ON MEROMORPHIC SOLUTIONS OF A LINEAR
DIFFERENTIAL-DIFFERENCE EQUATION WITH CONSTANT
COEFFICIENTS

A. Naftalevich and A. Gylys

INTRODUCTION

A. O. Gelfond considered in his paper [4], among other questions, the entire
solutions of the double system of equations (S) L [F(z)] =0, M [F(2)] = 0, where

LIF@)] =) c,Fe+v), MIF@] = dF(z+3,)
k=1 k=1

are linear difference operators with constant coefficients ¢,, d, and steps v,, §,.
If LIF(2)] =F(z+a)—F(2), M[F(2)] =F(z+B) — F(2), Im{@ /B)# 0, then
the meromorphic solutions of the system (S) are the much studied elliptic functions.
Gelfond’s result on the entire solutions of the general system (S) is, for this particular
case, identical with the well known theorem which states that there are no entire
elliptic functions other than f(z) = constant.

A. 1. Markushevich suggested in connection with Gelfond’s paper the following
question: What can be said about the meromorphic solutions of the double system
(S)?

The meromorphic solutions of the system (S), as well as of other systems (not
necessarily double systems) of difference and differential-difference equations, were
afterwards studied by the authors of this paper, by L. Navickaite, R. Sandler,
T. S. Silver, V. Tevelis, and L. Trushina. (see {7], [8], [14]-[34], [37], [38]).
Earlier material on meromorphic solutions of difference equations may be found
in the monograph [1] of P. Appell and E. Lacour and in the monograph [35]
of E. Picard. This subject has also been studied in the papers [2]-[6], [9]-[13],
[39] of F. Erwe, G. Floquet, M. Ghermanesco, A. Hurwitz, H. Lowig, P. Montel,
and J. M. Whittaker.

In this paper we consider the meromorphic solutions f(z) of the differential-dif-
ference equation

1) A[f@]=4,[f@] +A, [ @] +A, [ @] + ...+ A, If" @] =0,

where
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(2) A lf(2)] = 2 a;fz+eay) (=0,1,2,..,n)

is a linear difference operator with constant complex coefficients a,; and complex
steps a,. The operator A, is said to be associated to A and the steps o; of A;
are said to have index i. Some of the operators A; may vanish identically (4, = 0),
but A, # 0. This operator A, and its steps «; are the operator and steps of highest
index. Similarly, if A,, is the first operator A; which does not vanish identically,
we call A, and its steps a,,; the operator and steps of lowest index. The number
n — m will be called the order of both the equation (1) and operator A. We assume
also that none of the coefficients a; of the operator A; vanishes and that no
two of its steps are equal (o, # a;,, if s # ¢), if A; £ 0.

If f(z) is an entire function and Df(z) = f’ (z), then

2D2

D
fe+a) =Ff@) + 51,— FG) +——f(2) + ... = exp @ D) f (2)

2!

for every z and a. Thus for entire f(z) the equation (1) is equivalent to the differential
equation

3) AD)f(z) =0,

where

(4) A(D)=A,(D)+DA,(1D)+ D?>A,(D)+ ... + D"A (D)
and

(5) A;(D) = 2 a;;expla;;D) (i=0,1,2,..,n).

Jj=1

The differential equation (3) is generally of infinite order and its coefficients
are constants. Its characteristic function

6) AR) = Agt) + LA (8) + ... + " A, (1), A,(t) = 2 a,exp (a;,t),

(to get this function substitute ¢ for D in A (D)) is an entire function of exponential
type, i.e., there exist two positive constants B and C such that |A (¢)] = Bexp(C |t])
for every complex ¢.

In the following description of the entire solutions of the differential equation
(3), the operator A (D) is not necessarily of the form (4). It may be any linear
differential operator with constant coefficients of finite or infinite order, whose
characteristic function A (¢) is an entire function of exponential type.

Let A be a zero of order & of the function A (¢) and P(z) an arbitrary algebraic
polynomial of degree not more than 2 — 1. Then the function P(z)exp(Az) is an
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entire solution of the equation (3). Such a solution is called a principal solution.
Obviously, every finite sum of principal solutions of the equation (3) is also a
solution of this equation. Let S,(z), S,(2), S;(2), ... be a sequence of such solutions
of (3) (every S, () is a finite sum of principal solutions) andlet S, (z) — f(z) uniformly
i on every bounded set of the complex plane. Then it is easy to see that f(z) is
also an entire solution of (3). That, conversely, every entire solution f(z) of (3)
can be obtained in the above described way has been proved by A. O. Gelfond
[4] (see also [3], chapter 5).

Let us return to the differential-difference equation (1) and let us study its
properly meromorphic solutions. We call a function f(z) properly meromorphic,
if it is meromorphic in the finite complex plane and has there at least one pole.

Consider first the pure differential equation
(7 af(@) +a,f (@) +..+a,f%@=0

with constant coefficients a, and the pure difference equation

(8) B{f(2] = bfz+B,)=0, p=2

with constant coefficients b, and steps B, such that b, + 0 and B, # §;if i & j (these
restrictions guarantee that B [f(z)] contains more than one term). Both these
equations are particular cases of (1).

Every solution of (7) is a finite sum of principal solutions of this equation
and is therefore an entire function. Thus the equation (7) has no properly
meromorphic solutions. On the other hand, there exist, and with a large degree
of arbitrariness, properly meromorphic solutions of the equation (8) (see Theorem
1.2).

