SOME HIGHER ORDER DIFFERENCE SCHEMES
ENFORCING AN ENTROPY INEQUALITY

M. S. Mock

1. INTRODUCTION

Weak solutions of the initial value problem for hyperbolic systems of conservation
laws,

(1.1) ) u, + f(u), =0, -0 < x < oo, t > 0; u(x, 0) given,

are in general not unique. An entropy condition is imposed to select the physically
relevant weak solution. It is clearly desirable to have such an entropy condition
reflected in numerical methods for this type of problem; i.e, to know that the
limit of approximate solutions, when it exists, is the physically relevant solution.

In this context, the best understood methods are the “monotone” difference
schemes. For these schemes, such a result is obtained in [3] for the case that
(1.1) is a single equation, with u,f scalar valued. For the special example of Friedrichs’
scheme, similar results for systems are also known [6]. Monotone schemes are
also attractive in that they admit discrete representations of shock waves, at least
for single equations [4]. Unfortunately, they are limited to first order accuracy,
and thus are of limited practical importance.

In this paper we discuss some higher order schemes which also enforce an
entropy condition. Our main results are for a second order scheme of Lax-Wendroff
type. In the following, we shall assume either that (1.1) is a single equation or
a system of dimension m with f, symmetric. Smooth solutions of such systems
satisfy an additional conservation law,

(1.2) U,+F, =0,

in which U, F are scalar valued functions given by

(1.3) U=u? F=2u-f-®o)

where @ is a scalar valued function satisfying @, = f. Discontinuous solutions

of (1.1) do not satisfy (1.2). We shall, however, require such solutions to satisfy
an entropy condition of the form

(1.4) U,+F, =0

in the sense of distributions. For systems which are strongly nonlinear in the
sense of [10], this condition is equivalent to the classical entropy condition of
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Lax [7]; for systems which are genuinely nonlinear in the sense of [7], the condition
(1.4) is still an equivalent entropy condition provided that the discontinuities are
sufficiently small [6]. For the case of a single equation, m = 1, both of these
nonlinearity conditions reduce to the requirement that f be a convex function
of u.

A brief outline of our discussion follows. In Section 2, we discuss possible forms
for the parabolic regularization of (1.1) and discuss the relation between an entropy
condition of the form (1.4) and stability of a numerical method. Our main result
is presented in section 3; we show that the limits of the solutions of a second
order implicit scheme of Lax-Wendroff type satisfy the entropy condition (1.4).
In section 4, we consider stationary discontinuities for a single conservation law,
as described by this type of scheme. These solutions are of special interest because
unphysical discontinuities occasionally observed, as in the numerical experiments
reported in [3], tend to be of this type. The analysis reveals two mechanisms
by which such difficulties can occur in practice. In particular, we show that it
is possible for unphysical discontinuities to be linearly stable with respect to the
difference scheme considered. This type of difficulty can be anticipated somewhat
more generally, in view of the following observation: consider the case of a scalar
equation (1.1), with u = v + w, where v is a weak solution of (1.1) of the special
form

u,, x—st>0
v(x, t) ={
1.5) u_, x—st<O.
fw,)—f(u_.) =s(w,—u.)

and w is a smooth perturbation, small in L, and C'. From (1.1), we have

0= ((v+w,+IV+w,,w=(w,w) —(E ¥)Iw,w,)+0(W>)

(1.6)

= (W, W) + (1/2) w(st, t)*(f, (u,) — £, (u_)) + O (w?)
where (,) is the L, scalar product in x. From (1.6), we see that v is stable, in
the linear sense, if

i

(1.7) f,(u,)>1,(u)

which implies that v is not a physically admissible weak solution [12]. Some
semi-empirical results of this type are also .contained in [3]. In section 5 we
describe a third order scheme for single equations, the limits of the solutions
of which also satisfy (1.4). Although this scheme contains an extra dissipation
term of fourth order, the order of L, dissipation of the scheme, in regions where
the solution is smooth, is six. Some numerical experiments are described in Section
6.

2. REGULARIZATION AND STABILITY

In the difference schemes that follow, h denotes the space increment and k
the time increment, with A = k/h. X = X, is the space of continuous, piecewise
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linear functions (with values in R™) with possibly discontinuous slope at the mesh
points x; =jh, j=0, £1,+2,.... For n=0, 1,2, ...,u"” € X is our approximation
to u(-,t,), with t, = nk. Below we use (,) for the real L, inner product in x,
and || - || for the corresponding L, norm; other norms in x are denoted by subscripts.
Generic constants are denoted by c.

With this notation, the monotone difference schemes correspond essentially

.
xx?

to a parabolic regularization of (1.1), replacing the right side by a term ¢ ru

this identification becomes quite explicit if we consider a finite element form
of these schemes, as done in [9], [10]. An upper bound of order unity is required
on \|f,| for stability of these schemes; a more restrictive bound on the same
quantity is required for the enforcement of an entropy condition such as (1.4)
[3], [6]. This is as expected; the entropy condition (1.4) may be viewed as a
rather strong stability condition, and is imposed even where the solution (more
properly, the variable coefficient f, (u) of the linearized problem) is not smooth.

