ON ROOTS IN FREE GROUPS

Tekla Lewin

INTRODUCTION

Let R and S be disjoint subsets of a free group F such that R U S is linearly
independent modulo F’; it is shown that the normal closure of R in F intersects
gp(S) trivially—this is the Proposition of Section 2. Since S is independent modulo
F’, the subgroup generated by it is freely generated by it; thus we obtain

THEOREM 1. Let R and S be disjoint subsets of a free group F such that
R U S is linearly independent modulo F’. In the group presented on F with defining
relators R, the image of S freely generates a free group.

This theorem is closely related to two theorems of Magnus that are concerned
with presentations whose defining relators form part of a basis modulo the derived
group: It generalizes his theorem which states that if a group with n + r generators
and r defining relators can be generated by n elements, then it is freely generated
by them, and is related to his theorem which states that if G is a group with
n + r generators and r defining relators and G/G’ is free abelian of rank n,
then the generators of G may be chosen so that n of them freely generate a
free group [7].

The proposition of Section 2 is applied here to the problem of finding the
roots of an element in a free group. Let a and b be elements of a group G. If
a is in the normal closure in G of b, then b is said to be a root of @ in G,

and we write b—G> a. In 1930 [5] Wilhelm Magnus posed the problem of finding

all the roots of a given element of a free group F. For F free with a basis x,y,z,w, ...
he found all roots of x, [x,y], and x*y” for p a prime, as well as of certain other
elements. However, for example, the set of all roots of x*y®, for 2 not a prime,
is not known. Nor is it known if the problem of finding all the roots of an arbitrary
element of a free group is solvable. In view of the difficulty of finding all the
roots of a given element in a free group, the following theorem of Arthur Steinberg
[On equations in free groups. Michigan Math. J. 18(1971), 87-95] is very powerful;
it can, for example, be combined with the results of Magnus to ascertain all the
roots of [[x,y], [z,W]].

THEOREM 2. Let F be the free group with basis X, ..., X, Y15« sYms--3Z1s s
z,.Let

X=X, s %), Y=Y (Y153 Ym)seee s 2= 2(21, .., 2)

be non-trivial elements, none of which is a proper power in F. Let E be the subgroup
of F that has basis x,y,...,z. Let
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w=W(,y,...,2)

be a non-trivial element of E. If ¢ € F and q}) w, then either
(i) q ? uandu E w, where u is one of the elements x,y, ...,z, or

(ii) q is conjugate in F to an element q’ in E and ¢’ > w.

However, Roger Bryant, in a letter to the author, pointed out a gap in the
proof of this theorem. (A shortening of length that is needed for an induction
may not occur.) The Proposition of Section 2 fills this gap. To prove the theorem
(Section 3), we then modify the construction used in Steinberg’s proof. That proof
was essentially correct in the case that the exponent sum on each of x,y,...,2
in W(x,y,...,2) is nonzero; the propositior: removes this restriction.

The proof of the proposition uses, as do the proofs of the two theorems of
Magnus mentioned above, the residual nilpotence of free groups. Also, it uses
the embedding of a free nilpotent group in a free nilpotent Z-group. The question
about free groups is first replaced by a question about free nilpotent groups: this
can be viewed as a reduction to a question in the linear algebra of the integers.
Then the question about free nilpotent groups is replaced by a question about
free nilpotent Z-groups: this is a reduction to the much easier linear algebra
of the rationals. (See A. Steinberg [8] for a similar use of free nilpotent Z-groups
in investigating free groups; cf. also G. Baumslag [3]).

I would like to thank the referee for his helpful suggestions concerning the
exposition of this paper. In particular, putting the statement and proof of the
corollary of the proposition in a more general framework made it clear that I
could prove more than I had stated (the proposition).

Notation. H < G means H is a subgroup of the group G. If S is a subset
of a group G, gp(S) denotes the subgroup generated by S and gp;(S) denotes
the normal closure of Sin G. If T is a set, gp(T) denotes the free group with
T as basis. If we write

G = gp(x11 ---,xn; rlyr2! '")3

then we mean that G is isomorphic to the factor group F/K of the free group
F = gp(x;,...,x,) by K = gpg(ry,r,, ...).

