OPERATORS OF CLASS C,, OVER MULTIPLY-CONNECTED
' DOMAINS

Joseph A. Ball

INTRODUCTION

Let R be a domain in the complex plane bounded by n + 1 nonintersecting
analytic Jordan curves, let C(dR) be the space of continuous functions on the
boundary of R, and let Rat(R) be the uniform closure in C (3R) of the space of
rational functions with poles off of R. Let #be a complex Hilbert space and
let .#(#’) be the algebra of bounded linear operators on # M. B. Abrahamse
and R. G. Douglas [4] have recently initiated the study of contractive unital
Z(#)-valued representations of Rat (R); that is, algebra homomorphisms

o: Rat (R) » .£(%)

such that [|o (f)|| = ||| and o (1) = I ;.. The Sz.-Nagy-Foias model theory for contrac-
tion operators [11] can be viewed as statements about representations of the disc
algebra Rat (D) (D the unit disk). Thus the theory begun by Abrahamse and Douglas
can be viewed as a generalization of the Sz.-Nagy-Foiagtheory to multiply-connected
domains.

In this paper we shall deal with some of the specific questions concerning
such representations raised by Abrahamse and Douglas in their paper. A repre-
sentation o is said to be of class C,, if o is continuous from the topology of
bounded pointwise convergence on Rin Rat (R) to the double strong operator topology
in Z(#). A representation is said to be of class C, if its unique extension to
H” (R) has a nontrivial kernel. It can be shown that these definitions are consistent
with those of Sz.-Nagy and Foiag for the case that R = D. In Section 2 of this
paper we show that if o: Rat(R) — .2(#) is a representation of class C,, such
that o (z) = N + K, where N is normal with spectrum contained in the boundary
of R and K is trace class, then o is of class C,. This answers Question 6 of

[4].

Associated with any completely contractive unital representation of Rat (R) (see
the definition in Section 3) is a functional model analogous to the Sz.-Nagy-Foiag
functional model for a representation of the disc algebra. As in the disc case,
the simplest form of the model occurs when the representation is C,,. The model
is determined by a characteristic function, which in the disc case is uniquely
determined by the representation. In the general case, as was pointed out by
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Abrahamse and Douglas, there is a high degree of nonuniqueness; specifically,
essentially different models can give rise to unitarily equivalent representa-
tions. In Section 3 of this paper we analyze this nonuniqueness for the case where
& is finite-dimensional and o (z) has distinct eigenvalues. This enables us to show
that not even the rank of the model is a unitary invariant of the representation,
and thus to give negative answers to Questions 1 and 2 of [4].

In Section 4 we obtain an estimate on the possible rank of a model inducing
a given representation. In particular, it will follow that a model inducing a
representation unitarily equivalent to the representation arising from a rank 1
model can have rank at most n + 1 (the number of boundary components of R).
It will also follow that the rank is a unitary invariant if it is infinite.

Section 5 is an attempt to shed some light on Question 4 of Abrahamse and
Douglas. We obtain an implicit formula for the characteristic function of a model
of a special type. In the case R =D, the formula specializes to a well-known
formula which can be used to obtain the characteristic function completely in
terms of the representation; in the general case, the formula of necessity (in view
of the above-mentioned nonuniqueness) involves some quantities which make sense
only in terms of a specific model. For those familiar with the disc model theory,
this should provide insight into the complications arising from the multiple-con-
nectivity of the underlying region.

Needed preliminaries concerning function theory on multiply-connected domains
are given in Section 1. For simplicity, we choose to define the elements of the
spaces needed in the sequel as functions analytic on R except for certain systematic
jump discontinuities across cuts in R, as is done in [1], [4], rather than use
the language of hermitean holomorphic vector bundles [3], [4]. The exposition
proceeds under the assumption that the reader is familiar with the literature
on H” theory for multiply-connected domains for the scalar case [2], [12]. Many
of the needed results are straightforward vector generalizations of results of [1],
and detailed proofs will be omitted.

