EXTREME POINTS OF THE UNIT BALL
OF THE BLOCH SPACE %,

Joseph A. Cima and Warren R. Wogen

1. INTRODUCTION

Let A denote the open unit disc in the complex plane C, and let I' denote
the boundary of A. If f is a function holomorphic in A, define M (f) by

M(f) = sup {|f’ ()|(1 — |z|®):z € A}.

The Bloch space % consists of those holomorphic functions f for which M (f) is
finite. The norm ||f|| = |f(0)] + M (f) makes &% a Banach space. The set of f in
Z for which hm [/ (z)|(1 — |z|?) = 0 is a closed subspace of %, denoted by %,.

There are several characterizations of the functions in the Bloch space, and we
refer the reader to [1], [2], [4], and [5]. The dual space of %, is linearly
homeomorphic with a Banach space I of functions holomorphic on A [1]. In fact,

I={g:§ S Ig'(rei“)lrdrd6<oo}.

Further, the second dual of %, is isometrically isomorphic to %. Alaoglu’s Theorem
and the Krein-Milman Theorem then imply that the unit ball of % has extreme
points. We show that the unit ball of %, also has extreme points. The principal

result of this paper is a characterization of the extreme points of the unit ball
of %Z,.

We list here a theorem which plays a fundamentai role in later proofs.

THEOREM A. Let G (x,y) be a convergent real power series such that G (0,0) =
and G(0,y) = 2 b,y", where s = 1 and b, # 0. Then there are power series £} (x,y),

n=s

A, (x)i=0,1,...,s—1) such that
Gy =G +A_ &y +..+A,E)Q(EY),

and ©(0,0) # 0.

Theorem A is a special case of the real analytic version of the Weierstrass

Preparation Theorem (cf.,, e.g., [7, p. 145]). A C” version of this result (the
Malgrange-Mather Theorem) can be found in [6, p. 94].
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2. CHARACTERIZATION OF THE EXTREME POINTS

We begin by restricting our attention to functions f € % normalized by £ (0) = 0.
Thuslet Z= {f € #:£(0) = 0}, andlet &, = #, N Z.Thenforf € Z,||f|| = M(f).
We first determine the extreme points of the unit ball of %, (denoted ball Z,),
and then we will discuss the extreme points of ball %,.

Forf € ball #,let L, = {z € A: |f' (z)|(1 — |z]|?) = 1}.
THEOREM 1. Let f be in ball 2. If there is an R <1 so that L, N {z: |z] = R}
is an infinite set, then f is an extreme point of ball %.

- 1
Suppose that g,,g, € ball Zand f = ; (g, +8).Ifze€ L, N {z:]|z]| = R}, then
If'(z)] = (1 —|2z|®) ™" and |g/(@)| =1 —|z]|%*"" fori=1,2.

1 1
Thus |f’ (2)] 2— (g1 ()] + |g5(2)|). But f’'(z) =— (g; (z) + g5 (2)), so that f’,

g;, and g2 agreeon L, N {z:|z| = R}. Thus f=g, = gz, and f is an extreme point
of ball Z

COROLLARY 1. If f is in ball %, and L, is an infinite set, then f is an
extreme point of ball % .

1
A routine computation shows that the function f(z) = ; log(1+2z)(1—2z)""

is an extreme point of ball . In fact, L; is the interval (—1,1) on the real axis.
Note that f is not in %,. In Section 3 we discuss the functions

f.(z) =2"/||z"||, n=23,....

These functions are extreme points in ball Z,,.
The following theorem is the converse of Corollary 1.

THEOREM 2. Let f be in ball &,. If L, is finite, then f is not an extreme
point of ball .

The proof of Theorem 2 is based on the following lemmas.

LEMMA 0. Iff: [—8,8] — R is real analytic at x = 0 and if f has an isolated
local minimum at x = 0, f has Taylor series expansion of form

f(x) = £(0) + 2 a, x*,
k=2j

where j = 1 and a,; > 0.

