EXTREME POINTS OF THE UNIT BALL OF THE BLOCH SPACE \mathscr{D}_0

Joseph A. Cima and Warren R. Wogen

1. INTRODUCTION

Let Δ denote the open unit disc in the complex plane \mathbb{C} , and let Γ denote the boundary of Δ . If f is a function holomorphic in Δ , define M (f) by

$$M(f) = \sup \{|f'(z)|(1-|z|^2) : z \in \Delta\}.$$

The Bloch space \mathscr{B} consists of those holomorphic functions f for which M(f) is finite. The norm ||f|| = |f(0)| + M(f) makes \mathscr{B} a Banach space. The set of f in \mathscr{B} for which $\lim_{|z|\to 1} |f'(z)|(1-|z|^2)=0$ is a closed subspace of \mathscr{B} , denoted by \mathscr{B}_0 . There are several characterizations of the functions in the Bloch space, and we refer the reader to [1], [2], [4], and [5]. The dual space of \mathscr{B}_0 is linearly homeomorphic with a Banach space I of functions holomorphic on I [1]. In fact,

$$I = \left\{ g: \int_{0}^{1} \int_{0}^{2\pi} |g'(re^{i\theta})| r dr d\theta < \infty \right\}.$$

Further, the second dual of \mathcal{B}_0 is isometrically isomorphic to \mathcal{B} . Alaoglu's Theorem and the Krein-Milman Theorem then imply that the unit ball of \mathcal{B} has extreme points. We show that the unit ball of \mathcal{B}_0 also has extreme points. The principal result of this paper is a characterization of the extreme points of the unit ball of \mathcal{B}_0 .

We list here a theorem which plays a fundamental role in later proofs.

THEOREM A. Let G(x,y) be a convergent real power series such that G(0,0)=0 and $G(0,y)=\sum_{n=s}^{\infty}b_ny^n$, where $s\geq 1$ and $b_s\neq 0$. Then there are power series $\Omega(x,y)$, $A_i(x)(i=0,1,...,s-1)$ such that

$$G(x,y) = (y^{s} + A_{s-1}(x) y^{s-1} + ... + A_{0}(x)) \Omega(x,y),$$

and $\Omega(0,0) \neq 0$.

Theorem A is a special case of the real analytic version of the Weierstrass Preparation Theorem (cf., e.g., [7, p. 145]). A C^{∞} version of this result (the Malgrange-Mather Theorem) can be found in [6, p. 94].

Received November 6, 1976. Revision received February 25, 1977.

Michigan Math. J. 25 (1978).

2. CHARACTERIZATION OF THE EXTREME POINTS

We begin by restricting our attention to functions $f \in \mathcal{B}$ normalized by f(0) = 0. Thus let $\tilde{\mathcal{B}} = \{f \in \mathcal{B} : f(0) = 0\}$, and let $\tilde{\mathcal{B}}_0 = \mathcal{B}_0 \cap \tilde{\mathcal{B}}$. Then for $f \in \tilde{\mathcal{B}}$, ||f|| = M(f). We first determine the extreme points of the unit ball of $\tilde{\mathcal{B}}_0$, (denoted ball $\tilde{\mathcal{B}}_0$), and then we will discuss the extreme points of ball \mathcal{B}_0 .

For
$$f \in \text{ball } \tilde{\mathcal{B}}$$
, let $L_f = \{z \in \Delta : |f'(z)|(1 - |z|^2) = 1\}$.

THEOREM 1. Let f be in ball $\tilde{\mathscr{B}}$. If there is an R < 1 so that $L_f \cap \{z : |z| \le R\}$ is an infinite set, then f is an extreme point of ball $\tilde{\mathscr{B}}$.

Suppose that $g_1, g_2 \in \text{ball } \tilde{\mathcal{B}} \text{ and } f = \frac{1}{2} (g_1 + g_2). \text{ If } z \in L_f \cap \{z : |z| \leq R\}, \text{ then } g_1 \in \mathbb{R}$

$$|f'(z)| = (1 - |z|^2)^{-1}$$
 and $|g'_i(z)| \le (1 - |z_k|^2)^{-1}$ for $i = 1, 2$.