In contrast, Lax-Wendroff schemes may be viewed as using the second order
term in a Taylor expansion of (1.1) in time as the regularization; i.e. replacing
the right side of (1.1) by (hA(f2u,),)/2 in the neighborhood of a discontinuity.
This type of dissipation has markedly different properties from the one discussed
previously; not so much because of the nonlinearity, but because of the dependence
on A. In particular, the amount of regularization now increases with increasing
A. Inpractice, the amount of regularization controls the amount of entropy generation
in the neighborhood of a given shock. Insufficient entropy generation leads to
“overshooting” and the possible propagation of unphysical discontinuities. Indeed,
the proposition given below shows that many schemes of Lax-Wendroff type cannot
be expected to describe shocks accurately for sufficiently small values of A.

We introduce the following scheme, which is a second order approximation
to (1.1) where the solution is smooth: given u” € X, findu"*' € X such that

2

' k
(2.1) @' —u"+kf@u"),,d)+ —2—— 2 @™ Hud*, ¢,) =0 for all ¢ € X.

The approximation to the solution of (1.1) which is obtained by successive application
of (2.1) with increasing n is denoted by u 4, ,,. This scheme is discussed extensively
in sections 3 and 4.

For a single equation (1.1), we can easily write (2.1) in terms of the discrete
values uj' = u” (x;),

2
n+1

5 (i) +4u)™ +ull)) - Py (g () — 2g i™) + g}y

(2.2)

1 1
=-€—;— (uj_, + 4u; +ul,) — A S [£(@ - &) uj + Euj,,)

4]

— (1 - §)uj’, + Euj)] d&

where g(u) satisfies g, = f2.
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PROPOSITION. Suppose the scheme (2.1) is applied to a Riemann problem,
with initial data of the form

u,, x>0
(2.3) u(x, 0) = , u,,u_ constant,
u_, x<0

and suppose f is strongly nonlinear, in the sense of [10)]. Suppose that the approximate
solutions u, ,, converge boundedly almost everywhere, to a limit function u(x,t),
as h,k - 0 with k = o(h). Assume in addition, that the variation of the discrete
solutions satisfies

(2.4) sup (var ug, ,,) bounded uniformly in h, k.

Then the limit function U is continuous.

Several remarks precede the proof. We do not anticipate actual computations
with h, k refined in this manner, but rather with A\ = h/k fixed; our inference
is simply that A\ must not be chosen too small, since shock waves should be permitted
in the solution of such problems.

The proposition is stated for the scheme (2.1) and the initial data (2.3) for
simplicity; the result is somewhat more general. The proof relies essentially only
on the consistency of the scheme with (1.1) and the fact that the entropy generation
within compact regions of the x,t plane approaches zero as the mesh is refined
in this manner, under the assumption (2.4). This is true rather generally for schemes
of Lax-Wendroff type.

Proof of proposition. With the special form of initial data (2.3), the method
(2.1) is homogeneous in h; i.e, the values of u,,, depend on h, k only through
the dependence on A, and u g, (X, t) = u 4, .\, (X, at) for all « > 0. Because of this
homogeneity, bounded convergence ash, k — 0,k = o(h) isequivalent to convergence
as k— 0 with h fixed, followed by convergence as h — 0. Specifically, let u,
be the continuous time Galerkin approximation to (1.1): for all t > 0, u,, (-,t) € X
and satisfies

(2.5) - gy +flug),, ) =0 forall$ € X.

Equation (2.5) defines an infinite system of ordinary differential equations
for the u g, (x;, *),j =0, %=1, ..., as functions of time. We assume that u, (-, 0)
and ug, (-, 0) are chosen as reasonable approximations to the initial data (2.3).
Since (2.1) is a consistent finite difference approximation to (2.5), and since the
U,y are uniformly bounded by assumption, it follows that u, ,, — u,, uniformly
over compact regions of the (x,t) plane, as A - 0 with h fixed. The convergence
of ug, to @, boundedly almost everywhere as h — 0, then follows from a triangle
inequality,

(2.6) o — 0l =lum — Ve lu, + 0w — Ull;

in (2.6), we first choose \ sufficiently small to make the first right hand term
small, and then h sufficiently small for the second term.
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It follows from [8] that @1 is a weak solution of (1.1). We claim that U(u) .
is a weak solution of (1.2). Let { be a nonnegative scalar valued C; function
of (x,t), and let ¢ in (2.5) be the piecewise linear interpolate, at each value of
t, of ugy, (-, t}){(-, t). In Lemma 3.4 below, it will be shown that n = u,,{ — ¢ is
uniformly of O (h). With this choice of ¢, (2.5) becomes

1
(2.7 '?2‘ (Uu (h))t + F(u(h))x’ {) = — (u(h),t + f(u (h))xs'ﬂ)-

Using (2.5) directly to estimate u, ., it follows that the magnitude of the
right side of (2.7) is less than ch sup (var u,). Since u,, must also satisfy (2.4),
t X

our claim follows by passing to the limit as h — 0.

