INTEGRAL REPRESENTATIONS AND DIAGRAMS

E. L. Green and I. Reiner

INTRODUCTION

This article is the outcome of an attempt to study integral representations
by diagrammatic techniques. A diagram D is a finite directed graph. Given a
field k, a k-representation of D assigns to each vertex a of D a finite dimensional
k-space V , and to each arrow a — B a k-linear transformation V,— V,. There
are obvious definitions of morphisms of representations, isomorphisms, direct sum,
and decomposability. It is clear that the Krull-Schmidt Theorem is valid for
representations of diagrams, namely, every representation is expressible as a finite
direct sum of indecomposables, unique up to isomorphism and order of occurrence.
If there are only a finite number of non-isomorphic indecomposables, we call D
of finite representation type.

These concepts were introduced in a fundamental article by Gabriel [9], who
proved that a connected diagram D is of finite type if and only if its underlying
graph is one of the Dynkin diagrams A _,D, ,E;, E,, E;. Some time thereafter,
a less computational proof of this amazing result was given by Bernstein-Gelfand-
Ponomarev [1], using the machinery of Coxeter functors from Lie algebras. Their
approach was generalized by Dlab-Ringel [4], [5], who considered representations
of a modulated graph .#. By definition, .# consists of a finite directed graph with
a skewfield k, placed at each vertex «, and a (kg,k,)-bimodule ;M, attached
to each arrow o — B. A representation of .# assigns to each vertex a a left k -space
V., and to each arrow from « to B a kg-homomorphism M, ®, V, — V,. After
imposing a few reasonable hypotheses, Dlab-Ringel determined all modulated graphs
of finite type.

A somewhat different approach was followed by Russian mathematicians such
as Drozd, Kleiner, Nazarova, and Roiter (see the fundamental Leningrad Proceedings
of 1972 [16]). They studied finite partially ordered sets (posets); a representation
of a poset S is given by choosing a vector space V over some field k, and assigning
to each a €S a subspace V_ of V, so that V,_ C V,; whenever o =< in S. The
work of Nazarova-Roiter and Kleiner settled the question as to which posets have
finite type.

It has become increasingly clear from the above-mentioned articles, as well
as from related work of Donovan-Freislich [6], Gordon-Green [11], Green [12],
[13], and Ringel [18], [19], that these diagrammatic methods provide a new
and powerful tool for investigating representations of rings and algebras. Such
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techniques were recently applied in an interesting paper of Butler [2], who gave
a new proof of a classical result that there are precisely 4p + 1 isomorphism classes
of indecomposable p-adic integral representations of a cyclic group of order p?,
where p is prime. His work suggested to us that diagrammatic methods could
be used to solve other problems in integral representation theory, and our goal
was to use such methods to find a new proof of the fundamental results of Jacobinski
[14] and Drozd-Roiter [8], which settled the question as to which commutative
orders A are of finite representation type. It seemed likely, in view of Butler’s
approach, that this question could be reduced to a corresponding question about
diagrams, which could then be solved by using the results of Gabriel and Dlab-Ringel.

Unfortunately, we were unable to obtain such a straightforward reduction,
and we were instead led to deal with a more general type of diagram problem.
Let us start with a modulated graph .#, placing at each vertex o a local ring
k, rather than a skewfield, and assigning a bimodule ;M , to each arrow. We
are then faced with the fundamental problem of deciding which modulated graphs
are of finite representation type. In this article, we shall show the significance
of this approach to integral representation theory. As we shall see, the solution
of this fundamental problem for even the simplest cases, corresponding to the
graphs

is quite complicated. However, even such a partial solution already yields the
finiteness criteria of Jacobinski and Drozd-Roiter. In fact, many of our calculations
in sections 4 and 5 are modified versions of those given by Jacobinski. In the
course of this work, we were led to correct some minor errors in Jacobinski’s
results. It is hoped that the present article will encourage further study of “integral”
representations of modulated graphs.