Thus $|f'(z)| \ge \frac{1}{2} (|g_1'(z)| + |g_2'(z)|)$. But $f'(z) = \frac{1}{2} (g_1'(z) + g_2'(z))$, so that f', g_1' , and g_2' agree on $L_f \cap \{z : |z| \le R\}$. Thus $f = g_1 = g_2$, and f is an extreme point of ball \mathscr{B} .

COROLLARY 1. If f is in ball $\tilde{\mathcal{B}}_0$ and L_f is an infinite set, then f is an extreme point of ball $\tilde{\mathcal{B}}_0$.

A routine computation shows that the function $f(z) = \frac{1}{2} \log (1+z)(1-z)^{-1}$ is an extreme point of ball $\bar{\mathscr{B}}$. In fact, L_f is the interval (-1,1) on the real axis. Note that f is not in $\bar{\mathscr{B}}_0$. In Section 3 we discuss the functions

$$f_n(z) = z^n / ||z^n||, \quad n = 2, 3, ...$$

These functions are extreme points in ball $\tilde{\mathcal{B}}_0$.

The following theorem is the converse of Corollary 1.

THEOREM 2. Let f be in ball $\tilde{\mathscr{B}}_0$. If L_f is finite, then f is not an extreme point of ball $\tilde{\mathscr{B}}_0$.

The proof of Theorem 2 is based on the following lemmas.

LEMMA 0. If $f: [-\delta, \delta] \to \mathbb{R}$ is real analytic at x = 0 and if f has an isolated local minimum at x = 0, f has Taylor series expansion of form

$$f(x) = f(0) + \sum_{k=2i}^{\infty} a_k x^k,$$

where $j \ge 1$ and $a_{2j} > 0$.

LEMMA 1. Let G be a real valued function on Δ of the form

(1)
$$G(x, y) = y^2 + A_1(x) y + A_0(x),$$

where A_0 and A_1 are real analytic functions on |x|<1. Suppose that $G\left(0,0\right)=0$ and that there is a $\delta>0$ so that $G\left(x,y\right)>0$ for $0< x^2+y^2<\delta.$ Then there is an integer n>0 and a δ' with $0<\delta'\leq\delta$ so that $0< x^2+y^2<\delta'$ implies $(x^2+y^2)^n< G\left(x,y\right)$.

Proof. Since G(0,0) = 0, we have $A_0(0) = 0$. Also, since $G(0,y) = y^2 + A_1(0)y$, we must have $A_1(0) = 0$. The function A_1 has power series expansion of the form $A_1(x) = ax^j + \sum_{k=j+1}^{\infty} a_k x^k$, where $j \ge 1$ and $a \ne 0$. We write G in the form

(2)
$$G(x,y) = \left(y + \frac{A_1(x)}{2}\right)^2 + \left(A_0(x) - \frac{A_1^2(x)}{4}\right).$$

Observe that for $0 < x^2 + \frac{A_1^2(x)}{4} < \delta$, $G\left(x, \frac{-A_1(x)}{2}\right) = A_0(x) - \frac{A_1^2(x)}{4} > 0$. An application of Lemma 0 gives $A_0(x) - \frac{A_1^2(x)}{4} = bx^{2n} + \sum_{k=2n+1}^{\infty} b_k x^k$, where $n \ge 1$ and b > 0. Thus there is a δ' with $0 < \delta' \le \delta$ so that if $0 < x^2 < \delta'$, we have