Now suppose there is a discontinuity in 4, between two states u, and u,.
Denoting the speed of the discontinuity by s, we must then have

s(u,—u)+f@u,)—f(u,)=0 and
s(U@,)-U,)+F@)—F@u,)=0

simultaneously. For a strongly nonlinear f, as assumed, this is impossible,
because of the equivalence of the entropy condition (1.4) with that of [7]. Since
the latter condition excludes discontinuities with the “wrong” polarity, it follows
that s(U(u,) — U(u)) + F(u ) — F(u,) cannot be zero. This completes the proof.

3. MAIN THEOREM

In the following, we assume that the initial data u(-,0) is of bounded total
variation, approaching u,(u_) as x — +ow(—x). For L. a multiple of h, §; € X
is given by

u_, x<-—1L,
3.1) Y (x) = qu_+(u, —u_)1 +x/L), -L=x=1L,
u,, x> 1L;

we also assume u(-,0) — ¢, € L,.Our main results for the scheme (2.1) are described
by the following three theorems:

THEOREM 3.1. Suppose u” — ;. € L,, and suppose any one of the following
conditions holds:

(1) m =1 (i.e, (1.1) is a single equation);
(i) u, =u_;
(i_ii) [f, ()] =c(1 + |u]), where |-| denotes vector and matrix norms on R™;
then there exists u™"' € X satisfying (2.1), andu™"' — §, € L,.

THEOREM 3.2. In the case m = 1, u® — §, € L,, the solution u"*' is unique
and depends continuously (in L,) on u”.
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THEOREM 3.3. Suppose the solutions of (2.1) converge boundedly almost
everywhere, to a limit function 1, as h)k — 0 with \ fixed. Suppose in addition
that the total variation of the discrete approximations satisfies

(3.2) h sup (varu”) —» 0 ash— 0.

Then the limit function G is a weak solution of (1.1), and satisfies
(3.3) ‘ U@),+ F@), =<0

in the sense of distributions, for U, F given by (1.3).

Theorem 3.3 is, of course, the entropy condition enforced by the scheme (2.1).
In contrast to the results for conditionally stable schemes [3], [6], no bound on
A\ is needed. Also in contrast to the monotone schemes, (3.3) is not enforced at
each time step, but only in the weaker sense

(3.4) S X U +F@E)dxdt=0

for any nonnegative C, function { of (x,t).

The essential ingredient in the proofs of Theorems 3.1, 3.3 is an energy estimate
for schemes of the type (2.1). Such estimates are obtained for linear problems,
for similar schemes in [9]; the essential requirement on the scheme (2.1) is that
we be able to obtain such an estimate without assuming smoothness of the variable
coefficients f, (u) of the linearized problem.

Proof of Theorem 3.1. We will solve (2.1) in finite intervals in x, and then
pass to the limit that the interval becomes all of R. For nonnegative integer
J, let X, be the subspace of X such that the elements of X; have compact support
in [-L — hj, L + hj], with L fixed. We consider the following problem: find w; € X;
such that

2

k
(3.5) (w;+ YL —u"+kf(@u"),,d) + Y (3 (05 + Y Mo + ¥),, ,) =0
forall ¢ € X;.

Our approximation to u™*' is w; + ¥, which satisfies boundary conditions at

+ (L + hj). It suffices to obtain an a priori estimate of the form
(3.6) lo;l = K, K independent of j.

The existence of w; satisfying (3.5) will then follow by an easy application of
finite dimensional degree theory, for example by deforming k to zero. Then the
sequence {;} j_, is bounded in H = X N L, (—o, «) and so has a weakly convergent
subsequence, with limit w € H satisfying (3.6). But H is locally finite dimensional,
so by an easy diagonalization argument we have w;— o uniformly on compact
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sets. From (3.5) it follows that u"*! = w + Y, satisfies (2.1) for all test functions
¢ with compact support. But X is of countable dimension, and such ¢ span X.

Choosing ¢ = w;in (3.5), we obtain the following, after some algebraic manipula-
tion and where 3 = w; + {4, — u" and F is given by (1.3),
feos11* = flu™ = W )|® + K* ||, @™ ™ — ), ||*
—k(F@u,)—-F@u.)) - k2" f, (w; + ¥p) wj,x”2
— 18 + kf, ™) (" — Yp.) [I* — 2k (£, (™) ¥p,, ©;)
- k? (fi (wj + q‘L)l‘!,L,x’ wj,x)'

8.7

By virtue of the locally finite dimensional nature of the space X and the
assumption that u” — {;, € L,, it follows that u" and u are uniformly bounded
with respect to j (not h). Then (3.7) may be estimated using Schwarz,

loo;11* = e(L) + L™ % Jlor; || = KZ[If,, (w; + Wy,) ;]|
(3.8) + K] (0 + Up) ¥y, @5,)]
=c(L) + kzllfu (w5 + by )by, "2
In case (i), the equation (2.2) satisfies a maximum principle, so w; is uniformly

bounded and the last term in (3.8) is O(L™"). In case (ii), U, = 0. In case (iii),
the last term in (3.8) is estimated by

L
(c/L?) S 1+ wf) dx=c+ (c/Lz)Iijllz;
-L
choosing L sufficiently large, an estimate of the form (3.6) follows.