This observation shows that so far as the properly meromorphic solutions are
concerned there are two types of differential-difference equations (1): there are
D-equations which, like the differential equation (7), have no properly meromorphic
solutions, and there are A-equations, which like the difference equation (8), have
properly meromorphic solutions.

One may ask how to determine the type of the equation (1). Let us agree
to say that the equation (1) (the operator A) is a P-equation (P-operator), if and
only if all its steps are real and it has an extremal step of highest index, i.e.,
either the maximal or the minimal of all steps o, is a step of highest index.
Note that the extremal step, being necessarily a step of highest index n, may
also be simultaneously a step of index less than n.

The main result of this paper may be expressed approximately as follows:

The P-equation A [f(2)] = 0 is a D-equation, except in case the differential-dif-
ference operator A contains a difference operator as a factor, i.e., when

A[f(2)] = A*[B[f(2]],
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where B[f(2)] is a difference operator containing more than one term (see (8))
and A* is a differential-difference operator.

In the exceptional case every solution, and in particular every properly meromor-
phic solution, of the equation B [f(z)] = 0 is' also a solution of the equation (1).
Thus (1) is obviously in this case a A-equation. A less obvious class K of A-equations
has been studied by A. Naftalevich in [21]. The full description of this class
will be presented in the next section. Here we confine ourselves to describing
the equations with real steps of the class K. We call these equations Q-equations
and define them as follows:

The equation (1) (operator A) is a @-equation (Q-operator), if it contains more
than one step and both its minimal and maximal steps are steps of lowest index,
but none of them is a step of any higher index. Thus, if (1) is a @-equation,
and o, are its steps of lowest index, and 8 = mm Qs Y = max a,,;, then B <<«

and elther m=norf <a;<vyforeverym<i < n and every j. Note that every
equation (1) with real steps and of order one is either a P-equation or a @-equation.
Every equation with real steps and of order zero is simultaneously a P and
@-equation, if it contains more than one step.

Suppose A is a @-operator and A* an arbitrary differential-difference operator
with real steps. Then, obviously, the equation A A* [f(z)] =0 is a A-equation.
But it remains an open question whether there are any A-equations not of this

type.

The type of equation (1) has been discussed above only in the case when all
steps of the operator A are real. In what follows we will treat also the case in
which the steps are arbitrary complex numbers.

The authors would like to thank M. Schreiber, who read the manuscript and
offered valuable advice.

1. THE SPACES #(A) AND S#(E;A)

Denote by P,,P,,...,P, arbitrary linear difference or differential-difference
operators and let S“(P,,P,,...,P,) be the set of all meromorphic functions (here
and hereafter we mean meromorphic in the entire complex plane) f(z) such that
P, [f(2)] is an entire function for every k= 1,2,...,s. If f(z) is a meromorphic
solution of the equation (1), then obviously f(z) € #(A). Conversely if ¢(2) € F(A),
then there exists an entire function g(z) such that ¢(2) + g(z) is a solution of
(1). Indeed, put A [¢(2)] = A(2). Since A(z) is an entire function there exists an
entire solution g(z) of the equation A [g(2)] = —A(2) [5]. The function ¢(2) + g(2)
is therefore a meromorphic solution of (1). Thus (1) is a D-equation, if and only
if .# (A ) contains no properly meromorphic function (#°(A4) contains obviously every
entire function), and is a A-equation, if and only if .#(A) contains properly
meromorphic functions. The question of the type of equation (1) is thus reduced
to this one: does .£(A) contain properly meromorphic functions?

It will be convenient to use for the operators A and A; the expressions (4)
and (5) also when operating on not necessarily entire functions. Note that the
product P, P, of two differential-difference operators P, and P, reduces then to
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the formal algebraic product P,(D) - P,(D). There is also an obvious one-to-one
correspondence between the operators A = A (D) and their characteristic functions
A(t).

Besides the characteristic function A (¢) of the operator A we introduce also
the characteristic system A,(t), A,(t), A,(¢), ...,A,(¢) of this operator. Note that
each A;(f)'is an exponential polynomial and is the characteristic function of the
difference operator A ;.

The study of the space (A) which follows depends on the existence and
uniqueness of the GCD (greatest common divisor) of a given system of exponential
polynomials. We call @(t) a divisor of the exponential polynomial

P(t) = p,exp(m,t)
k=1

(p, and , are complex numbers), if P(t) = Q(t) R(t), where Q(t) and R(¢) are
both exponential polynomials. An arbitrary monomial Cexp (ct) is obviously a
divisor of every exponential polynomial. We call such a monomial a trivial divisor.
Thus a nontrivial divisor contains at least two terms. Note also that if Q(¢) is
a divisor of P(¢), then Cexp (y¢) @(¢) is also a divisor of P (t) for arbitrary complex
numbers C and vy. The exponential polynomial @(¢) is said to be the GCD of
the system A,(¢), A,(¢),...,A, (), if Q(¢) is a divisor of each of the exponential
polynomials A,(¢) and the system A,/@, A,/@Q, ..., A, /® has no common nontrivial
divisor.

J. F. Ritt’s [36] factorization theory of exponential polynomials easily yields
the following:

For any finite system of exponential polynomials A, (t), A,(t),...,A, (t) there
exists a GCD. The GCD is determined uniquely up to a factor Cexp (yt). If the
exponents of each A,(t) (the numbers oy in (6)) are all real, then the GCD of
this system may be chosen with all its exponents real.

We are now able to formulate the main theorem of this paper.

