THE SUPPORT OF DISCRETE EXTREMAL
MEASURES WITH GIVEN MARGINALS

J. L. Denny

Let X and Y be countable sets. Let P be a probability on X X Y with marginals
(projections) Py on X and Py on Y. The set M (P) of all probability measures
on X X Y with marginals Py and Py is convex. The purpose of this note is to
characterize the supports of the extremal measures of M (P), that is, the extreme
points of M (P). We show that each support of an extremal measure is the union
of the graphs of two functions f and g, f mapping a subset of X into Y and
£ mapping a subset of Y into X, so that for each integer n the composition
(g °f)" has no fixed points. Conversely, each probability P supported on the union
of such graphs is an extremal measure of M (P).

Now assume only that p is a signed measure on X X Y and define py, py,
and M () analogously. It is also true that each extremal v € M (p) assigns all
its mass to the union of two such graphs. In this situation there may not be
any extremal measures. However, even when extremal measures do exist the above
converse is not true, for nonfinite positive .

As an application we characterize the extreme points of the set of Markov
matrices with a given stationary invariant probability measure. When the Markov
matrix is finite (N X N) and doubly stochastic the extreme points are the permuta-
tion matrices. This result is known as the Birkhoff-von Neumann theorem (see,
for example, p. 189 of [9]) and is a corollary to results in this paper. As pointed
out by Letac [5], when P is a probability measure M (P) is compact in the weak*
topology and so the Choquet representation is applicable (see [2] or [8]). For
other applications we refer to the survey paper [7] and for the case of non-discrete
measures we mention [1] and [10]. This paper uses a method of Letac [5] which
he employed to obtain another characterization of the supports of discrete measures.

The following is the usual definition of composition of functions. Some notation
is needed. Let A C X and B C Y with at least one of A or B nonempty. Let
ffA->Y and g:B—>X. Let D,=ANnf'(B). If D, is nonempty set
(8o f)'(x) =g(f)), x € D,. Assuming D_,_, and (go f)" " are defined set

Dn = Dn—l n ((gof)n.‘l)_1 [DI]

and (gof)"(x) = (go ) (g /)" (x)), x € D,.

Definition. The pair of functions ( f,£) is aperiodic if for each n, x € D, implies

(82 )" (x) # x.

THEOREM 1. Let P be a probability on X X Y and let @ € M (P). The following
two assertions are equivalent:
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(1) @ is an extreme point of M (P);

(i) There exists a pair of aperiodic functions (f,g) such that @ (G) = 1, where
G={lxflx):x€ A}U {(g(»,y):yE€ B}.

THEOREM 2. Let p be a signed measure on X X Y. If v is an extreme point
of M (p.) then there is a pair of aperiodic (f,g) such that v(G°) = 0.

Before proving the theorems, we note that (f,g) is aperiodic if either A or
B is empty and that the graphs of aperiodic (f,g) are disjoint subsets of X X Y.
To prove that (ii) implies (i) in Theorem 1 we use a special case of a theorem
discovered independently by R. G. Douglas [3] and J. Lindenstrauss [6]:

THEOREM. LetL = {d) +¥:d: X>R,U: Y- R, S || Py < oo, S W] Py < oo}.

Then, @ € M (P) is an extreme point if and only if L is norm-dense in L, (Q).

LEMMA 1. Let (f,g8) be an aperiodic pair with A non-empty. Let x, € A and
define A, = {x,}. For each integer i = 1 define B, = g '(A,_,) N B and
A, =fYB;) N A. Then A, N A, is empty if m > k.

Proof. If x€ A, N A, then (gof)™(x)=(go ¥ x) = x,. This implies
(g0 )™ *(x,) = x, which contradicts the aperiodicity. ;

To prove that (ii) implies (i) we prove that

(1) S |h— (b +¥)|Q

can be made arbitrarily small for 2 € L, (@), & + & € L. By standard L, facts it
is enough to prove this for 2 = I;, the indicator function of a finite subset B € X X Y.
Since L is a linear space it is enough to prove this for B= {2}, z€ X X Y. We
can assume z € G. If A is empty and z = (g(y),y), define $ =0 and ¢ =1 ,,.
Then (1) equals zero. Otherwise assume z = (x,, f(x,)). Define ¢, =0, ¢, =1,,
Y, =1Iz for i=1 where A; and B, are defined in Lemma 1. Since the A, are
pairwise disjoint the B, are pairwise disjoint and consequently the subsets of X X Y,
B! = {(g(y),y): y € B,}, are pairwise disjoint. By an easy computation we have

(2) S h- (2 (¢,-—¢,-))‘Q=Q(B;+l).