Proof of Theorem 3.2. As noted above (2.2) satisfies a maximum principle;
without loss of generality, we may assume that f, is uniformly bounded. Let b,
v, w be elements of H, with values b; = b(x;) etc. Since H is isomorphic to 4,
let T: 4 — 4, be given by
T(w); = (w;_, + 4w; + w;,,)/6

(3.9)
—\? [g(w;_, + "IIL(Xj—l)) —2g (Wj + ‘!’L(Xj)) + g(w,, + ¢L(xj+1))] /2.

The Frechet derivation of T is given by

(T'(wW)v); = (v;_, + 4v; +v;,,)/6
(3.10) - \® (£ Wiy + ¥, (X2 vy — 2f‘21 (w; + Py, (%)) v;
+ fﬁ (Wj+1 + Wy, (Xj+1)) vj+1] /2.
We will show that as amapping of 4, — 4, T’ (w) isinverse bounded independently

of w, so that by a global form of the implicit function theorem, cf. [13; p. 16],
T is a homeomorphism of £ onto 4. Indeed, if T’ (w) v = b, setting
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a; = N"£{ (W + ¥y, (x;)) /2,
we have
(3.11) 2(a; + 1/3)v;=b; + (a;_, — 1/6)v;_, + (a;,, — 1/6) v;,,, for all j.

Squaring both sides of (3.11) and summing over j, we obtain
(312) D (a;+1/3)*vi= (/4 +=™) D b+ (1+e) > (a,—1/6)*v}
i i i

for any £ > 0. Since the a; are nonnegative and bounded, we can choose ¢ sufficiently

small that
QA+e)sup| ——— | <1,

then

ZVfSCbe
]

i
is immediate from (3.12). This completes the proof of Theorem 3.2.

The proof of Theorem 3.3 requires the following:

Lemma 3.4. For a sequence of values of h approaching zero, let v, € X, be
bounded independently of x, h, and let { be a nonnegative scalar valued C function
of x. Let &, € X, be the piecewise linear interpolate of the product v, {, and let
Mh = VoL — &y Then |my| is uniformly of O(h), and |m, .| is uniformly bounded.
Furthermore, v, = v, + oy, With |o, | = 0 (h®*), and

(3.13) S Y (X) dx = O 3/2)
Q £(x)

where §), is the support of v, and is contained in the support of {.

Proof. By direct computation,
(3.14) M ®) = D v, (5)(E®) — Lx;) ¥ ((x — x;)/h)

where ¥(£) =1 — |£], €] <1, and O otherwise. The bounds on |n,| and |n,,]|
are immediate from (3.14). Let v, be given by the same sum (3.14), but restricted

to those values of j for which inf {(x) = h'/?; the remaining terms in the
XE [Xj-1-X541}
sum give o,. Since { has compactJ éui)l;ort, independent of h, (3.13) follows. We

claim that sup”2|§x(x)| = O(h'’*); otherwise, since |{,,| is bounded, a partial
{(x)<h
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Taylor expansion shows that { changes sign, which is impossible. Then using (3.14),
it follows that |o,, | = O (h®/*).

Proof of Theorem 3.3. Let { denote a nonnegative C; function of (x,t). In
(2.1), set & =2u"""¢(-,t,,,) —m(,t,,,), the piecewise linear interpolate of
2™ (-, t_,,). With U, F given by (1.3) and 8 = u™*"' — u”, we obtain after some
manipulations,

(U@™) —=U@®™) +kFu”),, (", tay)

= (=3% — 2kdf (u™), — K> (2 (™ ) ul™)ul", (-, tary)
—kZ(F2 @™ ) ul ™, u™ ¢, )W) F B REW™) M b))
+ k2(fl21 (un+l) u:+1 ,7] (.: tn+1)x)/2

=—(® + kf(u™),)? L(-, t,,,) — kK* ((f5 (") u
— (fR ™)) ul, L0, ta,)
—k*(f3 ™) ul, ut G, b)) + 6 + k@), m (b))
+ k2 (f121 (un+1) u::—!_l ’ ”ﬂ ('$ tn+1)x)/2'

(3.15)

+1 +1
< Juy

In (3.15) we use the boundedness of u™*' and the bound on its variation (3.2),
to get the third right hand term of o(h); the last term is of this same order,
using the boundedness of n(-,t,,,),, Lemma 3.4. We use Lemma 3.4 to estimate
the fourth term

(@ + kf (u™),,v(:, tyy) + o (c, t,44)
=e(@+kf@u"),)>? L, tary)

(3.16)
c

+ - g V2, ) 0, b)) dx -+ O (0°4)
Qn+l .

1A
= e((® +kf@™),)> (-, t..,) +Om®*).

Using (3.16), (3.15)lbecomes

U @™ - U@ +kF@"),, {(, th,)

(3‘17) 2 2 1 1 1 2
= k(s ™) ui ) u™ = (€ M uy), (-, t,,,)) +o(h)

We next sum (3.17) over n, over the support (in time) of {; the right hand
term is summed by parts, to give k?® 2 (2 @™)yu)ul, (-, t,) — (-, t,,,)); using

the smoothness of ¢ in t, this term is of order

k* D I, @™ul]? = ck* > var (™)

=< ck sup (var (u")) = o(1)
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using (3.2). Thus
(3.18) kY (U™ ~U@))/k+F@"),, L, the) < 0(1)

as h,k —» 0 from which (3.4) follows. It is shown in [8] that the limit function
Q1 is a weak solution of (1.1); thus Theorem 3.3 is proved.