LEMMA 1. Let G be a real valued function on A of the form

(1) Gy =y +A, &Y+ A,
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where A, and A, are real analytic functions on |x| < 1. Suppose that G (0,0) =0
and that there is a 8> 0 so that G(x,y) >0 for 0<x’>+y> <3d. Then there
is an integer n >0 and a & with 0<d =3 so that 0 <x*+y> <d implies
& +y")" < GxY).

Proof. Since G (0,0) = 0, we have A, (0) = 0. Also, since G (0,y) = vy’ + A, 0y,
we must have A, (0) = 0. The function A, has power series expansion of the form

A, (x) = ax’ + 2 a, x*, where j = 1 and a # 0. We write G in the form

k=j+1

' A (x)\* A%, (x)
2 G,y = (Y+ P ) + (AO(X)_ . )

2

A2 (x) —-A, (x) Al (x)
Observe that for 0 < x® + 14 <8, G (x, ; ) = A, (x) — 14 >0.An

A2 (x) ©
R 2 b, x"*, where n= 1

application of Lemma 0 gives A, (x) —

k=2n+1 .
and b > 0. Thus there is a 8 with 0 < §’=< § so that if 0 < x> < ¥’, we have

Al (x)
(3) —x™ = A, (x) — , and
2 4
(4) A (x) =4a’x>.

We first consider the set
A={xy:y"=4a’xand 0 < x* < 3'}.
Using (2) and (3), we obtain the inequality

A2x) b

G(x,y) = Ay (x) — > —2—x2“2 K,x2+y%)" for(xy) € A,

. .
where K, = 5 b (2 + 4a®) ™. Now consider the set

B={(x,y):y°=4a’x’, y# 0, and x> < 8'}.
Using (2) and (4), we obtain

A, (x)
2

2 2
) 2}—;—2 K, x* + y*)" for (x,y) € %,

1
where K, = n (2 + (4a®) ') 7. Hence there is a constant K such that
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K(x*+y)"<G(xy if0<x®+y®<¥d.

Further, we may suppose that K =1 by replacing n by n + 1 and choosing a
smaller &’.

LEMMA 2. Suppose that f is in ball &, |f' (0)| = 1, and there is a 8 > 0 such
that |f' (z)|(1 — |z|?) < 1 for 0 < |z| < 8. Then there is a positive integer n and a
8’ with 0 <3’ =8 such that (|f’ (z)| + |z|™)A — |z|®) <1 for0 < |z| < &'

Proof. Without loss of generality, we may assume that f’(0) = 1, so that

f'(z) =14+ a,z+ 2 a, z". If a, # 0, we can choose 0 so that for r sufficiently
k=2

a, |
2

small, we have |f’(re®)| =1+ r. Thus |[f’ (re*®)](1 —1®) > 1 for small 1, a

contradiction since ||f|| = 1. Hence a, = 0. If |a,| > 1, we can again choose 0 so

1+ [a,]

that for r sufficiently small we have |f’(re'®)|=1 + r’, which again

contradicts ||f|] = 1. Thus |a,| = 1.

By a rotation of the variable z, we may assume that 0 <a,<1. If a, <1,
we choose n = 3. There is a 8 > 0 so that

< (1 - a,)z|® if [z| < &'.

Thus for |z| < &', we have

o0

k
S

k=3

|’ (z)| + |z]> <1+ a,|z|? + +2°<14+z)°< 1 - |z|%) 7.

Thus the only case remaining is a, = 1. In this case we write z = x + iy and
obtain the expansion

(5) If'x+iy)|* =1+ 2% -y°) + 0,(x,y),

where O; is a convergent power series having only terms of order 3 or higher.
We know that for 0 < |z| < §, we have,

oo

(6) £ (x +ip)|* < (1 = & +y) 2= k+ DE +y°)"

k=0

Let G(x,y) = (1 — x>+ y*) ? — If’ (x + iy)|2. Then G is a real analytic function
with G (0,0) = 0 and G (x,y) > 0if 0 < x* + y® < 8°. It is easy to see from (5) and
(6) that G has the form G (x,y) = 4y® + O, (%,y) , where as before O, is a convergent
power series with terms of order 3 or higher. We now appeal to Theorem A.
We may write G as a pseudopolynomial; '

G(xy) = +A (XY + A, x)Qx,y),
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where A,, A,, and Q are real analytic, and Q(0,0) # 0. (Actually Q(0,0) = 4.)
By Lemma 1, there is an n>0 and a 8, > 0 so that if 0 <x® + y*> < &/, then
X +y)"< @+ A Xy + A, (x). Since £(0,0) = 4, a possibly smaller choice of
8; yields that if 0 < x* + y® < 3/, then (x* + y°)" < G (x, y).