Since @ (B ,,) — 0 as n — « it follows that (ii) implies (i).

n+1

We show (i) implies (ii). The proof of Theorem 2 is the same. The following
notation is used: (g°f)%(x) = x, G(f) = {(x, f(x)): x € A}, and

G(g) = {(g(y),y):y € B}.
LEMMA 2. Let Q be an extreme point of M(P) and let U = {(x,y): @ ({x,y}) > 0}.

Let f: A> Y and g : B— X satisfy (i) G(f) U G(g) C U and (ii) G(f) N G(g)
is empty. Then for each n = 1, x € D, implies
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(82f)"(x) # (g°£)" ()

if 0 = p <m =< n. In particular, f(gof)" X)) # f(goHH?x)iIfO=p<m=n-—1.
Proof. For n =1 this follows from the disjointness of G (f) and G (g). Assume
true for n and let x € D, ,. Since D, ., C D, it is enough to prove

(gof)" 1 (x) # (8o P (x),
Osp=nlf(gef)" ' (x) =(gof)”(x) for 1 =< p < n then as

(gof)"x) €D, ,

we have

(8of)" P (g NP () = (g° )7 (),

which contradicts the inductive hypothesis. It is therefore enough to prove that
(g°f)" ' (x) = x contradicts the extremality of @ (the following argument essen-
tially appears on p. 501 of [5]).

Define z, = (x,,y,) for k=0, ..., 2n + 1 by

2o, = ((80 f)"(x), f((g° /)" (),
Zypr1 = (82 1)77 (), f(go )P (X))

The inductive hypothesis implies:

@ for1=k=2n- 1,k <j=2n,x, = x;if and only if % is odd and
J=k+1

(i) for 0 =k =2n — 2,k <j=2n-1,y, =y if and only if & is even
andj =%+ 1;

(i) xg# x,, 1 =k=2nandy,, #y,,0=k=2n -1

If (go f)" ' (x) = x then

(V) X2p11 = Xos Yon+1 = Yon-

In the terminology of Letac [5], C = {z,, ..., 2,,.,,} is a cycle. Let
a=min {Q@({z,}): k=0, ..., 2n + 1},

which is positive since C C U. Define the signed measure m, on
C:m,({2,}) = (=1)*a/2,k=0,...,2n+ 1.
Let m, = —m,. The marginals of the m, are identically zero, by (i) — (iv). Let

Q, = @ + m;, a probability measure with the same marginals as @. Since
Q =1/2(Q, + @,) we have the desired contradiction and the proof is completed.
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LEMMA 3. Let extremal @ € M(P) and l_et U= {(x,y): ({x,y}) > 0}. For
each finite subset V C U thereisf: A— Y, g: B— X so that

V=G(f)UG(&.

Proof. This is clear if V contains one element. We proceed by induction
and let V = {(x,,y,): k =1, .., n} = G(f) U G(g) where f: A - Y and
&: B — X. We want a representation for VU {x,,,,5,..}.

If xn+1 E Ac define A = A U {xn+1},f= fon A’ f(xn+1) = yn-f—l!B = B)
and £ = g. Make the analogous definition ify, ,, € B°.

Otherwise, let D, = A and let D, be defined as above, the domain of
(goe )" Ifm=0andx,,, € D,, ~ D, ,, then either

3 (8" (x,,,) € A°
or else
4) fge " (x,.,) € B".

In addition, if x,,, € D,,, m = 1, Lemma 2 implies that the ((g o f)"(x,.,),
fg o f)P(x,.1)), 0 = p = m — 1 are distinct elements of G(f). Since G(f)
is finite we assume that for some m =0 «x,,, € D,,~D, ,,.

If x,,, € D, ~ D, then (4) holds. Define B = B U (y,,,}, & = g on B,
EWVon) =%, A=A, and f=f.