THEOREM 1.1. Suppose A is the operator (4), A;(t) (i = 0,1,2, ...,n) its charac-
teristic system, B (t) the GCD of this system, and B = B(D) the difference operator
corresponding to B(t). If A is a P-operator, then

AA) =FAB) =F(Ay,A,,...,4A,).

n

This theorem is proved in section 3. Here we offer some comment on it.

If the characteristic system {A;(¢)} has only trivial common divisors (which
is usually the case), we may assume B (¢) = 1, and B is then the identity operator:
B [f(2)] = f(z). Thus in this case %(A) contains (in accordance with the result
on P-equations announced in the introduction) no properly meromorphic function.

Consider now the case when the GCD, B(t), contains more than one term.
We may assume that all exponents of B(f) are real. Thus the steps of the
corresponding operator B are all real. Nevertheless, we -will describe the space
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&(B) in the more general case when B is the difference operator (8) with arbitrary
complex steps B;, (¢ = 1,2,...,p).

We will find it convenient to speak about a strip parallel to a line, about
parallel strips and about the angle between a strip and a line or between two
strips. For example, a strip S will be said to be parallel to the line L, if the
boundary lines of S are parallel to L.

Fix now in the complex plane an arbitrary line L and an arbitrary point z,
and consider the set V= {z, + B,;,i = 1,2,...,p, p = 2}. Let 7(z,,L) be the smallest
closed strip which contains the whole set V and is parallel to the line L. Each
of the boundary lines L, and L, of @(z,,L) contains at least one point of the
set V. Suppose that L, as well as L, contains only one point of V and remove
from 7 (zy,L) one of its boundary lines (either L, or L,). We denote the remaining
half closed strip IT = I (2, L) and call it a fundamental strip of the operator B.

It is easy to see that there exist two fundamental strips II (z,,L) for every
line L which is not parallel to any of the lines joining two points of the set
V. Thus there is only a finite number of exceptional lines L passing through
a fixed point for which no fundamental strip II (z,,L) exists, and for every line
L, including the exceptional ones, there exists a fundamental strip of B which
makes an arbitrarily small angle with L.

Note that in the case when all steps of the operator B are real and arranged
such that B, <B,<...<B, and L is the imaginary axis, then we may take for
II (2,,L) the strip

IT(z4,L) = {z: Re (2 +B,) = Rez < Re (2, +B )}

It will be convenient to have a fundamental strip for B also in the case when
B contains only one term. In this case we identify every fundamental strip of
B with the empty set.

THEOREM 1.2 [17]. Let B be the difference operator (8), Il a fundamental
strip of B and :

GEN) = D (Calz—N)), NETL

an arbitrary sequence of rational functions whose poles are restricted only by the
condition \; — o as i — o, Then there exists a function f(z) € #(B), whose principal
part at each \; (i = 1,2,3,..)) is G(z,\;) and which has no other poles in Il1. If
[1(2) € A(B) and f,(2) — f(2) is regular in 11, then f,(2) — f(z) is an entire function.

Theorem 1.2 may be extended to some differential-difference operators.

Let A = A(D) be the operator (4) and A,, its associated difference operator
of lowest index. If A,, contains only one term (if p, = 1), then (A) contains
no properly meromorphic function [21]. Let A,, contain at least two terms and
let IT be a fundamental strip of A,,. II is also said to be then a fundamental
strip of A. The operator A is called an R-operator, if it has a fundamental strip
IT such that each step a; of A with index i > m is an inner point of II. Such
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a fundamental strip II we will call an R-fundamental strip. Note that in the
case of real steps an R-operator is identical to a §-operator.

THEOREM 1.3 [21]. Theorem 1.2 remains valid if B is an arbitrary differen-
tial-difference R-operator and Il is an R-fundamental strip of B.

We continue to study the operator A but do not restrict it to be an R-operator.

Let IT = II (2,,L) be a fundamental strip of A, W= W(0) the set of all steps
a;; of A, and W(z,) = {2:2= 2, + a;;, a; € W}. Denote e = e(z,,L) the smallest
closed strip which contains both IT and W(z,). Each of the boundary lines of e
contains at least one point of W(z,). We call the operator A a P*-operator (with
respect to IT), if at least one of the boundary lines of e, say the line 1, contains
only one point of the set W(z,) and this single point is z, + «,;, where a,; is
a step of highest index (a,; may simultaneously be a step of some index lower
than n). In this special case we remove from the set e the line 1, denote the
remaining half-closed strip E = E(z,,,L), and call it an extended fundamental
strip of A.

Note that a P*-operator with real steps is identical to a P-operator. It is thus
natural to ask whether theorem 1.1 holds in case A is a P*-operator. The following
example offers some answer to this question.

Suppose o and B are two complex numbers such that Im(a/f) =+ 0 and
A=A,+ DA,, where A,[f(2)] =f(z+ ) — f(2) and A, [f(2)] = f(z +B) — f(2).
It is easy to see that: (1) Every elliptic function with periods a and $ is a properly
meromorphic function belonging to #(A); (2) A is a P*-operator (with respect
to every fundamental strip of A which is not parallel to the line z = B¢, —0 < ¢ < o);
and (3) the GCD of the characteristic system {A,(t) = exp(at) — 1, A,(t) =
exp(Bt) — 1} is B()=1 (see [36]). Thus B is the identity operator and
SA(A) + #(B). Furthermore, there is also S(A) + S(4,,4,). To see this con-
sider any pair of meromorphic functions £, (z) and f,(z) which have the following
poles and principal parts:

(1) The poles of f, (z) are at the points ma + n(m =0, £1,+2,...;n = £1,+2,
+3, ...; note that n % 0) and the corresponding principal parts are n/(z — ma — np).