Let x be an element of F = gp{(x,,...,x, ). Then x has an expression as a word
Wi(x,,...,x,) in the basis x,,...,x,. Corresponding to x there is a rule W which
associates with an n-tuple (h,,...,h,) of elements from a group H the element
Wi(h,,...,h,) of H that is the image of x under the homomorphism of F that
takes x; into A, for ¢ = 1,2,...,n. In particular, W(x,,...,x,) = x, so there is no
conflict in the notation. In this paper we always distinguish between the element
x and the associated rule W.

N, is the variety of groups that are nilpotent of class at most c.

If @ and b are elements of a group, a® denotes the element b~ ' ab.
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1. FREE NILPOTENT 2-GROUPS

We say that a group G is in the class Z or that G is a Z-group if for each
y € G and natural number n there is a unique element x € G such that

x"=y.

If for each natural number n we define the unary nth root extraction operation
on the groups in &, then & together with these operations, the binary group
operation, and the unary inverse extraction operation is a variety of algebras
[1] in the sense of universal algebra. The groups free in the subvariety Z N N,
have been studied by G. Baumslag [2]. We note the following: Let D be free
in Z N N, with free F-generating set a,,a,,...,a,. Then the subgroup of D gen-
by a,,a,,...,a, is free in the variety of groups N, with a,,a,,...,a, a free generating
set. Also, D/D’ is a vector space (written multiplicatively) over the rationals,
with basis a,D’,a,D’,...,a,D’. Further, if elements b,,b,,...,b, in D are such
thatb,D’,b,D’,...,b,D'isabasisof D/D’, then b,,b,, ..., b, is a free Z-generating
set of D. Thus any subset of D that is linearly independent modulo D’ can be
included in a free Z-generating set of D.

2. DEFINING RELATORS INDEPENDENT MODULO THE DERIVED GROUP

PROPOSITION. Let F be a free group and let R and S be disjoint subsets
of F such that the set R U S is independent modulo F’'. Then the normal closure
of R in F intersects gp(S) trivially.

Proof. Let w € gp(S), w# 1. Then wé& v .. ,(F) for some ¢ [6]. Let
F=f/y,,.(F), a group free in N,. Embed F in a group D free in 2 N N_so that
a free generating set of F is also a free 2-generating set of D. If a € F, its
image in D will be denoted by &; if A is a subset of F, its image will be denoted
by A. Since the set R N S is linearly independent modulo F’, the set R U S is
linearly independent modulo ¥’ and hence also modulo D’. Thus B U S can be
included in a set that freely Z-generates D, say R U § U X, where R, S, and
X are disjoint. Therefore, there is a retraction of D onto the group free in 2 N N,
freely Z-generated by S U X having R contained in its kernel. It maps the non-
trivial element @ to itself.

It follows that w is not in the normal closure of R in F.

COROLLARY. Let F be the free group with basis Xy, ..., X,5 Y15 «=os Yms -+
2y .oy 2,, Wheren = 2. Let

w=W(X(x,, ..., X, ), Y(¥15 s V)5 o0 Z(215 .0y 2,)), w+#1,

where X(x,, ..., x,) € F'. If X(x,, ..., x,,) has exponent sum zero on x, and q? w,

then q has exponent sum zero on x,.
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Proof. Suppose q;; w, x = X(x,, ..., x,) has exponent sum zero on x,, but

q has exponent sum nonzero on x,. Then q,%,¥,, ..., ¥ms -+-» 215 --., 2, 18 an indepen-
dent set modulo F’. Therefore gp.(q) cannot contain the nontrivial element w of

BD(X,Y55 ooy Vons oovs 215 oovy 2, )-

3. ROOTS IN FREE GROUPS

The proof of Theorem 2 uses the techniques of the Freiheitssatz of Magnus
[5], and we review certain material we will need.