Let K = sup{2|f’ ()| + |z|™*" : |z| < 8}. It is clear that we can choose 3’ > 0
so that if 0 < x® + y* < (8”)? then K (x> + y*)""' < G (x,y). Thus if 0 < |z| < &7,
then
(If/ (Z)| + lzln+1)2 — If/(z)l2 + zlf, (Z)”z|n+1 1 |len+2
= |f'@°+K|z|™™' <@ - |z]?) 2.

The lemma is now proven.

Let f be in ball &Z,. An immediate consequence of Lemma 2 is that if L, = {0},
then f is not an extreme point. Lemma 3 is a corollary of Lemma 2, and Lemma
3 will imply that if L; = {z,} for z, € A, then f is not an extreme point.

LEMMA 3. Suppose that f is in ball &,, and that for some z, € A we have
£/ (zo) |(1 — | 2o]?) = 1, and there is a 8 > 0 so that

1f'@)|1A-]z|?)<1 for0<|z—z4|<3.
Then there is a positive integer n and a 8’ with 0 < 8’ = § such that

Zg

)(1—|z|2)<1 for0 < |z| <¥d’.

(If'(z)l +

oZ
Proof. Let ¢ be the holomorphic automorphism of A given by
z=0ob (W) =W+ z,)(1 + z,w) .

Choose g € %, with g’ (w) = f’ (¢ (w)) &’ (w). Then g satisfies the conditions of
Lemma 2.

Let K = sup{|¢’(w)| : |w| < 1}. The proof of Lemma 2 shows that there
is a 8] > 0 and an integer n such that

(lg’ W) + K|w|™)1 — |w|®) <1 for 0 < |w| < §;.

By the Schwarz-Pick Lemma, 1 — |z|® = |’ (w)](1 — |w|?). Choose 3’ so that
|z — z,] < &’ implies |w| < 3;. It follows easily that for 0 < |z — z,| < &’, we have

(lf'(Z)I +

We now prove Theorem 2. Let f be in ball #, and let L, = (z,, ..., z,}. Let
b, (z;) denote the closed ball with radius & and center z;, and choose 3 small enough
that the balls {b, (z;)} ;;1 are disjoint and are contained in A. A multiple application

Z—2z, |
— )(1— |z|2) < 1.

— ZyZ
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of Lemma 3 yields a positive number 8’ =38 and an integer n such that for

n

i

i=1,2,..,k 0<|z—1z|<3 implies [f' (z)|+ <(1-z|*)7". Let

i

k
M= sup{lf’ @)|(1 — |z|®) :z € A\ U b, (zj)}. Choose g € %, so that
=1

k —_. n
g@=a-m]] (lz_ ;‘Z) .

Then clearly for z € b, (z;), we have
If' (@) =g’ @|Q - |z|®) = (f’ @] + |g’ @A — |z|?)

= (]f’ (z)| +

Z

)(1 -2y <1..

k
Also, if z € A\ U b (z;) we have
j=1

£ @ + g’ @I - |2|*) = It @I = |2|?) + |g’ @|(1 - 121°)
<M+1Q-M)=1.

1 1

Thus f + g and f — g are in ball Z,,, and f = — (f + g) + — (f — g) is not an extreme
2 2

point of ball Z,.

Thus far we have considered extreme points of the unit ball of the normalized
Bloch space #,. We can determine the extreme points of ball %, from the following
proposition.

PROPOSITION 1. Let X and Y be Banach spaces with norms || ||, and || ||
respectively. Let N : [0,0) X [0,0)— R be a function so that (x,y)— N (|x|, |y])
is a norm on R®. Define a norm || || on X® Y by

lIx @yl =Nl llyl) forx €X,y €Y.