The organization of the present article is as follows: Section 1 fixes some notation
and gives a review of some elementary facts about lattices over an R-order A.
In particular, we show how the problem, as to whether A is of finite representation
type, can be reduced to the “local” case where R is a complete discrete valuation
ring. Furthermore, for A commutative, it suffices to treat the situation in which
A itself is a local ring. In Section 2, we prove that the local problem can be
reduced to a corresponding problem involving artinian rings. We are led to study
the category &7 (A, I'), where A and I' are artinian rings with A C I'; the objects
of (A, T) are triples (X, Y, f) consisting of a projective A-module X, a projective
I'-module Y, and a A-homomorphism f: X — Y satisfying certain conditions.

Section 3 is a rather technical one, in which we adapt Jacobinski’s method
of changing ground rings, so as to reduce the problem to one in which various
residue class fields coincide. Such a reduction helps simplify the calculations in
the later sections.

In Section 4, we show that certain types of categories «/(A, I') are of infinite
representation type. The proofs here are modelled upon a well known calculation
due to Dade. At the same time, we establish some easy results on representation
equivalences between various .«/-categories.
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Section 5 contains a few of the more complicated “finiteness” proofs for
&7 -categories satisfying certain hypotheses. The problem is first formulated in
terms of matrices, and matrix manipulations are then used to prove the desired
results. This approach is roughly parallel to that given by Jacobinski [14], and
seems to us somewhat simpler to follow in each particular case. It is also more
self-contained than the Drozd-Roiter approach to the question. The concluding
Section 6 contains miscellaneous results on the categories &7(A, I'), and suggests
directions for further research.

1. PRELIMINARIES.

Let R be a Dedekind domain with quotient field K, and let A be a finite
dimensional K-algebra. By an R-laftice we mean a finitely generated projective
R-module (or equivalently, a finitely generated torsion-free R-module). Let A be
an R-order in A, that is, A is a subring of A containing R, such that A is an

R-lattice and KA = A. (Here, KA denotes the collection of all finite sums 2 a;X;,

o; € K, x; € A)) By virtue of the embedding R C A, we may view each A-module
as an R-module as well.

A A-lattice is a left A-module M which is an R-lattice. Since M is R-torsion-free,
the map M — K ®; M is monic, and we may identify M with 1 ® M. In that case,
KO M=K1®M)=K- M, a left A-module finitely generated over K.

Denote by .£(A) the category of left A-lattices. For M,N € .#(A), we may form
the R-module Hom , (M, N). It is a submodule of the R-lattice Homy (M, N), hence
is R-torsion-free. Thus the map Hom , (M, N) - K ®; Hom, (M, N) is monic, and
may be viewed as an embedding. By the Change of Rings Theorem ([17, (2.43)]),
we have

1.1) K ®; Hom , (M, N) = Hom , (KM, KN).

Thus, each f € Hom , (M,N) induces a uniquely determined f’ € Hom , (KM, KN).
Further, we have

1.2) Hom, (M, N) = {g € Hom , (KM, KN): g(M) C N}.

In the case where M = N, the map in (1.1) is a ring isomorphism, and the
map End , (M) —» End , (KM) is a ring monomorphism.

Now let A C A, C A, where A, is an R-order in A. For each A-lattice M, we
form the A-module KM generated by M, and define

A,-M= {all finite sums > A\;m;:\; € A, m,E M}

where these sums are computed inside the A-module KM. Then A, M is a A,-sub-
module of KM, and is finitely generated R-torsion-free, hence is a A ,-lattice. Of
course, K - A;M = (KA,)M = KM.
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For any A-lattices M,N, we have

Hom, (A;M,A,N) = {f € Hom, (KM, KN): f(A ,M)C A, N}.
But f(A, M) = A, - £(M) for each A-homomorphism f, so

Hom, (A,M,A;N) = {f€ Hom,(KM, KN): A,f(M)C A ,N}.
This shows that there are embeddings

Hom , (M, N) —» HomAl A M, A, N)C Hom , (KM, KN).
When M = N, we obtain ring monomorphisms
End , (M) — End, (A, M)— End, (KM).