For an isolated discontinuity between two states u, (on the left) and u, (on
the right), (1.3, 1.4) and the Rankine-Hugoniot relation imply

(3.19) S [f cdu=(@1/2)u,—u,) f,)+ f,)),

Uy

where the line integral is independent of path by the symmetry of f. For a single
equation, (3.19) is a weaker requirement than the Oleinik condition [12].

4. STATIONARY DISCONTINUITIES

In this section we discuss the approximations to stationary discontinuities
obtained from the scheme (2.1). We restrict attention to the case of a single equation,
m = 1. Interest in such problems arises because the unphysical discontinuities
which are occasionally observed with non-monotone schemes, such as those reported
in [3] and below, frequently are stationary. Indeed, our analysis reveals two
mechanisms by which this can occur, and in both cases suggests sufficiently large
values of A as a remedy.

We seek solutions of the discrete system

1

}\[g(uj+1)_23(uj)+g(uj—1)]/2= X [f((l—g)uj+§uj+1)

o

(4.1)

—f(1 - §u;_, + £u;)] d§,
satisfying
4.2) u,—u, () as j — +oo(—o),

where u_, u_ satisfy f(u,) = f(u_). Choosing the additive constant in f so that
(4.3) f(u,)=fu_)=0,

we can simplify (4.1) to a one-step relation,

(4.4)

2

q A q
S f(u)du = — S 2 (u) du,
q—p

p P

where p = u; and q = u,;,, for any value of j.
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Theorem 3.3 enforces an entropy condition on the solutions of (4.1, 4.2); from
(3.18) and (4.3), we have

(4.5) S ’ f(u)du = 0.

u_

Our results on the existence of solutions of (4.1, 4.2) may be summarized by
the following four theorems. In the cases where f is assumed convex, we also
assume that the zeros of £, if they exist, are isolated.

THEOREM 4.1. For f convex, given any A > 0 and any u, € (u,,u_), there
exists a solution of (4.1, 4.2), assuming the value u, at x = 0, if and only if (4.5)
is satisfied. .

THEOREM 4.2. Suppose f is convex in the interval [u,,u_], and suppose
that

(4.6) A sup : [f, (W] <1;

u€ [uy,u_

then for any u, € (u,,u_) there are no solutions of (4.1, 4.2) bounded within the
interval [u, ,u_], and assuming the value u, at x = 0.

THEOREM 4.3. For general smooth f, assume that \ is sufficiently large,
depending on u,,u_. For every u, between u, and u_, there exists a monotone
solution of (4.1, 4.2), assuming the value u, at x =0, if f,(u,) and f,(u_) are
nonzero and the Oleinik condition,

4.7) (u, —u_)f(u)>0 for all u between u, andu_,

is satisfied.

THEOREM 4.4. Suppose that u,,u_, \ satisfy (4.3), (4.5), and

1 us n (U
(4.8) ————S f(u)du=;§ £2 (u) du;

u u_

then a sufficient condition for the solution of (4.1, 4.2) given by

u,, j>0
4.9) uj={ A
u_, j=0

to be stable (in the linearized sense), with respect to the scheme (2.1), is

(4.10a) f,(u,) =1, (u),

(4.10b)  A*[f2(u,) —f2 . )]%= —4f, () f,(u_)[1+Nf,(u,)—Arf,(u)].

Several remarks precede the proofs.
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For f convex, (4.5) and (4.7) are equivalent, and Theorem 4.1 states that discrete
shock profiles exist exactly when they should. However, if \ is sufficiently small
that (4.6) is satisfied, then overshooting generally occurs on at least one side
of the discontinuity. The overshooting gets worse as \ is further reduced, and
can lead to the propagation of unphysical discontinuities, for nonconvex f outside
the interval [u,,u_]. Existence of a discrete shock profile may then fail, at least
for some values of A, in which case multiple discontinuities will be propagated
numerically; this cannot be physically correct. We note that (4.6) is essentially
the Courant stability condition for conditionally stable schemes, and is weaker
than criteria usually employed in practice. In contrast, for sufficiently large A\,
it is not necessary to have f convex, but only that contact discontinuities be avoided.

In general, solutions of (4.1, 4.2) of the special form (4.9) which satisfy (4.5)
but not (4.7) are possible. As such discontinuities occasionally arise in computations
[3], their stability is of considerable interest. The pair of equations (4.10) is a
sufficient condition for their stability. Equation (4.10a) is very similar to (1.7),
and is incompatible with the Oleinik condition (4.7), except for the case of a contact
discontinuity, f,(u,) = f,(u_) = 0. In the case where the zeros of f are all simple,
values of u__,u_ for which (4.10) is satisfied have an even number of zeros of
f between them.

In practice, the values of u,,u_ are determined by the choice of A, because
of the requirement (4.8) for the existence of such a solution (4.9). Theorem 4.3
shows that the trouble can be avoided by choosing A\ sufficiently large, but in
general this will require an unconditionally stable scheme, such as (2.1).