Then x @y is an extreme point for ball (X ®Y) if and only if,
(i) x is an extreme point for the ball of radius ||x|| of X,
(ii) y is an extreme point of the ball of radius ||y|| of Y, and
dii) (|1x]],1ly1]) is an extreme point of the unit ball of R* with norm N.

The proof of the proposition is routine (and probably known), and we omit
it. We have the following immediate corollary.

COROLLARY 2. Let f be in ball %,. Then f is an extreme point of ball %,
if and only if either
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(i) f is a constant function of modulus 1,
(ii) £(0) = 0 and f is an extreme point of ball #,.

Proof. %,=C < %, where C here denotes the constant functions. For
f € ball &,, the norm of f is given by ||f|| = |f(0)] + M(f), so that norm N of
Proposition 1 is the L'-norm of R Thus (|f(0)|, M(f)) is an extreme point for
ball R? in L'-norm if and only if f(0) = 0 and ||f|| = 1 or |[f(0)] = 1 and M (f) = 0.
The Corollary now follows.

Remarks. 1. Consider the following equivalent norms on %,. For 1 <=p =
andf € #Z,. Let |||, = (| £(0)]® + (M (f))?) /P for 1 < p < . Proposition 1 produces
an essentially different class of extreme points from the extreme points in Corollary
2 for the p = 1 case.

2. An analog of Corollary 2 is valid which characterizes the extreme points
of ball #Zin terms of the extreme points of ball #.

3. FURTHER RESULTS, EXAMPLES, AND QUESTIONS

We begin this section by studying the sets of the form
L= {z:|f @ —|z|?) = 1}
for £ € ball Z,.

THEOREM 8. If f is an extreme point of ball %, then there are simple closed

pairwise disjoint analytic curves v,,%s, ...,¥,, With k = 1 and points W, ..., W; with
k

j =0 so that L; = ( U 'yi) U {W,, ..., W;}. Thus in particular L, is uncountable.

i=1

Proof. Suppose z, is an accumulation point of L. As in the proof of Lemma
3, we may replace f’ by (f’ o )b’ and hence assume that z, = 0. Thus we have
{z,} C L;with z, — 0. As in the proof of Lemma 2, we can assume that the Taylor
series for f’ has form f' (z) =1+ a,z° + ..., whereO0=<a,=< 1.If 0 < a, <1, then
as in Lemma 2, |f' (2)|(1 — |z|2) has an isolated local minimum at z = 0. Thus
a, = 1. As before we form G(x,y) = (1 — x* + y*)) > — |f’ (x + iy)|® and apply
Theorem A to get

G,y =+ AXy+AX)QAEY), where € (0,0) > 0.

Writez, = x,, + iy,. For nsufficientlylarge, H(x,,y,) = y> + A, (x,)y, + A,(x,) = 0,
A% (x,)

and H(x,y) = 0 if x* + y* is small. Thus A, (x,) — = 0 for large n. Since

Al (®)

x,— 0, and A, and A, are real analytic we find that either A, (x) —

for |x| sufficiently small or x, = O for all large n. In the first case we have

A (x)
{(x,y):x2+y2<8 and y=— 12 }c L.
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In the second case we have H(0,y,) = y> = O for large h, contradicting the fact
that z_ # 0. The preceding argument shows that in a neighborhood of an accumula-
tion point of L;, we know that L; is an analytic arc. This fact and the fact that
L, is a compact subset of A imply the Theorem.

We do not know which sets described in the Theorem can arise as an L, for
some f in ball &#,. However, we have the following result.

THEOREM 4. For each w € A, there is a countable family of circles I‘w,n in
A with the following properties. (a) Given Fwn, there is a function £, in ball
#, so that L, =T,.. Moreover, f,, is unique up to a multiplicative constant
of modulus 1. (b) Conversely, if £is in ball #, and L, contains a circle T, then
I' =T, for some (w,n).