(3)
$$\frac{b}{2} x^{2n} \le A_0(x) - \frac{A_1^2(x)}{4}, \text{ and}$$

(4)
$$A_1^2(x) \le 4a^2 x^2.$$

We first consider the set

$$A = \{(x,y) : y^2 \le 4a^2 x^2 \text{ and } 0 < x^2 < \delta' \}.$$

Using (2) and (3), we obtain the inequality

$$G(x,y) \ge A_0(x) - \frac{A_1^2(x)}{4} \ge \frac{b}{2} x^{2n} \ge K_1(x^2 + y^2)^n$$
 for $(x,y) \in A$,

where $K_1 = \frac{1}{2} b (2 + 4a^2)^{-n}$. Now consider the set

$$\mathcal{B} = \{(x, y) : y^2 \ge 4a^2 x^2, y \ne 0, \text{ and } x^2 < \delta' \}.$$

Using (2) and (4), we obtain

$$G(x,y) \ge \left(g + \frac{A_1(x)}{2}\right)^2 \ge \frac{y^2}{4} \ge K_2(x^2 + y^2)^n$$
 for $(x,y) \in \mathcal{B}$,

where $K_2 = \frac{1}{4} (2 + (4a^2)^{-1})^{-1}$. Hence there is a constant K such that

$$K(x^2 + y^2)^n < G(x,y)$$
 if $0 < x^2 + y^2 < \delta'$.

Further, we may suppose that K=1 by replacing n by n+1 and choosing a smaller δ' .

LEMMA 2. Suppose that f is in ball $\tilde{\mathcal{B}}$, |f'(0)| = 1, and there is a $\delta > 0$ such that $|f'(z)|(1-|z|^2) < 1$ for $0 < |z| < \delta$. Then there is a positive integer n and a δ' with $0 < \delta' \le \delta$ such that $(|f'(z)| + |z|^n)(1-|z|^2) < 1$ for $0 < |z| < \delta'$.

Proof. Without loss of generality, we may assume that f'(0)=1, so that $f'(z)=1+a_1z+\sum_{k=2}^\infty a_kz^k$. If $a_1\neq 0$, we can choose θ so that for r sufficiently small, we have $|f'(re^{i\theta})|\geq 1+\frac{|a_1|}{2}r$. Thus $|f'(re^{i\theta})|(1-r^2)>1$ for small r, a contradiction since ||f||=1. Hence $a_1=0$. If $|a_2|>1$, we can again choose θ so that for r sufficiently small we have $|f'(re^{i\theta})|\geq 1+\frac{1+|a_2|}{2}r^2$, which again contradicts ||f||=1. Thus $|a_2|\leq 1$.

By a rotation of the variable z, we may assume that $0 \le a_2 \le 1$. If $a_2 < 1$, we choose n = 3. There is a $\delta' > 0$ so that

$$|z|^3 + \left|\sum_{k=3}^{\infty} a_k z^k\right| < (1-a_2)|z|^2 \quad \text{if } |z| < \delta'.$$

Thus for $|z| < \delta'$, we have

$$|f'(z)| + |z|^3 < 1 + a_2 |z|^2 + \left| \sum_{k=3}^{\infty} a_k z^k \right| + |z|^3 < 1 + |z|^2 < (1 - |z|^2)^{-1}.$$

Thus the only case remaining is $a_2 = 1$. In this case we write z = x + iy and obtain the expansion

(5)
$$|f'(x+iy)|^2 = 1 + 2(x^2 - y^2) + O_3(x,y)$$
,

where O_3 is a convergent power series having only terms of order 3 or higher. We know that for $0 < |z| < \delta$, we have,

(6)
$$|f'(x+iy)|^2 < (1-(x^2+y^2))^{-2} = \sum_{k=0}^{\infty} (k+1)(x^2+y^2)^k.$$