1. THE HILBERT SPACES H?2 (R) AND OPERATOR-REPRODUCING KERNEL
FUNCTIONS

Let R be a bounded domain in the complex plane bounded by n + 1 nonintersecting
analytic Jordan curves, let #" be a complex Hilbert space and let

a=(a;,..,a,) € X))

be an n-tuple of unitary operators on .2 We will define a Hilbert space H? (R)
which is a vector-valued generalization of the spaces HZ (R) defined in [1], [14].
To achieve this, let C,, ..., C_, be n pairwise disjoint cuts in the region R such
that if C is the union of the C, for k =1, ..., n, then R\C is simply connected.
For k=1,...,n, let U, be an open set in R such that 6U, N C = C, and U, lies
on one side of the cut C,. For a € Z(#)" as above, let H (R) be the set of
H#<valued functions f on R such that ||f|| is continuous on R, f is weakly analyt.c
(i.e., (f(z), x) 4 is analytic for each x in .Z") on R\ C, and for w in C,,
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lim f(z) = o, f(w),

Z—W

zinU

k

where the limit is in the norm topology of % Thus H_(R) is a space of #~valued
functions on R which are analytic except for certain systematic jump discontinuities
across the cuts C,, ..., C,. If each component o; (i =1, ..., n) of a is the identity
I,, so that a =e,= (I, ...,1;), then H_,(R) = H, (R) is the space of #-valued
analytic functions on R. A #~valued function f on R is said to be norm automorphic
if ||f|| is continuous on R. A function f is norm automorphic and analytic on R\C

if f is in H_(R) for some a in Z(%)". One then refers to a as the index of
f. '

Let Hi (R) be the space of functions f in H_(R) such that there is a harmonic
function u on R with Hfll2 = u. Choose a point t in R, and for f in Hi (R) define
if]l as the infinum of the numbers u (t)'/? with u harmonic and ||f]| =< u. Then
H?2 (R) is a Hilbert space. Moreover, if m is harmonic measure for the point t,
then every function fin H? (R) defines via nontangential limits a boundary function
f in L?%(m) (weakly measurable .#-valued functions on dR with norms square-in-
tegrable with respect to m) and the norm of f in H? (R) is the same as the norm

of f in L% (m). Thus the space H?(R) can be viewed as a closed subspace H?
of L%, (m).

For two Hilbert spaces 7] and %, an element o = (a,, ..., a,) of Z(#)" and
an element g = (B,, ..., B,) of Z(%)", let H, . (R) be the set of functions F defined
on R with values in .£(%],.%;) (bounded linear operators from .7 into .%;) such
that ||[F| is continuous on R, F is weakly analytic ((F(z)x, y), is analytic for
each x in %] and y in Z7) on R\ C, and for w in C,,

lim F(z) =B, FwW)a,,
2in Ug

where the limit is in the strong topology of A(%#, %). If a = (a;, ..., «,) is in
% (%)™ and o* is defined to be o* = (af, ..., aF), it is easily seen that H, .. maps
H, into H; under pointwise multiplication. If we let H; .. (R) be the space of functions
F in H . (R) with norm bounded on R, then Hj_ . (R) is a Banach space, each
element of which maps H2 (R) into H; (R) via pointwise multiplication. An element
F of Hj . (R) determines via nontangential strong limits an element F of L7, %, %)
(essentially bounded measurable .# (%], %;)-valued functions on dR) such that the
norm of F in H . (R) is the same as that of F in L}%, 5+ Thus H; .. (R) can
be identified as a closed subspace Hy .. of L5, 5.

Fora € % (%", the bundle shift operator S_ on Hi (R), defined as multiplication
by z on H?(R), has been extensively studied by Abrahamse and Douglas [3].
There it is shown that an operator F mapping H2 (R) into Hj (R) intertwines S,
and S, if and only if F is multiplication by an element F = F(z) in Hy .. (R).
In particular, the commutant of S, can be identified as H_ .. (R). It is also shown
that for each a € Z(%)", there is an E, € H}, (R) with E_ e H? s (R). Tt
follows that

(1.1) H?(R)=E_ H%2(R),
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and therefore many properties of the space H? (R) follow from those of the more
familiar H2(R), as in [1].

LEMMA 1.1. ForwinR, ain %(%)", the evaluation mapping e_ (w): f— f(w)
is a bounded linear transformation of H2 (R) into %

Proof. The result follows from equation (1.1) as for the scalar case done in
[1].