Let F be a free group with basis x,y,...,2, and let N be the normal closure
in F of {y,...,2}, consisting of all elements having exponent sum 0 on x. For
u one of the elements y, ...,z let u, = u* for i an integer; the elements

(#) yi,.-.,zi, i=...,_1,0,1,...,
form a basis of N. Let w be an element of N; then it has an expression

*) W=R(YypyssYmiys 120 @ 2 Zme))

as a word in this basis, where, for u one of the elements y,...,z, n(xz) = n(u,w)
and M(u) = M(u,w) denote respectively the least and greatest i such that u, is
involved in this expression. If u is involved in the expression for w in terms
of x,y,...,2, then some u; will be involved in the expression (*). The span on
u in w is the number

o(u,w) = M(u,w) — p(u,w) + 1
if u is involved in w and
o(u,w) =0
if u is not involved in w.
Nowlet ¢ € N and suppose q ?; w. Since gpo(q) = gon (..., q* Hq* +a, 0% q,...),

+1 xJ+t
)

w € gpylg™,q"", ... .q
for some integers j and ¢, ¢t = 0. The Hauptform of the Freiheitssatz tells us the
following about choosing j and ¢.
THEOREM 3. (Magnus) With the notation above, let q be an element of N
cyclically reduced with respect to the basis (#) of N, and suppose q? w. Then
for each u € {y,...,z} the span on u in q is at most the span on u in w

(w is in N, since q is in N). If u is involved in q, t = o(u,w) — o(u,q), and
J=pu,w) — p(u,q), then
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j+1 Jch).

wE gpnlg”,q" ... .q

Thus, if the span on u in w is 1, then so also is the span on u in ¢, provided
u is involved in q; in this case we obtain the following information about roots
of w that lie in N.

COROLLARY. With the notation above, let w be an element of N for which
the expression (*) involves only a single u;, where u is one of the elements y, ...,z

If q—}—; w, q lies in N, and q is cyclically reduced with respect to the basis (#)

of N, then either u is not involved in q or for some j

J
g - w.

N

LEMMA. (Magnus) Let F be the free group with basis v,,v,,...,v, and F be
the subgroup of F with basis v,’,v,,...,v, for some t = 1. If p,q € F, then p? q

if and only if p —F—') q.

We are now ready to prove the theorem.

THEOREM 2. LetF bethe freegroup withbasiSx ,...,X,,¥1s-c-sYms -+ 221+ 220
Let

x=Xx1,..,%,), =Y sYm)s s 2=2(21,...,2,)
be non-trivial elements, none of which is a proper power in F. Let E be the subgroup

of F that has basis x,y,...,z. Let w = W(x,y,...,2z) be a non-trivial element of
E. Ifqg€ Fandqg -; w, then either

(i) q -—F-: u and u — w, where u is one of the elements x,y, ...,z, or

(ii) q is conjugate in F to an element q' in E and q' —> w.
E

Proof. We may assume that g is cyclically reduced and that w involves each
letter x,,...,2,.

Suppose that g involves only one of the sets of generators, say ¢ € gp(x,,...,x,).
Then since w € gpp(q) < gpp(x,,...,%x,),

W(19Y(y1s ---,.)’m), ...,Z(Zl, ,Z/)) = 1:

i.e, x— w.
E
If K = gpr(g), then

F/K=gp(x,,...,%,; @) 8P{(Y1,.--,2).
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Since W(xK,yK,...,2K) = wK =1 in this free product, it must be that x’ € K
for some positive integer ¢{. Hence either x € K, so q-; x, and condition (i) is

satisfied, or else x is an element of finite order in the one-relator group F/K.
In the latter case the defining relator ¢ is conjugate to a power of x [Karass,
Magnus, and Solitar, 4], say x°. Now, the image of E in the free product F/K
is

&p(xK,yK, ...,zK) = gp (xK)* gp (K, ...,2K);
and we see these factors have presentations

gp(xK) = gp(x;x°), gp(yK,...,2K) =gp(y,...,2).
Thus
gp xK,yK, ...,2K) = gp{(x,y, ...,2;x°).

Since W(xK,yK, ...,zK) = 1, x°*— w, and condition (ii) is satisfied.

From here on the number of sets of generators is fixed and by the foregoing
may be taken to be at least two, and the proof proceeds by induction on the
sum of the lengths of X (x,,...,x,), Y(¥1,...,%.)s---» Z(2,,...,2,). The initial case
occurs when each of these lengths is 1, which happens if and only if n = m =
... = /=1, and then F = E, so condition (ii) is satisfied. We now assume that
one of these lengths, say the length of X(x,,...,x,), is greater than 1. Since x
is not a proper power, this implies that n = 2. We also assume that g involves
at least two sets of generators, so it involves a generator different from all of
Xy5..-,%,, say it involves y,.