Let $G(x,y)=(1-(x^2+y^2))^{-2}-|f'(x+iy)|^2$. Then G is a real analytic function with G(0,0)=0 and G(x,y)>0 if $0< x^2+y^2<\delta^2$. It is easy to see from (5) and (6) that G has the form $G(x,y)=4y^2+O_3(x,y)$, where as before O_3 is a convergent power series with terms of order 3 or higher. We now appeal to Theorem A. We may write G as a pseudopolynomial;

$$G(x, y) = (y^2 + A_1(x)y + A_0(x))\Omega(x, y),$$

where A_0 , A_1 , and Ω are real analytic, and $\Omega(0,0) \neq 0$. (Actually $\Omega(0,0) = 4$.) By Lemma 1, there is an n > 0 and a $\delta_1' > 0$ so that if $0 < x^2 + y^2 < \delta_1'$, then $(x^2 + y^2)^n < (y^2 + A_1(x)y + A_0(x))$. Since $\Omega(0,0) = 4$, a possibly smaller choice of δ_1' yields that if $0 < x^2 + y^2 < \delta_1'$, then $(x^2 + y^2)^n < G(x,y)$.

Let $K = \sup\{2 |f'(z)| + |z|^{n+1} : |z| < \delta\}$. It is clear that we can choose $\delta' > 0$ so that if $0 < x^2 + y^2 < (\delta')^2$, then $K(x^2 + y^2)^{n+1} < G(x, y)$. Thus if $0 < |z| < \delta'$, then

$$(|f'(z)| + |z|^{n+1})^{2} = |f'(z)|^{2} + 2|f'(z)||z|^{n+1} + |z|^{2n+2}$$

$$\leq |f'(z)|^{2} + K|z|^{n+1} < (1 - |z|^{2})^{-2}.$$

The lemma is now proven.

Let f be in ball \mathscr{B}_0 . An immediate consequence of Lemma 2 is that if $L_f = \{0\}$, then f is not an extreme point. Lemma 3 is a corollary of Lemma 2, and Lemma 3 will imply that if $L_f = \{z_0\}$ for $z_0 \in \Delta$, then f is not an extreme point.

LEMMA 3. Suppose that f is in ball $\tilde{\mathcal{B}}_0$, and that for some $z_0 \in \Delta$ we have $|f'(z_0)|(1-|z_0|^2)=1$, and there is a $\delta > 0$ so that

$$|\mathbf{f}'(\mathbf{z})|(1-|\mathbf{z}|^2) < 1$$
 for $0 < |\mathbf{z}-\mathbf{z}_0| < \delta$.

Then there is a positive integer n and a δ' with $0 < \delta' \le \delta$ such that

$$\left(|f'(z)| + \left| \frac{z - z_0}{1 - \bar{z}_0 z} \right|^n \right) (1 - |z|^2) < 1 \quad \text{for } 0 < |z| < \delta'.$$

Proof. Let ϕ be the holomorphic automorphism of Δ given by

$$z = \phi(w) = (w + z_0)(1 + \bar{z}_0 w)^{-1}.$$

Choose $g \in \tilde{\mathcal{B}}_0$ with $g'(w) = f'(\phi(w)) \phi'(w)$. Then g satisfies the conditions of Lemma 2.

Let $K = \sup\{|\varphi'(w)| : |w| < 1\}$. The proof of Lemma 2 shows that there is a $\delta_1' > 0$ and an integer n such that

$$(|g'(w)| + K|w|^n)(1 - |w|^2) < 1$$
 for $0 < |w| < \delta'_1$.

By the Schwarz-Pick Lemma, $1-|z|^2=|\varphi'(w)|(1-|w|^2)$. Choose δ' so that $|z-z_0|<\delta'$ implies $|w|<\delta'_1$. It follows easily that for $0<|z-z_0|<\delta'$, we have

$$\left(|f'(z)| + \left|\frac{z-z_0}{1-\bar{z}_0 z}\right|^n\right)(1-|z|^2) < 1.$$