If we set ki, = e (w)*, then for each x in % ki, x = k{, (z) x is an element of
H2 (R), and has the reproducing property (f, k% X) gz = (£(W), X),. We refer to
k: (z) as the (operator) kernel function for the space H2 (R).

THEOREM 1.2. For any region R as above, there exists an o in the n-torus
T" such that for any w in R, kK, (z) has n zeros in R.

Proof. The result is known (see [7, p. 118} or [8]) if a = (1, ..., 1) and arclength
measure d |z| is used to define the norm of the space H? (R) rather than harmonic
measure m for the point t. The conclusion of the theorem now follows by the
analysis of Section 7 of [1].

The following facts concerning kernel functions will be needed in Section 3.

LEMMA 1.3. For any fixed w in R, the kernel of S* — w is (ki x: x € Z}.

Proof. A simple computation,

(81— WKy x, g) =(Kox, (8, — W)g) = (x, (W — W)g (W) = 0
for all g in H2 (R),

shows that {k_ x:xin K} C ker(S* — w). Conversely, if f is orthogonal to
{k& x: x in K}, then f (w) = 0, and hence g (z) = (z — w) "' f (2) isin H? (R). Therefore,
f=(S—-w)g €Ran(S, — w) C [ker(S: — w)] .

Another result of Abrahamse and Douglas basic for this paper is a generalization
to multiply-connected regions of the Beurling-Lax theorem characterizing invariant
subspaces of the unilateral shift. If  is an element of H7 .. (R), Q is said to
be inner if the boundary value function () is isometric almost everywhere on
dR. It is clear that for such a Q, .#= QH;(R) is a closed subspace of H2(R)
which is invariant under Rat(S,) (multiplication by Rat (R) functions on Hi (R)).
Theorem 12 of [3], translated to the language of this paper, is the converse assertion.

THEOREM 1.4. (Abrahamse and Douglas) Let « be an element of % (%)".

(a) A closed subspace M of H2 (R) is invariant for Rat(S_) if and only if there
are a Hilbert space %7, a B in %(%”)", and an inner Q € H;.(R) such that
M =QH; (R).

(b) Two such subspaces ), leh (R) and Q, H§2(R) are equal if and only if there
exists a unitary operator ¥ from %} onto %", such that

B, =¥B,¥* and Q,=Q,V.

(Foroa = (a,, ..., a,) € Z(Z)" and ¥ unitary, YVo¥* means (Yo, ¥*, ..., Yo, ,¥V*)).
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- In Sections 3 and 5 we will need the following result.

THEOREM 1.5. ([5], [7], [8]) If R is a domain as above with n+1 boundary
components, there exists a complex-valued inner function ¥ on R, such that ¥ is
analytic on a neighborhood of R, has precisely n+1 zeros in R, and wraps each
component of the boundary of R once around the unit disk.

2. Cyo AND C, REPRESENTATIONS OF RAT (R)

In this section we begin our study of contractive unital representations of Rat (R)
into . (#) discussed in the introduction. A result of W. Mlak [10] implies that,
with certain absolute continuity conditions satisfied, any such representation o
has an extension (also denoted by o) to the algebra H”(R) of bounded analytic
functions on R. Representations arising this way are those continuous from the
weak-* topology on H” (R) to the weak operator topology on.# (#). For convenience,
we assume that this extension has been carried out, so that o is defined on H” (R).
A contractive unital representation o is said to be of class C,, if o is continuous
from the topology of bounded pointwise convergence on R in H”(R) to the double
strong operator topology on .Z(%); that is, if whenever f_ tends to zero pointwise
boundedly on R, then both o (f,) and o (f,)* tend to zero strongly in .Z(#°). The
representation o: H” (R) —» £ (#) is said to be of class C, if it has a nontrivial
kernel. If o is a completely contractive unital representation of H* (R) (to be discussed
in the next section) then o has a dilation to L”(oR), and an argument similar
to that of [11, p. 122-123] shows that any such C, representation must also
be of class C,, (i.e., C, C Cy,). The converse direction is more delicate. For the
case R = D, the following is a well-known result of Sz.-Nagy and Foiag [11, Theorem
VIIL.11] stated in the language of representations.