We now will embed F in a free group F freely generated by %,,%,,...,%,,
¥15Y2,---32,1n such a way that both x and ¢ have exponent sum 0 on X, and
hence lie in the normal closure Nof %,,...,%,,¥,,Ys,--- ,2,. We will treat separately

the cases a) x & F' and b) x € F’.

a) Suppose x & F'. If for some x; the exponent sum in x on x, is 0, then let
%, =x;andletx,,X,,...,%, be a reordering of x,,x,,...,x,.In this case F = F.

If the exponent sum in x is nonzero on each of x,,x,,...,x,, then let s be
the exponent sum in x on x, and ¢ be the exponent sum in x on x,. Embed F
in a free group F with basis %,,x,,...,X,,Y,,...,2, by setting %¥,"=x,. Then F
also has a basis £;,%, = x,%,°, £ = X3, ..., X, = X,,¥1,.-.,2,. With respect to this
basis x = X (¥, %,%; °, %5, ... ,%,) has exponent sum 0 on %,. Since x has exponent
sumt#0onXx,, x&F'.

The corollary to the Proposition of Section 2 applies in each of these subcases
of a) and assures that g also has exponent sum 0 on %,.

b) Suppose x € F’. Applying the procedure above to ¢ instead of to x, we arrange
that ¢ has exponent sum O on %,, relative to the basis %,,...,%,,¥;,...,2 of I
Since x € F’ < F’, x also has exponent sum 0 on x,.
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E‘his completes the embedding of F in F; observe that in all cases F is related
to F' as in the Lemma of this section (with respect to some pair of bases). Moreover,
as desired, both x and q lie in

N=gps(Zy, ..., %,,¥1,-.-52).

N has a basis consisting of the elements

¢ = i %

= x Xt zt .
(#) X0, L, Ny, 20, i=..,—-10,1,....

Now, x has shorter length relative to the basis (#) of N than relative to the
original basis x,,...,z,of F. (If X; was chosen to be x;, then the length is shorter
by the number of occurrences of x; in X(x,,...,x,); otherwise, it is shorter by
the number of occurrences of x, in X(x,,...,x,); by assumption each x; is involved
in W(X(x,,...,x,),...,Z(2;,...,2,)), so this number is not 0.) Let the expression
for x as a word in the basis (#) for N be

_ Yo 2 M, - M
- X - X - X n - X
— 1 1 1 1
x=8(x,"" .. ,%,7 L, L ).

Then the expression for w as a word in the basis (#) for N is

M
Ho

w=WE@E, ", "), Y(Yes s V) ey 22y, .05 2)).

The only generator ylfl' occurring in this expression is for { = 0. It is not difficult
to check that since g is cyclically reduced with respect to the basis x,,...,z, of
F, it is also cyclically reduced with respect to the basis (#) of N. Also q—ﬁ w,

g lies in N, and y, is involved in q. So by the corollary to Theorem 3, for some
J

It is not difficult to see that x,y, ...,z are not proper powers in F, and so they
are a fortiori not proper in N. Thus ¢"*’ and w satisfy the hypotheses of the
theorem with respect to the free group N and its basis (#), with the subgroup
E unchanged. (That this basis is infinite causes no trouble—we could restrict
our attention to the group generated by the subset involved in w.) Furthermore,
the sum of the lengths of x,y,...,2z with respect to this basis of N is less than
the sum of their lengths with respect to the basis x,,...,z, of F. Therefore, by
induction, either (i) g™’ E u and u E w, where u is one of the elements x,9, ..., 2,

or (ii) qflf is conjugate in N to an element ¢’ in E and q’ -E w. If (i) obtains,
then q-ﬁ u and uz w, and so by the Lemma of this section q-}—; u and u—E w.

If (ii) obtains, then g is conjugate in F to ¢’ and so by the same lemma, we



3

8 TEKLA LEWIN

have q—I:: q’ and ¢’ —I; q; therefore ¢’ is conjugate in F to g [5, Section 6], and

g > w.

E
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