We now prove Theorem 2. Let f be in ball $\tilde{\mathcal{B}}_0$ and let $L_f = \{z_1, ..., z_n\}$. Let $b_{\delta}(z_j)$ denote the closed ball with radius δ and center z_j , and choose δ small enough that the balls $\{b_{\delta}(z_j)\}_{j=1}^k$ are disjoint and are contained in Δ . A multiple application

of Lemma 3 yields a positive number $\delta' \leq \delta$ and an integer n such that for $i=1,2,...,k,\ 0<|z-z_i|<\delta'$ implies $|f'(z)|+\left|\frac{z-z_i}{1-\bar{z}_i\,z}\right|^n<(1-|z|^2)^{-1}.$ Let $M=\sup\left\{|f'(z)|(1-|z|^2):z\in\Delta\setminus\bigcup_{j=1}^k\ b_\delta(z_j)\right\}.$ Choose $g\in\tilde{\mathscr{B}}_0$ so that

$$g'(z) = (1 - M) \prod_{j=1}^{k} \left(\frac{z - z_i}{1 - \bar{z}_i z} \right)^n.$$

Then clearly for $z \in b_{\delta'}(z_j)$, we have

$$\begin{split} |f'(z) \pm g'(z)| &(1 - |z|^2) \le (|f'(z)| + |g'(z)|)(1 - |z|^2) \\ & \le \left(|f'(z)| + \left|\frac{z - z_j}{1 - \bar{z}_j z}\right|^n\right)(1 - |z|^2) < 1 \;. \end{split}$$

Also, if $z \in \Delta \setminus \bigcup_{j=1}^k \ b_{\delta'}(z_j)$ we have

$$|f'(z) \pm g'(z)|(1 - |z|^2) \le |f'(z)|(1 - |z|^2) + |g'(z)|(1 - |z|^2)$$

 $< M + (1 - M) = 1.$

Thus f+g and f-g are in ball $\tilde{\mathcal{D}}_0$, and $f=\frac{1}{2}$ $(f+g)+\frac{1}{2}$ (f-g) is not an extreme point of ball $\tilde{\mathcal{D}}_0$.

Thus far we have considered extreme points of the unit ball of the normalized Bloch space $\tilde{\mathcal{B}}_0$. We can determine the extreme points of ball \mathcal{B}_0 from the following proposition.

PROPOSITION 1. Let X and Y be Banach spaces with norms $|| ||_1$ and $|| ||_2$ respectively. Let $N: [0,\infty) \times [0,\infty) \to \mathbb{R}$ be a function so that $(x,y) \to N(|x|,|y|)$ is a norm on \mathbb{R}^2 . Define a norm || || on $X \oplus Y$ by

$$||\mathbf{x} \oplus \mathbf{y}|| = \mathbf{N}(||\mathbf{x}||, ||\mathbf{y}||)$$
 for $\mathbf{x} \in \mathbf{X}, \mathbf{y} \in \mathbf{Y}$.

Then $x \oplus y$ is an extreme point for ball $(X \oplus Y)$ if and only if,

- (i) x is an extreme point for the ball of radius ||x|| of X,
- (ii) y is an extreme point of the ball of radius ||y|| of Y, and
- (iii) (||x||, ||y||) is an extreme point of the unit ball of \mathbb{R}^2 with norm N.

The proof of the proposition is routine (and probably known), and we omit it. We have the following immediate corollary.

COROLLARY 2. Let f be in ball \mathcal{B}_0 . Then f is an extreme point of ball \mathcal{B}_0 if and only if either

- (i) f is a constant function of modulus 1,
- (ii) f(0) = 0 and f is an extreme point of ball $\tilde{\mathcal{B}}_0$.

Proof. $\mathcal{B}_0 = \mathbb{C} < \tilde{\mathcal{B}}_0$, where \mathbb{C} here denotes the constant functions. For $f \in \text{ball } \mathcal{B}_0$, the norm of f is given by ||f|| = |f(0)| + M(f), so that norm f of Proposition 1 is the f-norm of f and f in f

Remarks. 1. Consider the following equivalent norms on \mathcal{B}_0 . For $1 \le p \le \infty$ and $f \in \mathcal{B}_0$. Let $||f||_p = (|f(0)|^p + (M(f))^p)^{1/p}$ for 1 . Proposition 1 produces an essentially different class of extreme points from the extreme points in Corollary 2 for the <math>p = 1 case.