THEOREM 2.1. (Sz.-Nagy-Foiag) If p is a contractive unital representation
of Rat (D) of class C,, such that

(i) the spectrum of p(z) does not fill the unit disc D, and
(i) I — p(2)p (2)* is trace class,
then p is of class C,.

Abrahamse and Douglas [4, Question 6] ask whether this theorem has an
analogue for .# (7#)-valued representations of Rat (R). We now show that the answer
is affirmative, even without assuming the presence of a dilation.

THEOREM 2.2. If o is a contractive unital representation of Rat (R) belonging
to class Cy, such that o (z) = N + K, where N is normal with spectrum contained
in the boundary of R and K is trace class, then o is of class C,.

Proof. Let ¢ be an inner function as in Theorem 1.5. Since ¥ is analytic
in a neighborhood of R and the spectrum of ¢ (z) = N + K is contained in R, the
operator o () = ¥ (N + K) can be defined by the Riesz-Dunford functional calculus

1
cW)=¢(N+K)=—-— S (N + K —zI) "¢ (z) dz

ml
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for v an appropriately chosen contour around R. Since
N+K-zD 7' -N—-z) '=(N+K—-z) ' K(N-z)",

1
Y (N + K) = §$(N) +T X N+K-z) 'K(N-zD) "¢ @) dz=¢y(N) + K, .

w1

If {x,}{., is any orthonormal basis for H and U is any unitary operator on H,
then

N
> (UK, x;, %)
i=1

1 N

SE—X { 2(U(N+K—zI)-IK(N—zI)"Hp(z)xi,xi }dz
™ L% i=1
1

SE—S Tr{UN+ K —zI) KN — zI) "¢ ()} dz= M TrK,
™ ki

1
where M = oo Sup {I(N + K —~ zI) [ I(N — 2zI) ']} #(y) < >, and Tr represents the
mw zE€vy

trace norm. By Lemma I1.4.1 of [9], it follows that K, is also trace class. Since
N is normal with spectrum contained in 4R, it follows that ¢ (N) is unitary. Hence
I—-¢(N + K)y(N + K)* is also trace class. Define a representation p of Rat (D)
by p(f) = c(fo). Then p(z) = o () = (N + K), and since o is of class C,, as
a representation of Rat(R), it follows easily from the definitions that p is C,,
as a representation of Rat D. Since p(z) = ¢ (N) + K, is a compact perturbation
of a unitary operator, the spectrum of p(z) cannot fill the unit disk. Theorem
2.1 implies p, and hence also g, is of class C,.

3. MODELS FOR COMPLETELY CONTRACTIVE UNITAL
REPRESENTATIONS OF CLASS C,,

One way to construct a contractive unital representation of Rat (R) of class C,,
is as follows. Let .# be a complex Hilbert space, let « and B be two elements
of Z ()" let Q € H_ ;. (R) be inner (see Section 1 for definitions), and let

#=HZ(R) 6 Q H] (R).

Define a representation o: Rat R) - L(#)by cf) =T, =P +M;|# where M; is
the operator of multiplication by f and P, is the orthogonal projection onto #
We note that #is a semiinvariant subspace for Rat (S_) in the sense of Sarason
[13], and hence the above formula does define a representation of Rat (R). Identifying
# as a subspace of L%.(m) via nontangential boundary values, we note that any
such representation o has the form o (f) = P .7 (f)|# where 7is the *-representation
7:f— M; on L;(aR) of C(dR), and # is semiinvariant for +(Rat(R)). When o
arises from a *-representation 7 of C (dR) in this way, 7 is said to be a dR-dilation
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of o. It is unknown whether every contractive unital representation of Rat (R)
has a dR-dilation; however, Arveson [6] has shown that every completely contractive
unital (c.c.u.) representation does, and the two classes of representations in fact
coincide. A representation o: Rat (R) — .#(#) is said to be completely contractive
if the homomorphism o ® 1:Rat(R) ® M, - .£(#) ® M, is contractive for
1 =k <o, where M, is the C*-algebra of k X k matrices. By results of [3], it
can be shown that any c.c.u. representation of class Cy,, can be represented in
the form described above, for some inner Q € H_ ;. (R). When o and ) are related
in this way, we say that Q is the characteristic function of a model for o, and
that

#=H2([R)©6 QH; (R)

is a model space for . The model is said to be minimal if M, on L% (R)
has no proper reducing subspaces containing the model space # A minimal model for
o can always be arranged, and hence we will assume all models are minimal.
When this is the case, the dimension of % is referred to as the rank of the
model.