Proof. We first consider part (b) of the theorem. Suppose that f is in ball
%, and that {z: |z| =1r,} C L. If we set g(z) = (1 — r2)f’ (r,2), then g is in the
disc algebra with modulus identically equal to one in I'. Hence there is a finite
Blaschke product

J - .
B(Z)-—'——)\Zkl_l(lz _aj)’ l)\|=1saj¢0a

j=1 - OLjZ

1 yA
such that f' (z) = > B (—).The maximum of |[f’ (z)|(1 — |z|®) occurs at |z| = r,.
Ty

1“1’0

Let P (r,0 — ¢) be the Poisson kernel evaluated at z = re'’ and observe that

Hence

d [1-2r% 1" /2
7 —_—
@) dr l:l-—r0 U

0

z/ro — q

1-o;z/r,

r=rgp

(8) d
dr

z/ry — a; 1
/o~ =—P(o,|,6 —6,)

r=rg r()

where a; = |qo;] e'%. If we carry out the differentiation in (7) and use (8), we see
that

_ k—(k+2r,
(9) —= > P(a,;,6 —6))
1-r, j=1

J
Suppose that J # 0 and form the polynomial q (z) = H (z — ;). Then

i=1

J J
O=Z q(aj) = qu(eie); P(lajlse—ej)de

S (o' k—(k+2)r(2,d k —(k + 2)r;
r

8 =q(0)
1-r; 1-12
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J
so that k — (k + 2)r? = 0. (9) now says that » P (|a;],0 —8,) = 0, which is clearly
J J
=1

false. Thus J =0 and B(z) = Az". A straightforward calculation shows that

n n/2
max {jw|* (1 — |w|®): |w| <1} = ( ) , and that this maximum
n+ 2 n-+ 2

n 1/2 k 1/2
occurs on |w| = ( ) . Thus r, = ( ) ,and
n+ 2 k + 2

k 1/2
Fo,k={z:|z|=<k+2) }

1/2
) and ]\ | = 1.

Further f,, satisfies

azk

ra-r)’

fou (@) = where r, = (

k+2

Now suppose that f is in ball &, and that T is a circle centered at z, contained
in L. Let ¢ be a holomorphic automorphism of A which maps I’ to a circle centered
at the origin, and let y = ¢~'. Choose h in #Z, with h’ (w) = f’ (' (w)) ¥ (w). From
the first part of the proof, we conclude that

k

AW
h!(w)=—— where [N\ =1and k > 0.
i (1 — 1) M

k

U (w)

It follows that £’ (z) = £’ (¢ (w)) = =\ (z))* ¢’ (z) , and that

k 1/2
P=T, = —1(1-\;), whereI” =T =={w: W 5( ) }
o= ok Iwl k+2

Thus the circles ', , in the statement of Theorem 3 are just images of the circles
Iy, under automorphisms of A.

In some Banach spaces, the notion of “strong extreme point” has been of interest.
For example the strong extreme points of ball H* are the inner functions [3].

Definition. Let X be a Banach space and let x € X with ||x|| = 1. Then X
is a strong extreme point for ball X if for each £ > 0 there is a 3 > 0 such that
max {||x + y||, ||x — y||} =1 + 3 implies ||y|| < e.

PROPOSITION. The unit ball of %, has no strong extreme points.

Proof. Let f be in %, with ||f|| = 1. Given 3 > 0, there is an r € (0, 1) such
that |f’ (2)](1 — |z|®) < 8ifr =z < 1. Let g, (2) = z*/||z"||. Then g, € ball &%, and
a routine calculation shows that ll(im sup |g. (z)] = 0. Thus there is a k, so that

— o0 |z|=r
lgn, (@) (1 — |z|?) < 8for |z| =r.

We conclude that ||f + g, || =||f]| + 3, and ||g, || =1.
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We end our paper with some questions.
Question 1. What is the closed convex hull of the extreme points of ball Z,?

Question 2. Are there extreme points f of ball &, such that L is not a circle?
A weaker question is whether L; must be connected.

Question 3. All of the extreme points of ball %, are extreme points of ball
B . How_ever, ball .ﬁ~has other extreme points. What are the extreme points
of ball & ? Can ball & have an extreme point f such that L, is empty?
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