In contrast, such stability cannot be expected for solutions of (4.1, 4.2) satisfying
the Oleinik condition (4.7). For f, (u,) < 0 and f, (u_) > 0, the existence of marginal
modes in the linearized scheme (4.14) is immediate. Such modes are expected
from consideration of the translation properties of discrete shock profiles.

The proof of Theorem 4.1 requires only application of the intermediate value
theorem to (4.4); we omit the details. .

Proof of Theorem 4.2. Without loss of generality, we take f,, =0, f<O0 in
(u,,u_), f,(@) = 0 where u, <ua<u_. For p € (u,,], it suffices to show that
no value of q € [u,,p) satisfies (4.4). Integrating (4.4) by parts gives

! O u—q
f(p) = (p—q) S Ef, (u(€)dg—— S f, (u) du, £E= )
o 2 )q P—q

1 P

A ,
(€ —1/2)f, (u(g))dg Y S f3 du

q

f(p) — £(q)

=——;r——+@—q)g

1]

1/2 4
_f(a) + 2(p — q) X T[fu(p a

—ﬁ(p;q—Tw—qO]ﬁ

I

+7(p — q))
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-\ S f2u)du, *=£&-1/2,

q
P

> —f(q) — \ S £2 du > f(p)

q

if (4.6) holds and f{(q) € (f(p),0].

The only remaining possibility of a solution of (4.1, 4.2) bounded within [u,,u_]
is a special solution of the form (4.9), which can only happen if (4.8) holds. Such
solutions do not assume the prescribed value u, at x = 0.

Proof of Theorem 4.3. Again we take f<O0 in (u,,u_), u, <u_. For
p € [u,,u_] we show the existence of q € (u,,p) for A sufficiently large. Integrat-
ing (4.4) by parts and using Schwarz, we obtain

A (P P p—u
f(q) + — X fi(u)du = X f, (u) du
2 q p—q

_ 1/2 p 1/2
( p~1 ) ( S ff (u) du) .
3 a .

Application of the intermediate value theorem to (4.11) gives the existence
of q € [u,,p) if

q

(4.11)

IA

A2 S f2u)du=4(p —u,)/3,

u4

so that a sufficient condition on X\ is

4.12) A® inf (S fﬁ(u)du)/(p—u+)24/3
u+<p<u_ u,

plus a similar condition with u, replaced by u_. Such A exists provided that
f,(u,) and f,(u_) are not zero.

The converse of this theorem also holds, with (4.7) replaced by the weaker
statement

(4.13) u, —u_)f(uw=0 for all u betweenu,,u_.

A partial Taylor expansion of (4.4) shows that p,q cannot both be arbitrarily
closetou, (u_)iff, (u, ) (f,(u_)) is zero. Thus instead of approaching the asymptotic
value, a solution of (4.1, 4.2) in this case would have to achieve it exactly for
some finite value of j, and u, could not be arbitrarily chosen.

Proof of Theorem 4.4. In (2.1), let u" =u + v", where u € X is of the form
(4.9), with (4.8) satisfied, and v € X N L, is small. The linearized equation for

n+1

v is then
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(4.14) v = v+ k(f, () V), d) + K32 @)V, 0,)/2=0
for all $ € X.

In the following, we use the homogeneity in h to simplify the notation by
setting h = 1, k = \; we will also use the abbreviations y = v3*', z = vI*,

8 = v"™"! — v™ Choosing ¢ = v**! in (4.14), we obtain after some manipulations,
(4.15) Iv*THE = IvP12 = = 18] + 2N, () vP, vETY) — N ((F2 (u)v™tY),, vETR).

We now use the fact that u is piecewise constant, except in the interval (0,1).

o 1 o o
We split the integrals in the right side of (4.15), into S + g + S . For S,,

0 1 1

—c0

we have

oo oo

(v™ = 8)vitldx — N f2(u,) g (v 2dx
1

-~ S 8%dx + 2\ £, (u,) S

1 1

(4.16) 3}
= - X @+ M, (u,)vi* ) 2dx — Af, (u,)z>

1
o
Similarly, X gives a contribution

—00

0 (4]
(4.17) S = — S @+ A, (u_)vi™)dx + A, (u_)y>

—00 —o0

In the interval (0,1), u, =u, —u_, vy, 3,, and vi*' =z —y are constants.

Simply because 8 is linear and &, constant, the first term in (4.15) gives

(4.18) S 8%dx = (S Sfdx)/12.

The third term in (4.15) may be integrated to obtain

1

(4.19) —\? S E2) vy, virdx = — N (z — y)(&f? (u,) — yf2 (u_)).

]

The second term in (4.15) is

1

2 S fwv*vi*ldx = 2 Az — y) S f, (u(x) v" (x)dx

0 (4]
1

(4.20) = =2\ (z—-y)/(u, —u_ )(vi —vy) X f (u(x)) dx,

= —NEz—-yvi-v)) S f2 (u (x)) dx,

(o]
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integrating by parts and then using (4.8). Combining (4.16-4.20), we can estimate
(4.15) by

1

V12 = IvelZ = X (=82/12+ A%, (z—y) — Alz—y)*)dx

o

(4.21)

— A, (u, )22+ A, (u)y® — N2 (z — y)(zf2 (u,) — yf2 (u_)).
where
(4.22) A=\ S fi (u (x)) dx.