Two c.c.u. representations o, : Rat (R) — .Z(#) (i = 1,2) are said to be unitarily
equivalent if there is a unitary operator V: # — 7, such that

o, (f) V= Vo, (f) for all f in Rat (R).

If o, B; € Z(Z)" and Q; € H ,(R) is the characteristic function for the model
space /% = HZ (R) © Q, H; (R), defining the representation o, (i = 1,2), the models
induced by Q, and Q, are said to be unitarily equivalent if there is a unitary
operator W: Hil (R)— HZ_(R) such that Wf(S, ) = £(S,,) W for every f in Rat (R),
and W|# implements a unitary equivalence between the representations o; and
o,. Thus unitary equivalence for the representations involves a Hilbert space
isomorphism between the representation spaces, while unitary equivalence for the
models involves such a Hilbert space isomorphism having additional properties
involving the dilation. By results of [3], any unitary operator W: H. (R) > H: (R)
implementing a unitary equivalence of the models arises via multiplication by
a unitary transformation (also called W) from %] onto .%;, and a, = Wa, W*. When
the above situation is expressed in terms of the characteristic functions 2, and
Q,, the uniqueness part of Theorem 1.4 implies that there is a unitary constant
operator ¥: HE ,(R)— sz (R) such that WQ, = Q,V¥; that is, Q, and Q, coincide
in the sense of Sz.-Nagy and Foias. Conversely, when Q, and Q, coincide in the
above sense, the models induced by Q, and Q, are unitarily equivalent.

Let us say that two inner characteristic functions Q, and Q, are weakly equivalent
if and only if the c.c.u. representations of class C,, which they define are unitarily
equivalent (but the models they define are not necessarily unitarily equivalent,
and thus a priori Q, and (), need not coincide). Trivially, coincidence implies
weak equivalence. It is well known to those familiar with the Sz.-Nagy-Foiag
theory that, for the case R = D, the converse also holds. As was pointed out by
Abrahamse and Douglas, for the general case, the converse fails: Q, and Q, can
induce unitarily equivalent representations without coinciding. In this section we
study the nature of the nonuniqueness in a special finite-dimensional setting.
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Suppose #'= HZ2 (R) © Q H;, (R) is a C,, model space of finite dimension k, and
o (z)* = P,M}|#Z has k distinct eigenvalues w,, W,, ..., W, in the image of R under
complex conjugation. Since o (2)* = S* |7 it follows from Lemma 1.3 that there
are k vectors x,, ..., X, in 2 such that #= v (kg x;:i=1,..,k}. In the next
theorem we consider the question of when the characteristic functions of two such
models coincide, and when they are weakly equivalent.

THEOREM 3.1. Let o; and B; be elements of % (#)", and Q, be an inner
function in H 4-(R) (i = 1,2) such that #; = Hfl (R)© Q,H; (R) is spanned by

k elements of the form {kw x;:1=1,...,k}, where w,, ..., w, are distinct points
inRandx,, ..., x, are unit vectors in Z , and Ay = H2 (R) 8 O H‘3 (R) is similarly
spanned by k elements {ki2y;:i=1, ..., k}, where "11: .oy My Are dzstmct points in

R andy,, ..., y, are unit vectors in % . Then:
(a) Q, and Q, coincide if and only if, possibly after a renumbering, w, =,
fori=1, ..., k, and there is a unitary operator V from % onto % such that
3.1) Va,V*=a,, and
(3.2) Vx; = w;y;, where o, is a complex number of modulus1,i=1, ..., k.