2. An analog of Corollary 2 is valid which characterizes the extreme points of ball \mathcal{B} in terms of the extreme points of ball $\tilde{\mathcal{B}}$.

3. FURTHER RESULTS, EXAMPLES, AND QUESTIONS

We begin this section by studying the sets of the form

$$L_f = \{z : |f'(z)|(1 - |z|^2) = 1\}$$

for $f \in \text{ball } \tilde{\mathcal{B}}_0$.

THEOREM 3. If f is an extreme point of ball $\tilde{\mathscr{B}}_0$, then there are simple closed pairwise disjoint analytic curves $\gamma_1,\gamma_2,...,\gamma_k$ with $k\geq 1$ and points $W_1,...,W_j$ with $j\geq 0$ so that $L_f=\left(\bigcup_k^k \gamma_i\right)\cup\{W_1,...,W_j\}$. Thus in particular L_f is uncountable.

Proof. Suppose z_0 is an accumulation point of L_f . As in the proof of Lemma 3, we may replace f' by $(f' \circ \varphi) \varphi'$ and hence assume that $z_0 = 0$. Thus we have $\{z_n\} \subset L_f$ with $z_n \to 0$. As in the proof of Lemma 2, we can assume that the Taylor series for f' has form $f'(z) = 1 + a_2 z^2 + ...$, where $0 \le a_2 \le 1$. If $0 \le a_2 < 1$, then as in Lemma 2, $|f'(z)|(1-|z|^2)$ has an isolated local minimum at z = 0. Thus $a_2 = 1$. As before we form $G(x,y) = (1-(x^2+y^2))^{-2} - |f'(x+iy)|^2$ and apply Theorem A to get

$$G(x, y) = (y^2 + A_1(x) y + A_0(x)) \Omega(x, y),$$
 where $\Omega(0, 0) > 0$.

 $\begin{aligned} &\text{Write } z_n = x_n + i y_n. \text{ For n sufficiently large, } H\left(x_n, y_n\right) \equiv y_n^2 + A_1\left(x_n\right) y_n + A_0\left(x_n\right) = 0, \\ &\text{and } H\left(x, y\right) \geq 0 \text{ if } x^2 + y^2 \text{ is small. Thus } A_0\left(x_n\right) - \frac{A_1^2\left(x_n\right)}{4} = 0 \text{ for large n. Since} \end{aligned}$

 $x_n \to 0$, and A_0 and A_1 are real analytic we find that either $A_0(x) - \frac{A_1^2(x)}{4} \equiv 0$ for |x| sufficiently small or $x_n = 0$ for all large n. In the first case we have

$$\left\{ (x,y): x^2 + y^2 < \delta \quad \text{and} \quad y = -\frac{A_1(x)}{2} \right\} \subset L_f.$$

In the second case we have $H(0,y_n) = y_n^2 = 0$ for large h, contradicting the fact that $z_n \neq 0$. The preceding argument shows that in a neighborhood of an accumulation point of L_f , we know that L_f is an analytic arc. This fact and the fact that L_f is a compact subset of Δ imply the Theorem.

We do not know which sets described in the Theorem can arise as an L_f for some f in ball $\tilde{\mathcal{B}}_0$. However, we have the following result.

THEOREM 4. For each $w \in \Delta$, there is a countable family of circles $\Gamma_{w,n}$ in Δ with the following properties. (a) Given $\Gamma_{w,n}$, there is a function $f_{w,n}$ in ball $\bar{\mathscr{B}}_0$ so that $L_{f_{w,n}} = \Gamma_{w,n}$. Moreover, $f_{w,n}$ is unique up to a multiplicative constant of modulus 1. (b) Conversely, if f is in ball $\bar{\mathscr{B}}_0$ and L_f contains a circle Γ , then $\Gamma = \Gamma_{w,n}$ for some (w,n).