(2) The poles of f,(z) are at the points ma + n (m = £1,+2, +3,..; n = 0,
+1, +2,...; note that m # 0) and the corresponding principal parts are

m/(z — ma — np)>.

A direct verification shows that: (1) f,(2) € S(4,); (2) f,(2) € F(A,); and (3)
A, [fi(2)]1(A,[f2(2)]) is a meromorphic function which has the principal part
1/(z— ma — nB)(1/(z — mo — nB)®) at each point ma + np (m,n =0, =1, +2,...)
and has no other poles (in other words

A, [fi(@)] =1(2) + g,(2), Ao f2(2)] =p(2) + g,(2),

where g,(2) and g,(z) are entire functions and {(z) and p(z) are the elliptic
Weierstrass functions). It follows now easily that f(z) = f,(2) + £, (2) € F(A), but
() € F(Ay,A)).
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This example shows that none of the statements of Theorem 1.1 holds for
some P*-operators. Nevertheless, Theorem 1.1 will be easily deduced (in section
3) from the theorem on P*-operators stated a few lines below.

Let Q be an arbitrary set in the complex plane and P,,P,,...,P, arbitrary
linear difference or differential-difference operators. Denote the set
AP,,P,,....P,) N Z(Q), where ¥(Q) is the space of all meromorphic functions
which have in ) at most a finite number of poles, by A(Q; P,,P,,...,P,).

THEOREM 1.4. Suppose A is the operator (4), {A;(t), (i =0,1,2,...,n)} its
characteristic system, B (t) the GCD of this system, and B = B (D) the difference
operator corresponding to B(t). If A is a P*-operator and E is an extended
fundamental strip of A, then

AE;A) = AE;B) =AE;A,,A,A,,...,A)).

The proof of this theorem will be given in Section 2.

We will call the operator A a reduced operator if A, 0. If A,=A,=...=
A, ,=0, but A,,=%0, then A=D"A*, where A* is a reduced dlfferentlal—
difference operator It is easy to see that #(A) = F(A*). Without loss of generality
we will assume in the rest of this paper that A is a reduced operator.

Consider now the rational function

n

| .
. Gz N=> ——
a1 (2N k2=1 P Y

and an arbitrary meromorphic function f(z), and introduce their i-components
(or components of order i) G,(z,\) and f;(z). The i-component G,(z,A) is the i-th
term a;/(z — A of the sum (1.1) (G;(z,\) =a;/(z— N)¢),ifi<n, and G,(z,\) = 0,
if i > n. Note that G;(z,\) may vanish also for i < n. To define the i-component
f:(2) let {\,} be the set of poles of f(z), G(z,\,) the principal part of f(z) at
the pole A,, and G;(z,\,) the i-component of G(z,\,). For every natural number
i construct the set Q; of all poles A, for which G,(z,\,) =0. The i-component
[:(2) is defined only up to an arbitrary additive entire function and may be taken
to be any meromorphic function whose principal part at each A\, € Q; is G,{(z,\})
and which has no poles outside ;. Note that the set (}; may be empty and f;(z)
is then an arbitrary entire function.

Consider now the i-components F;(z) of the function F(z) = A [f(2)]. It is easy
to see that

(1.2) Fi (2) = Ao [f1(2)], F.(z2) = A, [fz (2)] + DAI A ()1,
Fa(z) = Ao [fs(z)] + DA1 [fz(z)] + D2A2 [f1(2)]s ceee
LEMMA 1.1. If f(z) € S(A), then the i-component f,(z) of f (z) belongs to .V(Af,)
for every i = 1,2,3, ....

Proof. The condition f(z) € ¥(A) means that F(z) = A [ f(z)}‘ is an entire
function. Each component F;(z) of F(z) is also an entire function and the first
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equation of (1.2) shows that f,(z) € #(4,). To get f,(z) € F(A2) operate with
A, on both sides of the second equation in (1.2) and note that A,[F,] and
DA, [A, [f,(2)]] are both entire functions. Operating with A, ~* on the n-th equation
of (1.2) and using induction we easily get £, (z) € F(A}).

Suppose that ¢(z) is a meromorphic function and B is the operator (8). Denote
by S(B; ¢(2)) the space of all meromorphic functions f(z) such that B [f(z)] — ¢(2)
is an entire function. Note that #(B; ¢(2)) = #(B) if ¢(z) = 0. In [17] it has been
proved that theorem 1.2 remains true if the space “(B) is replaced by “(B; ¢(z)).

Consider an arbitrary meromorphic function F(z) and associate to it two functions
p(z;F) and P(Q; F), where
( { 0 if F ({) is regular at the point z,
pr) =
k if F({) has a pole of order k& at 2,

and P (Q; F) is defined for every set ) of the complex plane by the formula
P(O;F)=supp(z;F),z€ Q.

LEMMA 1.2. Let C denote the complex plane, B a difference operator, I1 a
fundamental strip of B, and ¢(z) a meromorphic function. If f(z) € S(B;¢(2)),
then

(1.3) P(C;f) = max [P(I; f), P(C;¢)].

COROLLARY 1.1. If f(z) € #(B), then P(C;f) = P(I1l: F). In particular, f(2)
is an entire function if f(z) € S(B) and f is regular in II.