(b) Q, and Q, are weakly equivalent if and only if, possibly after a renumbering,
W—n,for1~1 . k, and

(s ol IS 13 ™ (G (W) x4, %3 )

(3.3) B
@; (k2 yill ka2 w3~ (KS2 (W) 33, 35)

where w; is a complex number of modulus 1,1,j =1, ..., k.
Proof. The computation, for g € H} (R),

0 = (kilx;, O, 8) = (x;, Q, (W) g (W) = (Q, (W)*x;, g (W;))

shows that (x;) = ker Q, (w;)*, and that ker , (w)* is trivial for any w in R not
one of w,, ..., w,. Similarly, (y;) = ker Q,(n,)*, and kerQ,{)* is trivial for any
m not one of the n,, ..., m. If O and Q, coincide, say VQ, = Q,U for unitary
constant operators U and V, then for any w in R, V ker Q, (w)* = ker Q, (w)*.
Hence we must have w; = v, for some enumeration, i =1, ..., k, and the unitary
operator V maps the unit vector x; to a unit vector in ker Q, (w;)*. The condition
Va, V* = q, is part of our definition of coincidence.

Conversely, if w; = TI{ and there is such a unitary operator V, then V maps
Hi, (R) onto Hi ,(R) and a simple computation gives
VKO x; = ok} 2y;, i=1 ..,k
Thus the models /# and #; are unitarily equivalent, and Q, and Q, must coincide,
and (a) follows. .

If Q, and (), are weakly equivalent, then there is a unitary operator U: # — #;
such that o, (f) U = Uo, (f) for all f in Rat (R), where o, and o, are the representa-
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tions defined by Q, and Q,. Since w,, ..., w, are the eigenvalues of o, (z)* and
MNy5 ---» T, are the eigenvalues of o, (z)*, we must have w; = ), for some enumeration,
i=1, .., k. Since U must send a unit eigenvector for o, (z)* with corresponding
eigenvalue w; to a corresponding quantity for o,(z)*, we must have
U: {Jkaix ) 7 kSix— o; (k32yill} 7 kS2y; for some number o; of modulus 1,
i=1, ..., k. Equation (3.3) is simply the statement that U is unitary when considered
on these special vectors.

Conversely, if w;=m; for i=1,...,k and (3.3) is satisfied, the operator
U: k3l x,— o;k}2y;,i =1, ..., k, extends by linearity to be a unitary operator of
#, onto /%, establishing the unitary equivalence between o, and o,.

We now illustrate Theorem 3.1 with several examples.

Example 1. Let R be equal to the unit disc D (n = 0). Then the n-tuples «;,
B, (i = 1,2) are vacuous. The kernel function for H%.(D) is of the form

k,(z) = (1 —2zw) 1,

and for any x in % |k, x| = (1 — [w]?) "?|Ix]|. It follows easily that condition
(3.3) isequivalent to conditions (3.1) and (3.2), and thus we recover the Sz.-Nagy-Foiag
uniqueness theorem for this special situation. We see that the nonuniqueness
in the general situation is partly due to the plethora of different kernel functions.

Example 2. Choose R with connectivity n = 1, let o; € T", and let 27 C Hﬁi (R)
be spanned by the single vector ki for some w in R (i = 1,2). Then trivially
the representations o, and o, are unitarily equivalent, but the models are not
unitarily equivalent unless the added condition (3.1) is satisfied. However, the
models are similar; that is, there is a similarity mapping W of Hil (R) onto H? ,(R)
such that Wf (S, )* = £(S_,)* W for all f in Rat (R), and W|H, implements a unitary
equivalence between o, and o,. (This example was pointed out to the author by
Bruce Abrahamse.)

Example 3. Choose R with connectivity n = 1, and then choose «, in T" and
two points w, and w, in R so that k3! (w,) = 0 as in Theorem 1.2. Let a, = a; ®
(acting on C @ C, where C is the field of complex numbers), x, = x, = 1, and
y, = 1®0, while y, = 0® 1. Then it is easy to check that (3.3) is satisfied, so
that for this case, Q, and (), are weakly equivalent. However, (3.2) fails, so Q,
and Q, cannot coincide. In fact, the rank of Q, is one, while the rank of Q,
is two, so the associated models are not even similar. This gives a negative answer
to Questions 1 and 2 of Abrahamse and Douglas [4].