Assume x,,., € D, ~ D, ,,, m = 1. We consider only case (3), for (4) is
analogous. Let

A= (8o ®uin):p=0,..,m}C AU {(g° /)" (x,.1)},
B, = {fl(ge)°(x,,1)):p=0,....,m—1} C B.
Define A = A U {(g°f)™(x,,,)} and B = B. Define fon A, by .. =% 1,

f((gof)‘"(xnﬂ)) =f((g0f)”'1(xn+l)) for 1 = p < m. Define fon A ~ A, by
[ = f. Similarly, define g on B, by

EfUge Y (x, . N)=(g°f)(x,,,), O=p=m-—1.

Define g on B ~ B, by g = g. By Lemma 2, f and g are well-defined.

We show that V U {x,.,,,¥,..} = G(f) U G(g). Suppose (x,y) € G(f). If
x €A, x# x,.,,then (x,3) = (g0 ) ®,.1), FUE ) (x,.,)) = (€0 ) (x,.1),
fUgof)? " (x,,.)), for some 1 = p =< m, which belongs to G(g) C V. Suppose
(x,y) € G(f). If x € A, N A then (x,y) = ((g° )" (x,.1),

fUge )" (xn ) = (B(FUg ) (X, 1)),

f{gof)’(x,,.,)), for some 0 = p = m — 1, which belongs to G(g). The other
cases are similar, and the proof is completed.
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The straightforward proof of the next lemma is omitted.

LEMMA 4. Let graphs G(f;) U G(g;) C G(f.,,) U G(g;,,),i=1,2, .... Then
there exist f: A — Y and g: B— X so that | (G(f.,) U G(g)} = G(f) U G(g).

Lemmas 2, 3, and 4 show that (ii) implies (i), since there is clearly no
loss of generality in assuming G(f) N G(g) is empty, where G(f) U G(g) = U.

We characterize the extreme points of the set of Markov matrices with a given
stationary invariant probability measure. Let P be a probability on the nonnegative
integers Z7, say, and let p, = P(i) > 0. Denote by [p;;] a Markov matrix for

which P is a stationary invariant measure: Z pip; = P;, J € Z7. Let

&Z = {[p;;]: P is a stationary invariant measure for [p;]}. The convex set &
is linearly isomorphic to M (P X P), the set of probability measures on Z* X Z*
with marginals P, and we have

COROLLARY 1. [p;;] € £ is an extreme point if and only if there is aperiodic
(f,8) so that p,, > 0 is equivalent to (i,j) = (x,f(x)) or (i,j) = (g(¥),).

Recall that a Markov matrix is doubly stochastic if each column sums to one.

COROLLARY 2. (Birkhoff-von Neumann Theorem). The permutation matrices
are the extreme points of the N X N doubly stochastic matrices.

Proof. Let X = Y = {1, ..., N}. Identify the doubly stochastic matrices with
positive measures on X X Y. If @ is extremal and U is the support of @ then
U = G(f) U G(g) for aperiodic (f,g). If either G(f) or G(g) is empty then
the other graph is clearly a permutation matrix. We claim there is no loss of
generality in assuming the domain A of fis X. For if x € X ~ A, g ' {«x} is
nonempty since @ is doubly stochastic. Choose y € g~ '{x}, set f(x) = y, and
restrict g to B ~ {y}. Proceeding in this way we get aperiodic (f’,g’) with
the domain of f’ equal X and U = G(f’) U G(g’). Next, we verify the range
of f/ must equal Y. For if y € (f (X)), then Q(g’(y),y) = 1 and
Q(g’ (»),f (g’ () = 0since Q is doubly stochastic. The latter equality contradicts
the definition of U. The domain B of g’ cannot equal Y since (f’,g’) is aperiodic
and X is finite. We show B is empty, and the result follows since f’ is one-to-
one. If y € B, y = f’(x), then there is a smallest positive & so that
f (g’ o f)*(x)) € B°, using aperiodicity. Since f’ is onto Q@(g’(y),y) < 1, and
thisimplies that Q((g’ o f')*(x),f' (g’ o f’)*(x))) < 1. This last inequality contradicts
the row sums each being equal to one.

D. Kendall shows, with an addendum by J. Kiefer, that the Birkhoff-von
Neumann theorem is true for infinite doubly stochastic matrices [4]. Since each
infinite permutation matrix is the graph of one function it can easily be shown
that the converse to Theorem 2 does not hold.
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