Proof. If B has only one step (B = bexp(BD)) and f(z) € #(B;¢(2)), then
f(2) =(1/b)e(z — B) + g(2), where g(z) is an arbitrary entire function. In this
case II is the empty set and obviously P(C;f) = P(C; ¢}. Thus (1.3) holds.

Suppose now that B is the operator (8) and f(z) € S(B;¢(2)). Then B [f(2)] =
¢(2) + g(2), where g(z) is an entire function. Substitute in this equation z — B,
for z and get

1 Pl
(1.4) f@) = loz=B,) +8(—B,)] == > bif(z+B,~B,).

Without loss of generality we may assume that the fundamental strip IT is
parallel to the imaginary axis Y and that the steps B; of B are arranged such
that Rep, <RefB,=<RefB;=...=<Ref,_, <ReB,. Let

M=1l(z,Y) = {2: Re (2, + B,) = Rez <Re (z, +B )}
and 3 = Re (B, — B,_,) > 0. Apply (1.4) to a point z of the strip

Q.= {z:Re (2, +B,) = Rez < Re(z, +B, +3)}.
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For such a z all points 2+ B, — B, (i=1,2,...,p — 1) belong to IT and therefore
the right side of (1.4) is either regular at this point z or has a pole whose order
is at most K = max (P(C;¢), P(I1,f)). Thus we proved that P(I,;f)=< K, where
II, =TTV @, = {z: Re(2, +B,) = Rez<Re(z, +B, +5)}. We prove by induction
that P(I1,,; f) = K, where I, = {2: Re(2, +B,) = Re z <Re(z +B , + md)}.Conse-
quently P(H,;f) = K, where H, = {z:Re (z, + B,) = Rez < «}: Similarly we prove
P(H,;f) < K, where H, = {z: —o <Rez<Re (z, +8,)}, and (1.3) follows imme-
diately.

Fix a real number o and two arbitrary points z,,z, on the line
L={z:z=2,+ texp(ia), —o <t < 400},

Take an arbitrary positive number v, 0 <y < (w/2) and denote by U = U (L, 2,,2,,7)
the union of the two angular sets

U, =U(L,z,,y)={z:2=2, + texpli¢), 0 <t<ma —y <¢ <a +7v}

U,=U,(L,z,,y) ={z:2=2, — texp(ig),0 < t<oma —y <¢ <a +v}.

We agree to say that Uis an asymptotic neighborhood of L and that the meromorphic
function ¢(z) is L-regular if ¢ is regular in some asymptotic neighborhood of
L. Note that there may be points of L not covered by U but the set of such
points is bounded. If ¢(2) is L-regular, then it is also L,-regular for every line
L, which is either parallel to L or makes a small enough angle with L.

LEMMA 1.3. Suppose L is a line of the complex plane, Il is a fundamental
strip of the difference operator B parallel to L, and ¢(2) is an L-regular function.
If f(2) € L(B;¢(2)) N F(1), then f(2) is also L-regular.

Proof. The lemma is evident if B contains only one step.

If B contains more than one step, we let its steps ,, the strips II, @,, II,
and the halfplanes H,,H, be exactly as in the proof of the previous lemma.
The line L we assume to be the axis of symmetry of IT and take on it the vertices
2,2, of the angular sets U, = U, (L,2,,v) and U, = U,(L,z,,y) which are parts
of the asymptotic neighborhood U = U, U U, of the line L. The points z,,z2,, and
the number vy are required to meet the following conditions: (1) ¢(2) is regular
in U; (2) f(2) is regular in U N IT; and (3) the asymptotic neighborhood U (Y,0,0,~)
of the imaginary axis Y contains neither the points 8, — B8, (: = 1,2, ...,p — 1) nor
B, — Bj (j=2,3,...p).

In the angle U, (U,) fix on L a point 2} (z}) such that the distance of z](z2)
to the boundary of U, (U,) is more than d = max(|B,]|,|B,|), and apply (1.4) to
a point z of the set @, N U', where U' = U(L,z2;,2,,v). Each point z + B, — B,
(i=1,2,....,p — 1) belongs then to U' N II and 2z — B, to U. Thus the right side,
and therefore also the left side, of (1.4) is regular in U* N II,. By induction
we prove that f(z) is regular in U' N II, (¢ =1,2,3,...) and we conclude that
f(2) is regular in U' N H,. In the same way we find that f(z) is regular also
in U' N H,. Thus f(z) is L-regular.
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LEMMA 1.4. Let C be the complex plane, I1 a fundamental strip of A, and
f(z) € L(1;A). If L is a line parallel to I1 and P(C;f) < x, then f(z) is L-regular.

Proof. Let P(C;f) = k <o, Then

(1.5) @ =fi@)+ G +..+[f@)+g),

where f,(z) (i = 1,2, ... k) are the i-components of f(z) and g(2) is an entire function.
Since f(z) C S(I1;A) C S(A), the functions F;(z) of (1.2) are entire functions,
and f,(z) as well as every other i-component of f(z) has only a finite number
of poles in II. Thus f,(2) € H(4,) N Z () and Lemma 1.3 shows that f,(2) is
L-regular. From (1.2) it follows that £, (z) € S(4,; ¢(z)), where

¢(2) = —DA, [f,(2)],

which is L-regular (since f; () is L-regular). Thus f, () is also L-regular by Lemma
1.3. We prove by induction that every i-component f;(z) of f(z) is L-regular and
conclude from (1.5) that f(2) is also L-regular.