We next show that A = 1/3, which implies that the integral in the right side
of (4.21) is nonpositive. Integrating (4.8) by parts, using f(u,) =f(u_) =0, and

then Schwarz gives
1 “+ fu, +u_
_ ——— —u | f,(u)du
u, —u_ ), 2

1/2

2

Il

S +fﬁ(u)du

u._

IA

’

S ' £2 (u) du

from which (4.22) follows easily.

The remainder of the right side of (4.21) is a homogeneous quadratic form
in y,z; (4.10) is the sufficient condition that it is nonpositive definite. Thus the
proof of Theorem 4.4 is complete.

5. A THIRD ORDER SCHEME

For a single equation (1.1), we discuss a third order scheme which satisfies
an analog of Theorem 3.3. Let Y =Y, denote the Hermite cubic space; i.e. the
space of piecewise cubic polynomials in x, with continuous first derivatives at
the mesh points x; [14]. For ¢ € Y, ¢, € L,,. Given u” € Y, we obtain u""' € Y
from :

@™ —u” + kf "), - k*g™) o /2, ¢) + kP E @) urT, b,,)/6

X

5.1
G- + k*@gu™?) ., 2N d,),)/8=0 forall¢ €Y,

where g, = f? as above. For the Hermite cubics, the continuous time Galerkin
approximation applied to linear symmetric first under hyperbolic systems gives
accuracy O (h®)inL, [1];in this sense we call the scheme (5.1) accurate to O (h® + k?)
in regions where the solution is smooth. The last term in (5.1) is an additional
source of artificial dissipation.

We shall show that this scheme enforces the following entropy condition:
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THEOREM 5.1. Suppose the solutions of (5.1) converge boundedly almost
everywhere to a limit G as h,k — 0 with A = k/h fixed. Suppose in addition that

(5.2) luill., and hjul|l., arebounded independently ofn,h, k.
Then
(5.3) U@),+F@,=<0

in the sense of distributions, where U, F are given by (1.3).
The proof requires the following lemma:

LEMMA 5.2. For a sequence of values of h approaching zero, let v, € Y,
satisfy

(5'4) "Vh”Lw + "Vh,x “L1 + h" Vh,xx "Ll = c,

c independent of h. Let { be a'Cg function of x, and let ¢, € Y, interpolate
the value and first derivative of v, (; i.e.,

(5.5) Vh (xj) §(Xj) = d)h(xj)s Vi (Xj) - (Xj) + Vi (Xj) C(Xj) = ¢h,x (xj) for allj.
Let my, =, — V’h {, then "'ﬂh"Lm = 0 (h), ”T]h,x”Lw = 0(), ”’f]h,xx”Lm =0(h™); fur-

thermore, my, = vy, + oy, with |oy||L, = O (h*/*) and v, satisfies (3.13).

The proof is completely analogous to the proof of Lemma 3.4, and is therefore
omitted. The proof of Theorem (5.1) is similar so that of Theorem 3.3; in (5.1),
we choose & =u""'¢(-, t,,,) + """, obtaining after collecting terms, and several
partial integrations,

U@™™) = U@"™) +kF@u"),, {(, t,,))
= —(0° + 2kd3f(u"), — k*dg "), +k*(f@"),)*
+ R @™ ) ul a3 + k(g (u) ) /4, taa)
— (k*F@"),/2+ 2K’ 5™ ") i) ?/3,0,(, tur)
(5.6) — (K7u" @™ ) ult /38, £, () b))
— (kg™ /4, 20 (@)@ @) L LGy tag)
+ 2 ™) u L G b))
— 203+ kf (u™), —k*g ™), /2,
+ K E @™ ur iy -k @), /4, €3 )0 ,) /8

X

where 8 = u™*' — u”™.

Integration by parts gives the following identity;
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(Fhu, Uy, ) = =83, us, 0)/2 = (Lu}, ,)/2
(5'7) = —((fiux)x’ fuuxc) - (f?lux’ fuuuaztg) - (fiui, Cx)
= —3((f3u,),, fou, ) — 2(f us, L)

Setting u = u™*", { = {(-,t,,,) in (5.7) and combining with (5.6), we obtain

(U@™) = U@™) + kF@"),, L(, to.))
= —(@+kf(u"), —k*g"),./2)% L0, tayy))
(5.8) - 2@ +kf(u"), —k>g"),, /2,7""")
+ k2 (™), g™, — fu™), g™, {(, t41q))
—k* (g ™M) ) " — (™) )7 L(-, tan)) /4 + O (h?)

using the boundedness of u®, u"*’

of u®, u™?', 4n"*! obtained from (5.4) and Lemma 5.2. In (5.8), we replace
by v*** + ¢™*! and proceed as in Theorem 3.3. The last two terms in (5.8) are
summed by parts in time, as above, and we recover (3.18). Then Theorem 5.1

is proved.

, and the various bounds on the derivatives
n+1

In regions where the solution is smooth, the L, dissipation of this scheme
is given by the first right hand term of (5.8). This will be of O (h®), even though
a fourth order dissipation term was included in (5.1). This is quite different from
the analogous results for-third order finite element schemes for linear problems

[9].