Remark. There is a A,-surjection A, ® , M— A, M, but this map need not
be monic. Thus, we must be careful not to identify A, ® , M with A, M in general.

Suppose next that M,N are A,-lattices; then A;M =M in KM, and likewise
A ;N = N. Thus, we obtain Hom A(M N) = HomA (M N). Consequently, M =N
as A ;-lattices if and only if M = N as A-lattices. Furthermore

End, (M) = End, M),

so M is A,-indecomposable if and only if M is A-indecomposable.

We call .Z(A) of finite type if there are only a finite number of isomorphism
classes of indecomposable A-lattices. The above discussion yields

(1.3) PROPOSITION. Let A C A, C A. If Z(A,) is of infinite type, then so
is ZL(A). If L(A) is of finite type, then so is L(A ).

Assume now that A is a separable K-algebra, and that K is a global field.
For each prime ideal P of R, let A, denote the P-adic completion of A; it is an
Ry-order in the K -algebra A ;. We quote without proof

(1.4) THEOREM. (Jones [15]). -£(A) is of finite type if and only if .£(Ap)
is of finite type for each P.

Thus, the problem of deciding whether .#(A) is of finite type reduces to the
case where A is an R-order, with R a complete discrete valuation ring in the
completion of a global field. If P = rad R, then we know that the residue class
field R = R/P is finite. In the special case where A is commutative, we may write
A =IIA,;, a direct sum of indecomposable ideals A;. Then each A, is a commutative
local ring, and clearly .£(A) is of finite type if and only if each .#(A;) is of finite
type. Thus, the problem reduces to the study of .#(A) for the case where A is
a commutative local ring. In this case, A /rad A is a finite extension field of R.

For A a commutative local R-order, where R is a complete discrete valuation
ring as above, the question as to when .#(A) has finite type has been settled
by Jacobinski [14], and also by Drozd-Roiter [8] by somewhat different techniques.
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Our aim here is to reprove these results by using some ideas connected with
representations of diagrams, and to indicate directions for further work in this
area.

As preparation for stating the Drozd-Roiter version of these results, we need
some easy results about radicals of rings and modules. We shall state them in
somewhat greater generality than needed below, since no extra effort is needed
to prove them in the more general form.

For the moment, let A be an arbitrary ring (not necessarily commutative),
and let X be a finitely generated left A-module. Define rad X as the intersection
of all maximal submodules of X. We set J = rad A, viewing A as left A-module,
so J is the Jacobson radical of A. Put A = A/J, X = X/JX, and let p , (X) denote
the minimal number of A-generators of X. Each surjection ¢ : A®™ — X yields a
surjection ¢ : A ™ — X, and every  comes from some . This gives

(1.5) paX) = px(X)

for each finitely generated left A-module X. If A is a semisimple artinian ring,
then rad X = O for every finitely generated A-module X, which implies that

(1.6) rad X = JX
in this case. Furthermore, if A is local (that is, A is a skewfield), then obviously
(1.7) px (X) = dim 5 (X).

Now assume that A is an R-order in a separable K-algebra A, and let X be

a finitely generated R-torsion A-module. We may choose a nonzero ideal a of
R such that aX = 0, and view X as a A/aA-module. Since

Aah=]] Apsan,,  x=]]X.,

Pla Pla

it follows at once that

(1.8) ma(X) = Max p,, (Xp) = Max p,, (Xp).

Finally, if A = H A; is a direct sum of rings, then we may write X = HX“
with X, a A;-module. Clearly,

(1.9) ba (X) = Max ., (X;) .

The Drozd-Roiter criterion for the finiteness of .£(A) is stated in terms of
the A-module A’ /A, where A’ is a maximal R-order in A containing A. Specifically,
we have
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(1.10) THEOREM. Let A be a commutative separable K-algebra, where K is
a global field. Let A be an R-order in A, and A’ a maximal R-order containing
A. Then .Z(A) is of finite type if and only if

ma(A'"/A)=2 and p,(rad,(A'/A)) =1.