2. OPERATORS WITH COMPLEX STEPS

LEMMA 2.1. Suppose Il is a fundamental strip of A, H a half plane parallel
to I1, and C the complex plane. If f(z) € S(A), then P(C;f) = P(H;f).

Proof. Let A be the operator (4) and A, the difference operator of smallest
index associated to A.

If A, contains only one step, then .#(A) contains only entire functions and
P(C;f) = P(H;f) =0 for every f(z) € F(A).

Consider the case when A, contains more than one step. If P(H;f) = o, then
obviously P(C;f) = . Suppose f(2) € ¥(A) and P(H;f) =k <. Fix i >k and
consider the i-component f;(z) of f(2). It is regular on H and f, € (A}) as Lemma
1.1 shows. Note also that the operator A. has a fundamental strip parallel to
the fundamental strip I1, of A,. (To prove the last statement assume that II
is parallel to the imaginary axis and write A, in the form (5)). It follows now
from Corollary 1.1 that f;is an entire function for i > k. Hence P(C;f) = P(H;f) = k.

LEMMA 2.2. Suppose A is a P*-operator, E an extended fundamental strip
of A, and C the complex plane. If f(z) € S(A), then P(C;f) = P(E;f).

Proof. If the difference operator 4, associated to A contains only one step,
then P(C;f) = P(E;f) = 0 for every f(2) € S(4) [21].

Consider the case when A, contains more than one step and assume that E
is parallel to the imaginary axis Y. Let E = E(z,,Y) be bounded to the left by
the line L, and to the right by the line L,. One of these lines belongs to the
half-closed strip E. To be concrete assume L, C E. Then there is, on L,, one and
only one point { such that vy={— 2, is a step of A and this vy = «,; is a step
of highest index. Note that y may be simultaneously a step of several indexes
(not only of the highest one) and write A (D) = exp (yD) P(D) + A(D), where P(D)
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is an algebraic polynomial of degree n in D and the differential-difference operator
A does not contain the step «.

Suppose now that f(z) € S(A). Then

A[f(2)] =exp(yD)P(D)f(z) + AD)f(2) = g(2),
where g(z) is an entire function. The last equation implies
2.1) P(D)f(z) = g(z — v) — exp(—yD)A (D) f(2).

Denote by x,(k = 1,2,...,s) the steps of the operator exp (—yD) A(D). Each x, is
equal to some o; —vy, where a; is a step of A different from vy. Therefore
Rex, = —d, where d = min [Re(y — ;)] and the minimum is taken over all
steps a; of A different from +.

Note that d > 0 and apply (2.1) for z € @,, where
Q@,={2:Re(z, +v)<Rez<Re(z, +v + d)}.

The terms of the right side of (2.1) are (not counting the entire function g(z — v))
C..f(z+x,), where i =n and C, are constants. The relation z € @, implies
2+ x, € E. Thus the right side of (2.1) is at such a point z either regular or
has a pole of order m < P(E;f) + n. Since the degree of P(D) is n, the function
f(2) is either regular at the point z or has there a pole of order at most P(E;f).
Thus we proved that P(E,;f) = P(E;f), where E, = E U @,. Proceeding in the
same way we easily get P(H,;f) = P(E;f), where

H,= {z: Re(z, +v) = Re z < }.

It remains now to use Lemma 2.1 to get P(C;f) = P(E;f).

Remark. Let A be a P*-operator and E an extended fundamental strip of
A. Lemmas 1.4 and 2.2 show that the space (F;A) previously defined as
F(A) N Z(E) may be defined as follows: f(z) € S(E;A) if and only if P(E;f) <
and f(2) € S#(I1; A), where II is an arbitrary fundamental strip of A parallel to E.

Suppose f(z) € #(I1; B), where B is the difference operator (8) and II a
fundamental strip of B. Corollary 1.1 and Theorem 1.2 show that P(C;f) <«
and that for every natural % exists a function f(z) € & (I1; B) such that P(C;f) = k.
This property is characteristic for the difference operator. The next lemma will
show that if f(z) € S(I1; A), where A is a differential-difference operator (of order
more than zero) and IT a fundamental strip of A, then generally either P(C;f) =0
or P(C;f) = ». It will be proved that the relation 0 < P(C;f) < may hold for
f(z) € #(I1;A) only in the exceptional case when A = BA*, where B is a difference
operator containing at least two terms and A* is a differential-difference operator.

LEMMA 2.3. Suppose A is the operator (4), I1 a fundamental strip of A and
{A,;@)), G =0,1,2,...,n) its characteristic system, B (t) the GCD of the characteristic
system, and B = B(D) the difference operator corresponding to B(t). If
f(z) € £(;A) and P(C;f) <« (C is the complex plane), then f(2) € #(B).
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Note that if P(C;f) > 0 and f(z) € (B), then B contains more than one term.

The proof of this lemma is based on the following theorem proved in our paper
(8}.

THEOREM 2.1. Let P,,P,,...,.P, be difference operators, P,(t) (i = 1,2,...,n)
their characteristic functions, B(t) the GCD of the system {P.(t)}, and B = B(D)
the difference operator corresponding to B(t). If 11, is a fundamental strip of P;
and f(2) € (I1,;P,,P,,...,P,) for at least one i (i = 1,2, ...,n), then f(z) € #(B).

Proof of Lemma 2.3. Fix a nonnegative integer # and denote by #*(IT;A)
the set of all functions f(z) such that

(2.2) f() € L(I1;A) and P(C;f)=k.

