \right]
\]

Since \(\frac{k-1}{n} = \frac{1}{2} - \frac{3}{2n} \) and \(\int_0^{1/2} \log |e^{2\pi it} - 1| \, dt = 0 \) we get after some simplification that

\[
\sup_{z \in E} U^m(z) \leq \frac{3}{n} \left[\log \frac{2}{\delta} + \log \left(\frac{R}{r} - 2 \right) + \log 2 \right]
\]

\[
+ \log \frac{R}{R - 2r} - \log R.
\]

We now set \(R = tr \) and assume that \((1 + n/3)r \leq R \leq (1 + n/3)r \). If \(t \geq t_0 \)

where \(t_0 \) is sufficiently large then the value of \(n \) will be large enough to apply the above argument. Since \(n/3 \geq t - 2 \) we deduce that

\[
\log \phi(tr) \geq -\frac{3}{n} \left[\log \frac{t}{\phi(r/2)} + \log \left(1 - \frac{2}{t} \right) + \log 4 \right] + \log \left(1 - \frac{2}{t} \right)
\]

\[
> \frac{1}{t - 2} \left[\log \frac{t}{\phi(r/2)} + \log 4 \right] - \frac{2}{t - 2}.
\]

Replacing \(r \) with \(2r \) in the above yields (*)

Lemma 2. If \(\phi(r) \neq 0 \) for some \(r > 0 \) then there exists an \(R > 0 \) with \(2^{-5} \leq \phi(R) \leq 2^{-1/5} \).

Proof. Since \(r\phi(r) \) is a nondecreasing function, \(\phi(r) \) has left and right limits everywhere. In fact, by the outer regularity of capacity we see that \(\phi \) is continuous from the right. By (*), the set \(\{ r : \phi(r) \geq 2^{-6} \} \) is nonempty. Let \(R \) be the infimum of this set so that \(R > 0 \), \(\phi(R - 0) \leq 2^{-5} \), and \(\phi(R) = \phi(R + 0) \geq 2^{-5} \).

Let \(\varepsilon > 0 \). Since the capacity of a semicircle of radius \(R \) is \(R/\sqrt{2} \), an open neighborhood will have capacity bounded by \((1 + \varepsilon)R/\sqrt{2} \). Let \(w \in \Omega \) and \(R' < R \). If \(R' \) is sufficiently close to \(R \) then there exists \(w \in \Omega \) with
A GEOMETRIC CONDITION WHICH IMPLIES BMOA

\[\text{Cap}(D(w,R) \setminus D(w', R')) < (1 + \varepsilon) R / \sqrt{2}. \]

Put \(E = D(w,R) \setminus \Omega \) and \(E' = D(w', R') \setminus \Omega \). Then \(E \) can be split into two sets \(E_1, E_2 \) where \(E_1 \subset E' \) and \(\text{Cap}(E_2) \leq (1 + \varepsilon) R / \sqrt{2} \). Now the subadditivity of capacity gives

\[
1 / \log \frac{2R}{\text{Cap} E} \leq 1 / \log \frac{2R}{\text{Cap} E_1} + 1 / \log \frac{2R}{\text{Cap} E_2} \\
\leq 1 / \log \frac{2R}{\text{Cap} E'} + 1 / \log \frac{2\sqrt{2}}{1 + \varepsilon}.
\]

By letting \(R' \) tend to \(R \) so that \(\text{Cap} E' \) tends to \(R\phi(R - 0) \) and by letting \(\varepsilon \) tend to zero we deduce that

\[
1 / \log \frac{2}{\phi(R)} \leq 1 / \log \frac{2}{\phi(R - 0)} + 1 / \log 2 \sqrt{2}
\]

Since \(\phi(R - 0) \leq 2^{-5} \) this implies that \(\phi(R) \leq 2^{-1/5} \). Thus, \(2^{-5} \leq \phi(R) \leq 2^{-1/5} \). See [7, Chapter 11.1] for the regularity and subadditivity results used in the above.

The author is indebted to the referee for suggesting the above lemma.

Proof of Theorem 1. Clearly (*) implies \(\lim_{r \to \infty} \phi(r) = 1 \) and the remaining statement is Lemma 2.

Proof of Theorem 2. In [5] it is shown that:

1. \(\phi(r) \geq \delta > 0 \) implies \(||f||_* \leq c(\delta) r \) whenever \(f \) takes values in \(\Omega \).

2. There exist \(0 < \delta_0 < 1 \) such that \(\phi(r) \leq \delta_0 \) implies there exists a function \(f \) with values in \(\Omega \) and \(||f||_* \geq c r \).

Actually, the upper estimate given in [5] is of the form \(c(\delta, r) \) but an easy dilation argument places it in the above form.

Since \(\lim_{r \to \infty} \phi(r) = 1 \) we can define \(r_0 = \inf \{ r : \phi(r) \geq \delta_0 \} \). Thus, there exists \(r_0 \leq r_1 \leq 2r_0 \) with \(\phi(r_1) \geq \delta_0 \) and hence (1) implies \(\sup ||f||_* \leq c(\delta_0) 2r_0 \). In addition, \(\phi(r_0 / 2) < \delta_0 \) so (2) implies \(\sup ||f||_* \geq c r_0 / 2 \). Thus, the best norm estimate is given by \(r_0 \).

By (1) \(c_2(t) \) can be taken to be constant on \([\delta_0, 1) \). By (2) \(c_1(t) \) can be constant on \((0, \delta_0) \).

Let \(\delta < \delta_0 \) and \(\phi(r) \geq \delta \). Assuming as we may that \(\delta_0 \) is small we use \(t = \log 2 / \delta \geq t_0 \in (\ast) \) to get \(\phi(2(\log 2 / \delta) r) \geq \delta_1 \) where \(\delta_1 \) is independent of \(\delta < \delta_0 \). Hence by (1) \(||f||_* \leq c(\delta_1) 2(\log 2 / \delta) r \leq c(\log 2 / \delta) r \) whenever \(f \) takes values in \(\Omega \). It follows that \(c_2(\delta) \) can be chosen to be a constant multiple of \(\log 2 / \delta \) on \((0, \delta_0) \) and hence also on \((0, 1) \).
Finally, we must determine $c_1(\delta)$ for $\delta_0 < \delta < 1$. Let $\delta_0 < \delta < 1$ and $\phi(r) \leq \delta$. Now $r = 2tr_1$ for some t. From (*) and the fact that $\phi(r_1) \geq \delta_0$ we obtain an upper bound for t in terms of δ, say $8t \leq \psi(\delta)$. Since $\|f\|_* \geq cr_0/2$ for some f with values in Ω and $2r_0 = r_1$ we obtain $\|f\|_* \geq c\psi(\delta)^{-1}r$. Thus, taking $c_1(\delta) = c\psi(\delta)^{-1}$ for $\delta_0 < \delta < 1$ we are done.

REFERENCES

Department of Mathematics
Indiana University
Bloomington, Indiana 47401