Now A’/A is a finitely generated R-torsion A-module, so by (1.8) we have
pA (A /A = lelx B ap (AR /Ap).Note that A} is amaximal Rp-order in A , containing
Ap.Likewise, p , (rad , (A’ / A)) can be computed locally. Further, by Jones’ Theorem,
the question as to whether .£(A) is of finite type can be decided locally. Finally,

any commutative order over a complete discrete valuation ring can be written
as a direct sum of local orders. Hence, (1.10) is equivalent to the following assertion:

(1.11) THEOREM. Let A be a commutative separable K-algebra, where K is
the completion of a global field with respect to a discrete valuation. Let R be the
valuation ring of K, A a local R-order in A, and A’ a maximal R-order in A
containing A. Then .#(A) is of finite type if and only if

1.12) pA(A'/JA) =2 and p,(rad(A’/A) =<1.

Keeping the hypotheses of the above theorem, let R be the residue class field
of R, and let J = rad A. Then A = A/J is a field, finite dimensional over R, and
thus A is a finite field k. For any finitely generated A-module X, we haverad , X = JX
and p, (X) = p; (X/JX) = dim, (X/JX). Let us now show that

(1.13) dim, A" /JA’ =1+ p (A" /A).

For X a finitely generated A-module, put X =X/JX=k®,X. Then we have
seenthat p , (X) = dim, X. Now apply k ® , * to the exact sequence of left A-modules:

¥ — .
0->A—>A"—> A'"/A— 0. We obtain a k-exact sequence k> A’ - A’ /A— 0,in

which ¢(1) =1. If ¥(1) =0, then 1 € JA’, so A’ =JA’; this is impossible . by
Nakayama’skmma, since A’ is a finitely generated A-module. Hence ¢ is monic,
and so dim, A’ =1+ dim, (A" /A) =1+ pn, (A" /A), as desired.

Finally, we remark that rad,(A'/A)=4J - (A’/A) = (A + A)/A. Therefore
(JA" + A)/A . JA + A

= dim, ———.
J (A +A)/A JEA + A

wa(rad, (A'/A) = p,(JAN + A)/A) = dim,

Conditions (1.12) may thus be rewritten as

(1.14) dim, A’ /JA =3, dim, (JA’ + A)/(J*AN + A =1.

2. REDUCTION TO THE ARTINIAN CASE

Suppose now that R is a complete discrete valuation ring with quotient field
K, and that A is an R-order in a finite dimensional semisimple K-algebra A.
Let A C A’, where A’ is a hereditary R-order in A. Eventually we shall consider
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the situation occurring in (1.11), where A is a local ring and A’ is a maximal
order in a commutative separable algebra A, but for the time being we shall
treat the more general situation.

Let I be a proper two-sided A’-ideal in A, such that K - I = A, and set
2.1) A=A/l r=A"/1,

so there is an inclusion of rings ¢ : A— I', making each I'-module, and I' itself,
into a A-module. Since 1 & I, we have A # 0. Both A and I" are finitely generated
R-torsion R-algebras, and of course I'/A = A’ /A.

Given a left A-lattice M, define M’ = A’M computed inside KM. Thus M’ is
a A’-lattice, and since A’ is hereditary, it follows (see [17, (10.7)]) thatM’ € P (A’),
the set of finitely generated projective A’-modules. Clearly IM’ = IA’'M = IM, so
the inclusion M C M’ induces an inclusion M/IM C M’ /IM’. Note that M/IM
is a finitely generated A-module, and that Y =M’/IM’ € P (I'). Next, since R
is complete and A is an R-algebra, the A-module M/IM has a A-projective cover
X, unique up to isomorphism. Thus there is a A-surjection X — M/IM, whose
kernel lies in (rad A)X. Now let f € Hom, (X, Y) be defined by composition of
maps:

:X->M/IN->M'/IM' =Y.
Then we have

(2.2) Y =T - f(X), ker f C (rad A) X.