We need to prove that &* (I1; A) C #(B). We prove it by induction on p = & + n,
where n is the order of the operator A. The number p will be called the order
of the pair (4,.2*(I; A)).

If p =0, then 2 = 0, and .#£°(1;A) contains only entire functions. Hence
Z°(I;A) C £ (B). Let t be a nonnegative integer. Suppose that .# k(I1;A) Cc #(B)
for p =k + n <t and consider the case p =k + n =t + 1. Since B(t) is the GCD
of the system {A4,(t) (i = 0,1,2,...,n)} there exists a system of exponential polyno-
mials {A} (¢)} such that A,-(t) = A} (¢t) B (t). The GCD of the last system {A}(¢)}
is 1.

Consider the differential-difference operator
(2.3) A=A%-A=4,> DAY,
j=0

the function f(z) € &% ¥(I1;A), where 2 + n = t + 1, and its first component £, (2).
The relation (2.2) and

(2.4) f[.(z) € FA(A,)

(see Lemma 1.1) combined with (2.3) imply that both f(z) and £, (z) belong to .#(4).
Thus F*(z) = f(2) — f, () € #(4) and F(2) = S F*(z)dz € S(A). Note also that

P(C;F)=Fk—1 (see (2.2)) and apply Lemma 1.4 to the function f(2) € ¥ (I1; A).
We conclude then that f(z) is L-regular, where L is a line parallel to II. It follows
easily that F(z) is also L-regular and it has therefore only a finite number of
poles in IT and in every strip which makes a small enough angle with L. Thus
there exists a fundamental strip I1 of A such that F(z) € .% k=1 ({1;A4). The order
of the pair (A4,.* ' ({1;A)) is t and the GCD of the characteristic system of A
is A,(t). Our assumption of induction shows that F(z) € ¥(4,) which implies
F'(2) = f(2) — fi(2) € S(A,). The last relation, together with (2.4) and (2.2), gives
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(2.5) f(z) € Z(L;A,).

Use again (2.2) and the L-regularity of f (z) to get f(2) € #*({1;A), where
A=A — A, and [Tis a fundamental strlp of A which makes a small enough angle
with L. The order of the operator A is at most n — 1, thus the order of the pair
(A, #*(1;A)) is at most £. We can therefore use again the assumption of induction
to get f(z) € #(B,), where B, is the difference operator corresponding to the GCD
of the characteristic system {Ai(t)(i =1,2,...,n)} of A. Obviously,

S(B,) C #A,,A,,...,A,),

thus f(2) € ¥(4,,4,,...,A4,). It follows now from (2.5) and Theorem 2.1 that
fz) € Z(1;A,,A,,...,A,) =.£(B) and the proof is complete.

Proof of Theorem 1.4. Suppose A is a P*-operator and f(z) € ¥ (E;A), where
E is an extended fundamental strip of A. The relation f(z) € % (E;A) shows that
f(2) has only a finite number of poles in E and it follows from Lemma 2.2 that
P(C;f) < oo, where C is the complex plane. Use now Lemma 2.3 to get f(z) € . (B),
where B is the GCD of the characteristic system of A. Thus we proved that
SAE;A) C A(E;B). To complete the proof of Theorem 1.4 it remains to note that
H(B) C L(A,,A,,A,,...,A,) C FA).

THEOREM 2.2. Suppose A is a P*-operator and E an extended fundamental
strip of A. If at least one of the difference operators A; associated to A contains
only one term, then no properly meromorphic function belongs to #(E;A).

Proof. Consider the characteristic system {A;(t)({ = 0,1,2,...,n)} of A. Its GCD
B(t) = 1. Thus theorem 1.4 shows that S(E;A4) = ¥(B), where B is the identity
operator. No properly meromorphic function belongs to “(B).

The distance d between the two boundary lines of a strip IT will be called
the size of I1. We will also call this distance d the L-size of both the difference
operator B and its characteristic function B(¢), if II is a fundamental strip of
B and is parallel to L. The L-size of B and B(t) is zero, if B contains only one
term.

Consider now the differential-difference operator A and the difference operators
A; (1=0,1,...,n) associated to A. If at least one of the A; has an L-size (i.e.,
has a fundamental strip parallel to L), then we introduce also the L-size of A
defining it as the smallest of the L-sizes of the operators A; (evidently, of those
A; which have an L-size).

We agree also to say that the number 0 = s < o is the L-regularity size of
a meromorphic function f(z), if s is the supremum of the sizes of all strips S
parallel to L such that f(z) is regular in S.

THEOREM 2.3. Suppose A is a P*-operator, E an extended fundamental strip
of A, and f(z) is a properly meromorphic function belonging to #(E;A). The L-size
of A is, for every line L for which this size exists, not less than the L-regularity
sizeof [ (z). These two sizes may be equal only if some member A ,;(t) of the characteristic
system {A;(t)(i =0,1,2,...,n)} of A is the GCD of this system.
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Proof. Let P(t) and Q(t) be exponential polynomials (they may be considered
as characteristic functions of some difference operators) and let Q(¢) be a divisor
of P(t). Note the following properties of this pair: (1) If P(¢) has an L-size, then
Q(¢) has also an L-size; (2) the L-size of P(t) is not less than the L-size of @(t);
and (3) these L-sizes are equal if and only the ratio P(f)/@Q(¢) is a monomial
of the form C exp (yt) with C and vy constant. These properties are easily proved,
if we assume (without loss of generality) that L is the imaginary Y axis and

p
have in mind that a polynomial C(¢) = 2 C,exp (y,t) has a Y-size if and only
k=1

if the set
{Rev,(k=1,2,...,p)}

contains a single maximal and a single minimal element, and that the difference
between these two extremal elements is the Y-size of C(¢).