Proof. We first consider part (b) of the theorem. Suppose that f is in ball $\tilde{\mathscr{B}}_0$ and that $\{z:|z|=r_0\}\subset L_f$. If we set $g(z)=(1-r_0^2)f'(r_0z)$, then g is in the disc algebra with modulus identically equal to one in Γ . Hence there is a finite Blaschke product

$$B(z) = \lambda z^{k} \prod_{j=1}^{J} \left(\frac{z - \alpha_{j}}{1 - \bar{\alpha}_{j} z} \right), \qquad |\lambda| = 1, \alpha_{j} \neq 0,$$

such that $f'\left(z\right)=\frac{1}{1-r_{o}^{2}}\,B\left(\frac{z}{r_{o}}\right)$. The maximum of $|f'\left(z\right)|(1-|z|^{2})$ occurs at $|z|=r_{o}$. Hence

(7)
$$\frac{d}{dr} \left[\frac{1 - r^2}{1 - r_0^2} \frac{r^k}{r_0^k} \prod_{i=1}^{J} \left| \frac{z/r_0 - \alpha_i}{1 - \bar{\alpha}_i z/r_0} \right| \right]_{r=r_0} = 0, \quad z = re^{i\theta}.$$

Let $P(r, \theta - \phi)$ be the Poisson kernel evaluated at $z = re^{i\theta}$ and observe that

(8)
$$\frac{\mathrm{d}}{\mathrm{dr}} \left| \frac{\mathrm{z/r_0} - \alpha_{\mathrm{j}}}{1 - \bar{\alpha}_{\mathrm{j}} \, \mathrm{z/r_0}} \right|_{\mathrm{r=r_0}} = \frac{1}{\mathrm{r_0}} \, \mathrm{P} \left(|\alpha_{\mathrm{j}}|, \theta - \theta_{\mathrm{j}} \right),$$

where $\alpha_j = |\alpha_j| e^{i\theta_j}$. If we carry out the differentiation in (7) and use (8), we see that

(9)
$$\frac{\mathbf{k} - (\mathbf{k} + 2) \,\mathbf{r}_0^2}{1 - \mathbf{r}_0^2} = \sum_{j=1}^{J} \,P\left(|\alpha_j|, \theta_j - \theta_j\right).$$

Suppose that $J \neq 0$ and form the polynomial $q(z) = \prod_{j=1}^{J} (z - \alpha_j)$. Then

$$\begin{split} 0 &= \sum_{j=1}^{J} q(\alpha_{j}) = \int_{\Gamma} q(e^{i\theta}) \sum_{j=1}^{J} P(|\alpha_{j}|, \theta - \theta_{j}) d\theta \\ &= \int_{\Gamma} q(e^{i\theta}) \frac{k - (k+2) r_{0}^{2}}{(1 - r_{0}^{2})} d\theta = q(0) \frac{k - (k+2) r_{0}^{2}}{1 - r_{0}^{2}} \end{split}$$

so that $k-(k+2)\,r_0^2=0$. (9) now says that $\sum_{j=1}^J P\left(|\alpha_j|,\theta-\theta_j\right)=0$, which is clearly false. Thus J=0 and $B(z)=\lambda z^k$. A straightforward calculation shows that $\max\left\{|w|^n\left(1-|w|^2\right):|w|<1\right\}=\left(\frac{n}{n+2}\right)^{n/2}\left(\frac{2}{n+2}\right)$, and that this maximum occurs on $|w|=\left(\frac{n}{n+2}\right)^{1/2}$. Thus $r_0=\left(\frac{k}{k+2}\right)^{1/2}$, and

$$\Gamma_{0,k} = \bigg\{z: |z| = \left(\frac{k}{k+2}\right)^{1/2}\bigg\}.$$

Further folk satisfies

$$f_{0,k}'(z) = \frac{\lambda z^k}{r_k^k (1 - r_k^2)}, \quad \text{ where } r_k = \left(\frac{k}{k+2}\right)^{1/2} \quad \text{and } |\lambda| = 1.$$