The referee pointed out that these negative examples serve to illustrate how
the *-commutant of a representation (that is, the commutant of the von Neumann
algebra generated by the representation) can fail to lift, or can lift in essentially
different ways, to the *-commutant of a dilation of the representation, despite
previous results of Arveson (Theorem 1.3.1 and its corollaries in [6]) suggesting
that the *-commutant does lift, and uniquely as well. The analogous phenomenon
for the commutant of a representation of the type under consideration here has
been analyzed by Abrahamse [1].



192 JOSEPH A. BALL
4. AN ESTIMATE OF THE RANK OF A C,, REPRESENTATION

In this section we balance the negative results of the previous section with
a positive result.

THEOREM 4.1 Let R be a region of connectivity n. Let () be an inner character-
istic function which defines the c.cu. C,, representation o of Rat(R). Let ¥
be a complex-valued inner function on R with precisely n + 1 zeros in R, as in
Theorem 1.5. Then

1
(4.1) 1 rank [I —o @)oo (P)*] = rank Q = rank [I — o (b)o @)*] .

n+
Proof. To establish notation, let o: Rat (R) » . (%), where
#=HZ(R)© Q H (R)
have a minimal dR-dilation 7: C (dR) — .& (#), where .# = L%.(m) and
dim Z= rank Q.

(Abusing notation slightly, we identify # via boundary functions as a subspace
of L2.(m).) If N = 1(z) (=M, on L%(m)), an alternative description of the rank
of ) is the cardinality of a minimal set of vectors I' € # such that

(4.2) viN'N*¥x:xe€T1,i,j=0,1,2,...) =4#.

Let ¢ be an inner function as described in Theorem 1.5. Since ¢ is unimodular
on R, v () = Y (N) is unitary. Since ¥ wraps each component of dR once around
the unit circle and N has uniform spectral multiplicity equal to rank Q, it follows
that ¢ (N) has uniform spectral multiplicity equal to (n+1) rank Q. It follows
as in the proof of Theorem 2.2 that o (¥} = P ¥ (N)|# is a C,, contraction operator,
and since # is semiinvariant for ¢ (N), ¥ (N) is a unitary dilation of o (). Since
the multiplicity of the minimal unitary dilation of o () is rank [I — o (J) o (¥)*]
(see [11]) and the multiplicity of the minimal unitary dilation must be less than
the multiplicity of any other unitary dilation, it follows that

rank [ — o) o {)*] = (n + 1) rank Q.

Hence we have half of (4.1).

An alfernate expression for the multiplicity of the minimal unitary dilation
of o (Y) is the cardinality of a minimal set of vectors I' C /# such that

v{ig@M¥yMN)'x:xinT,i,j=0,1,2,...}

(4.3) . .
=v{{MN)*yN)'x:xinH,i,j=0,1,2, ...} .

Since ¥ (N) can be approximated uniformly by polynomials in N and N*, it follows
that any set I' satisfying (4.3) must also satisfy (4.2). Hence
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rank Q =srank [I - o () c(W)*],

giving the other half of (4.1).

COROLLARY 4.2. If Q, and Q, are weakly equivalent characteristic inner
functions and rank Q, = oo, then also rank ), = .

COROLLARY 4.3. If Q, and Q, are weakly equivalent characteristic inner
functions for a region R of connectivity n and rank Q, = 1, thenrank Q, =n + 1.

Proof. To establish notation, let Q, € H ; (R) where «, € T". Then the
induced representation o, is given by o, (f) = P, £(S, )| , where

2 =02, (R)© QH; (R),

and hence I — o, (V) o, (Y)* = P, (I - \IJ(S,,I) l!;(SuI)*)I%’{. It is not difficult to see
that rank [I — ¢ (S, ) ¥ (S, )*] =n + 1, and hence

rank [I — o, (¥)o,(P)*] =n + 1.
If o, is the representation induced by Q,, then
rank [I — o, ($)o, )*] = rank [I — o, @) o, @)*],

since o, and o, are unitarily equivalent. The result now follows from the second
half of (4.1).

It would be of interest to know whether the estimate in the theorem is sharp.
In particular, we pose the following

Question. If R is any region of connectivity n, does there exist a characteristic
inner function Q, on R such that rank Q, =1, Q, is weakly equivalent to a
characteristic inner function Q, on R, andrank Q, =n +17?