Suppose now that B (¢) is the GCD of the characteristic system
{Ai(t) (i = 0’ 1’ 2, "',n)}

of A. If A has an L-size, then B also has an L-size and this size is not more
than the L-size of A. These sizes are equal if and only if A,;(t) = B(t) - Cexp (yt)
at least for one i, i.e., if and only if A;(¢) is itself the GCD of the characteristic
system.

Suppose that f(z) is a properly meromorphic function and f(z) € S(E;A)
Theorem 1.4 shows that f(z) € (B) where B is the difference operator corre-
sponding to B(t). It follows now from Theorem 1.2 that the maximal possible
L-regularity size of f(2) is equal to the L-size of B and the proof is complete.

3. OPERATORS WITH REAL STEPS

All difference and differential-difference operators of this section are supposed
to have only real steps. In particular, all steps «,; of the operator A = A(D) are
assumed to be real. In this special case the operator A has the following property:

The principal part of the function A [f(2)] (f(z) is a meromorphic function)
at the point z, depends only on the principal parts of f(z) at poles belonging
to the line A passing through z, parallel to the real axis (but does not depend
on the poles of f(z) lying outside this line A).

This property enables us to extend the previous results for the space #(E;A)
to the space #(A). Furthermore these results may be extended to the space %, (4)
which consists of all functions f(z) meromorphic on the line A (A is parallel to
the real axis) such that A [f(2)] is regular on A. For example, we will show that
the equalities
(3~1) yA(A) =-yA(B)='5ﬂA(AO1A1’A2y---’A )’

n
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where %, (4,,4,,4,,...,4,) =S, 4,) N L, (4,)N ...N %, (4,), may be added
to Theorem 1.1.

Proof of Theorem 1.1. Suppose that f(z) € &, (A) and {\;} is the set of all
poles of f(z) on the line A. This set is either finite or \; > o as i — . It follows
from Mittag-Leffler’s theorem that there exists a function ¢(z) meromorphic in
the complex plane such that (1). ¢(z) is regular outside A and (2). f(z) — ¢(2)
is regular on A. Thus for an arbitrary differential-difference operator @ the two
relations ¢(2) € A(Q) and f(z) € &, (@) are equivalent:

(3.2) f2) € £ (@) = ¢(2) € AQ).

Suppose now that A is a P-operator and E is an extended fundamental strip
of A parallel to the imaginary axis. The function ¢(z) has in E only a finite
number of poles since all these poles belong to the bounded half-closed segment
A N E. Thus ¢(z) € L(E;A). Theorem 1.4 shows that ¢(2) € .#(B) and (3.2) that
f(2) € &, (B). We have proved that ., (A) C %, (B). This inclusion, together with
the evident ones %, (B) C %\ (4,,4,,4,,...,A,) C %, (A), gives (3.1).

Let f(z) € S(A). It implies f(z) € &, (A) for every line A parallel to the real
axis. Thus f(z) € .7, (B) for every A and consequently f(z) € (B).

We have proved that #(A) C &(B). We complete the proof of Theorem 1.1
using the obvious inclusion #(B) C S(4,,4,,4,,...,4,) C F(A).

We are going to state without proof some other results about the spaces .#(4)
and .%, (A). We omit the proofs as they are almost identical to the proof of Theorem
1.1.

THEOREM 3.1. The space S(A)(%,(A)) contains no properly meromorphic .

function (no properly meromorphic function on A) if A is a P-operator and at
least one of the difference operators A;(i =0,1,2,... n) associated to A contains
only one term.

LEMMA 3.1. Let {A;(t)(i=0,1,2,...,n)} be the characteristic system of the
operator A, B (t) the GCD of this system, and B the difference operator corresponding
to B(t). If f(z) € &, (A) and P(A;f) <o, then f(z) € &%, (B).

Let A be a P-operator and E an extended fundamental strip of A. The half-closed
segment I = E N A will be called an extended fundamental segment of A.

LEMMA 3.2, Suppose A is a P-operator and I, I C A, an extended fundamental
segment of A. If f(2) € &, (A), then P(A;f) = P(I;[).

Let the steps B, < 8, < ... < B, of the difference operator B (see (8)) be arranged
in increasing order. The number @8, — 8, we call the size of both the operator
B and its characteristic function B (¢) (note that B, — B, is also the Y-size of B,
if Y is the imaginary axis; it is also the greatest of the L-sizes of B). We introduce
also the size of the differential-difference operator A identifying it with the smallest
of the sizes of the difference operators A;(i = 0,1,2,...,n) associated to A.

We need one more notion to state the next theorem. Let f(z) be a function
meromorphic on the line A. The number ¢ > 0 is the regularity size of f(2) on
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if ¢ is the supremum of the lengths of all segments X such that £ C A and

f(2) is regular on X.

THEOREM 3.2. Let A be a P-operator, {A;(t) (i = 0,1,2,...,n)} its characteristic

system, and f(2) € %, (A). If {(2) is properly meromorphic on A, then the regularity
size of f(z) on A is not more than the size of A. Equality may hold between these
two sizes only if some member A,(t) of the characteristic system of A is the GCD
of this system.
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