Now suppose that f is in ball $\bar{\mathcal{B}}_0$ and that Γ is a circle centered at z_0 contained in L_f . Let φ be a holomorphic automorphism of Δ which maps Γ to a circle centered at the origin, and let $\psi = \varphi^{-1}$. Choose h in $\bar{\mathcal{B}}_0$ with h'(w) = f'(\psi(w)) \psi'(w). From the first part of the proof, we conclude that

$$h'\left(w\right) = \frac{\lambda w^{k}}{r_{k}^{k}\left(1 - r_{k}^{2}\right)} \qquad \text{where } |\lambda| = 1 \text{ and } k > 0.$$

It follows that $f'(z)=f'(\psi(w))=\frac{\lambda w^k}{\psi'(w)}=\lambda\left(\varphi\left(z\right)\right)^k\varphi'\left(z\right)$, and that

$$\Gamma = \Gamma_{z_0,k} = \varphi^{-1}\left(\Gamma'\right), \qquad \text{where } \Gamma' = \Gamma_{0,k} = \left\{w: |w| \leq \left(\frac{k}{k+2}\right)^{1/2}\right\}.$$

Thus the circles $\Gamma_{w,n}$ in the statement of Theorem 3 are just images of the circles $\Gamma_{o,n}$ under automorphisms of Δ .

In some Banach spaces, the notion of "strong extreme point" has been of interest. For example the strong extreme points of ball H^{∞} are the inner functions [3].

Definition. Let X be a Banach space and let $x \in X$ with ||x|| = 1. Then X is a strong extreme point for ball X if for each $\epsilon > 0$ there is a $\delta > 0$ such that $\max \{||x+y||, ||x-y||\} \le 1 + \delta$ implies $||y|| < \epsilon$.

PROPOSITION. The unit ball of $\tilde{\mathcal{B}}_0$ has no strong extreme points.

Proof. Let f be in $\tilde{\mathscr{B}}_0$ with ||f||=1. Given $\delta>0$, there is an $r\in(0,1)$ such that $|f'(z)|(1-|z|^2)<\delta$ if $r\leq z<1$. Let $g_k(z)=z^k/||z^k||$. Then $g_k\in \text{ball }\tilde{\mathscr{B}}_0$ and a routine calculation shows that $\limsup_{k\to\infty}|g_k'(z)|=0$. Thus there is a k_0 so that $|g_{k_0}'(z)|(1-|z|^2)<\delta$ for $|z|\leq r$.

We conclude that $||f\pm g_{k_0}||\leq ||f||+\delta,$ and $||g_{k_0}||=1$.

We end our paper with some questions.

Question 1. What is the closed convex hull of the extreme points of ball $\tilde{\mathcal{B}}_0$?

Question 2. Are there extreme points f of ball $\bar{\mathcal{B}}_0$ such that L_f is not a circle? A weaker question is whether L_f must be connected.

Question 3. All of the extreme points of ball $\tilde{\mathcal{B}}_0$ are extreme points of ball $\tilde{\mathcal{B}}$. However, ball $\tilde{\mathcal{B}}$ has other extreme points. What are the extreme points of ball $\tilde{\mathcal{B}}$? Can ball $\tilde{\mathcal{B}}$ have an extreme point f such that L_f is empty?

REFERENCES

- 1. J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions. J. Reine Angew. Math. 270 (1974), 12-37.
- 2. J. M. Anderson and L. A. Rubel, Hypernormal meromorphic functions, preprint.
- 3. J. A. Cima and J. Thomson, On extreme points in HP. Duke Math. J. 40 (1973), 529-532.
- 4. R. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, preprint.
- 5. P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on H^p with 0 . J. Reine Angew. Math. 238 (1969), 32-60.
- 6. M. Golubitsky and V. Guillemin, *Stable mappings and their singularities*. Graduate Texts in Mathematics, Vol. 14. Springer-Verlag, New York-Heidelberg, 1973.
- 7. O. Zariski and P. Samuel, Commutative Algebra, Vol. II. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960.

Department of Mathematics University of North Carolina Chapel Hill, North Carolina 27514