5. CONSTRUCTION OF THE MODEL FROM THE REPRESENTATION

If T is a contraction operator of class C,, represented on # = H>.(D) © QH>.(D)
as T = P,.M, |# it is known that there is a unitary operator

U:Ran(I — TT*) 2’ %
such that
(5.1) f(w)=U(d-TT*)"?>(I - wT*)"'f forwinD, for all f in.Z;
and

I-Q(z)QWw)*

6.2y UQ-TT*)'*A—2T*) "0 - %T) (I - TT*)?U* = _—
— ZW
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In this section, we give analogues, to the extent possible, of these formulas for
a c.c.u. C,, representation of Rat(R). The analysis sheds some light on Question
4 of Abrahamse and Douglas [4]. We only sketch some of the details.

For a region R of connectivity n as above and any n-tuple a in Z(%)", a
more detailed analysis of kernel functions shows thatk{, has an analytic continuation
to a neighborhood of every boundary point of R excluding those in any of the
cuts C; (j =1, ..., n). Hence k, is uniformly bounded in operator norm, and hence
defines an element of H__ (R). The associated operator M, : Hff(R)-—) H2 (R)
intertwines S, with S,. Let b(z) denote the Blaschke factor on R with a single
zero at the point t in R (see [2]) where t is the point chosen to define the norm
on the HZ? (R) spaces (see Section 1), and let vy € T" denote the index of b. Then
b (z) induces an isometry

M, :H:g, (R)— H; (R)

'y@l';r

via multiplication. (If v = (y,, ..., v,), Y ® I ;- denotes (v, 15, ..., ¥,14) € % ")
The projection] — M, M  projects H? R)onto ker (S, _— t). The latter space consists
of constant .Z<valued functions, and hence can be identified with .7 in the natural
way.

LEMMA 5.1. With notation as above, for any f in H> (R),
(5.3) f(w)=(1-M,M)HM,)* ().

Proof. The formula follows for elements f of the form f=k}x (n in R, x
in 77) by direct computation. Since such elements span a dense set in H? (R),
the result for a general f follows by an approximation argument.

To avoid unwanted complications, we now suppose that a =e, and that #
is a Cop-model space of the form #'= H3(R) © QH; (R) for some inner Q in He s (R).
Associated with # is a model space #’ = H?@,I (R)e QH?2 B GOIK , (R), and since M,
maps QHM,@I » (R) into QH2 (R), it follows that (M,)* maps %’ into . Defme
T,: ' — #by T, =P, M ld‘?’ then (T,)* = (M,)*|#Z.

LEMMA 5.2. There is a unitary map U mapping Ran(I — T, T) */* onto
Ran [(I - M, MH|#].
Proof. Since (T,)* = (M,)*|# for h in #;

A= T, TH?h|?>= (I - T, THh,h) =
(h,h) — (M#h, M} h) = (I — M, M} h||.
If kw (z) is the kernel function for H*(R), the operator kernel function for

Hzﬁ,(R) is k, (z)I,. By previous remarks, k, € H” (R) and hence T, = =P, M, \Z
is given by o (k,,), where ¢ is the c.c.u. representation of Rat (R) defined by Q.
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THEOREM 5.3. If #= H3(R) © QH}, (R), and notation is as above, then for

fin#and win R,

(5.4) fw) =U{@-T, T o k,)* (),

where U is a Lemma 5.2, and

5.5 U@ —T,T#" %0 k,)*o k,)I— T, TH?U* =k, () - Q @)k @Q (W)*.

Proof. Formula (5.4) follows by combining Lemmas 5.1 and 5.2. Equation (5.5)

follows by computing the operator kernel function for the space # in two ways.

It is easily seen that, if R =D, (5.4) and (5.5) specialize to (5.1) and (5.2)

respectively, where T = o (z). In this case the quantity T, = o (z) is completely
determined by the representation, while in the general case, it is only defined
in the context of a model; hence (5.5) does not quite give the characteristic function
Q completely in terms of the representation ¢ which it defines. This is the problem
posed by Question 4 of Abrahamse and Douglas.

10.

11.
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