6. NUMERICAL EXPERIMENTS

A series of simple numerical experiments was conducted, in an attempt to
obtain at least qualitative answers to several questions raised by the above analysis.
One area of investigation was the possible extention of the results of Section
4 to include moving discontinuities. More specifically, we would like to understand
the effect of motion of a discontinuity on overshooting, and to obtain generalizations
of Theorems 4.2, 4.3. A second question in this area is whether motion allows
contact discontinuities to be followed by schemes such as (2.1). It is also unclear
whether the stable, unphysical discontinuities described by Theorem 4.4 have mov-
ing analogs.

A second area of investigation concerns the value of A, and whether such higher
order schemes really need to be implicit: how much trouble is there if A << A,
where

(6.1) No sup [If.w)]=1,

uE(uy,u

and whether there is any discernible advantage in taking A > \,,.

Our experiments were confined to single equations (1.1), using different forms
of the flux function f, and involved three different schemes: the scheme described
by (2.1, 2.2); an explicit form of this scheme, given by
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ult =uj -\ S [£(Q =~ uf'+ £ufl,) — £(1 —Hufl, + £uf)] dg

(6.2) ,
+ A [g(ul,)—2g@}) + g (u},,)1/2;

and a modified two-step Lax-Richtmyer scheme,

ui™ = (1—-68)u;+40(ul, +ul,,) -0, +ul,) — NEE) - f(vi,)]

(6.3)
v? = (u.;1 + ujn+1)/2 - A [f(u;l+1) - f(u;l)] /23

in which, typically, 6 = 0.1.

The scheme (6.2) is obtained from (2.2) by lumping the mass matrices, at both
time levels, and moving the second order term to the backward time level. The
lumping of the mass matrices causes no difficulty; indeed, it is a stabilizing
mechanism [9], and does not affect any of the results of section 3. However,
we have not obtained a version of Theorem 3.3 with the second order term at
the backward time level. In particular, the assumption of an upper bound on
A may not be sufficient for this purpose.

It is possible that explicit, conditionally stable schemes of higher order accuracy
can be made compatible with entropy inequalities by using higher order regulariza-
tion, e.g. —c(h®/\) u,,,, in the right side of (1.1). An example of an explicit second
order scheme based on this form of regularization is given by (6.3), with 6 > 0.
The ordinary Lax-Richtmyer scheme, corresponding to 8 = 0 in (6.3), is completely
incapable of describing stationary discontinuities. For 6 positive and A\ sufficiently
small, the results of [2], [5], [11] suggest that this scheme will approximate
discontinuities if the Oleinik condition is satisfied, and furthermore be less sensitive
to contact discontinuities than (2.2) or (6.2).

Our experiments utilized initial data of the form (2.3), corresponding to a Riemann
problem. For such data, convergence as h,k — 0 with A\ fixed is immediate by
homogeneity, and Theorem 3.3 can easily be applied. For each time step, a value
of A was obtained from a relation of the form

(6.4) A, sup [ £, (u”x)] =B

with B < 1 for the conditionally stable schemes.

Our results were not very surprising, and we will discuss them only qualitatively.
For B <1 in (6.4), the schemes (2.2) and (6.2) gave almost identical results, and
no advantage of the implicit scheme (2.2) was observed. However, in some cases
better results could be obtained with the implicit scheme by using g > 1.

In all of our calculations involving moving shocks (as opposed to contact
discontinuities), overshooting occurred on one side of the discontinuity for the
schemes (2.2), (6.2), for all values of B employed. Conditions of the form (4.12)
are not sufficient to get monotone profiles for moving shocks. However, the
overshooting could typically be reduced to roughly one percent of the discontinuity
by using A satisfying (4.12), in the scheme (2.2). For the schemes (2.2), (6.2),
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the overshooting gets worse as \ is reduced, as expected. The scheme (6.3) overshoots
on both sides of the discontinuity, and the amount of overshooting is relatively
insensitive to the value of A.

For convex f, no unphysical solutions were observed with any of these schemes.
This result is in contrast with some experiments reported in [3}; we are inclined
to attribute the differences to somewhat different approximation of the spatial
derivatives.

For nonconvex f, sufficiently large overshooting can cause a discontinuity, which
should be propagaged intact, to be split into two or three discontinuities, each
of which is propagated separately. In all of our experiments, only one of each
group of discontinuities so obtained failed to satisfy the Oleinik condition. Whether
such a splitting will occur depends strongly on the values of f outside the interval
of the original discontinuity. Cases were observed in which a discontinuity was
propagated correctly only if the value of A was sufficiently large, using the scheme
(2.2).

Unphysical solutions of the special form (4.9) were observed; they were always
stationary. Their appearance could be caused by overshooting, as described above,
or by the failure of a computation to properly split up a given initial discontinuity.

We did not observe either of the schemes (2.2), (6.2) correctly propagating a
contact discontinuity, moving or stationary. The scheme (6.3) was clearly superior
in this respect, although it is somewhat unpredictable by virtue of an overshooting
tendency which is not easily controlled in practice.
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