Let us introduce the category &= 2/(A,I',d), whose objects are triples (X,Y,f),
where X € P(A), Y € P(I'), and where f: X — Y is a A-homomorphism satisfying
(2.2). A morphism (o, B): X,,Y,,f,)—> X,,Y,, f,)inis a pair (a,B) such that
a € Hom, (X,,X,),B € Hom, (Y,,Y,),and f,a = Bf,. Thus each M € .#(A) gives
rise to an object F(M) = (X, Y, f) by the preceding construction. Furthermore, each
n € Hom, (M,, M, ) in the category .£(A) gives rise to a commutative diagram

X, ——> M, /IM —— M/, /IM/,

1
Ko i K 11 l Wa
X, —— M,/IM,—> M;/IM}
The map p, lifts to a map p, of projective covers, and we thus obtain a morphism
(Ros o) : FM,)> F(M;) in &% However, F is not a functor from .£(A) to &
since F need not preserve compositions of morphisms. Nevertheless, if u is an
isomorphism, so is F(n). Furthermore, FM,®M,)=F(M,) ®F(M,), since
projective covers are “additive.”

We wish to obtain information about .#(A) by studying the category ., which
is easier to handle because A and I' are artinian rings. This “reduction to the
artinian case” occurs in one form or another in many of the earlier calculations
with lattices, and is of course closely related to Jacobinski’s technique of working
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modulo the conductor of A’ in A. We shall show that in fact the categories .#(A)
and .27 are representation equivalent, that is, there is a bijection between the sets
of isomorphism classes of objects in the two categories, and this bijection preserves
indecomposability. For this purpose, we must construct a map G : .o/ — .£(A).

Starting with (X,Y,f) € .« we set M = f(X), a A-submodule of Y such that
I'- M = Y. Since ker f C (rad A) X, the surjection X — M gives a A-projective cover
of M. On the other hand, since A’ is an R-order and R is complete, the meth-
od of lifting idempotents shows that every Y € P(I') is of the form
Y =M'/IM’ for some M’ € P(A’), and then M’ is the A’-projective cover of Y.
Let M be defined as a pullback

Moo - - >M’
4 \
M >M’'/IM’ =Y,

so M is a A-module. The inclusion M — M’ shows that M is in fact a A-lattice.
Further, fromT - M = Y weobtain M’ = A’M + IM’.But IM’ C (rad A’ )M/, since
M’— Y is a A’-projective cover, and thus we have M’ = A’M + (rad A")M’. By
Nakayama’s Lemma, we may conclude that M’ = A’M; thus IM’ = IM, and we’
obtain M =M/IM’ = M/IM. We set G(X,Y,f) = M, and it is then obvious that
FM)=(X,Y,f), that is, FG = 1. Conversely, starting with any M € .#(A), it
is clear from the above construction that GF = 1, that is, GF(M) = M.

We observe also that a morphism (¢, B) : (X,, Y,, f,)— (X,, Y,, f,) in .o gives
rise to a commutative diagram

MY,

JT

MY,
where o induces a,. Then B lifts to a map M, — M/, of projective covers, and
there is an induced map on pullbacks. Hence G carries (a,3) onto a morphism
in .£ Clearly G preserves isomorphisms and direct sums. Just as before, however,
G is not a functor since it need not preserve compositions of morphisms. In any
case, the maps F,G give a bijection between the isomorphism classes of objects
in .£(A) and those in .2/ preserving indecomposability. Therefore .#(A) and &7
are representation equivalent, as claimed.

Conditions (2.2) often play a minor role in various calculations, so it is convenient
to introduce the category Z(A,I',d) of triples (X,Y,f) with X € P(A), Y € P(I'),
and f € Hom (X, Y). No further restrictions are imposed on f, and indeed ¢ may
be any ring homomorphism from A to I', not necessarily monic. Thus 7is a full
subcategory of %. Furthermore, there is a canonical isomorphism

Hom, (X, Y) = Hom, (;,I', ®, X, Y},
where A acts on I' via ¢. This suggests a new point of view: let .M, be a finitely

generated (I',A)-bimodule, and let #(A,I';M) be the category whose objects are
triples (X,Y,g), where X € P(A), Y € P(I'), and g is a left I'-homomorphism
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2.3) gMO®X—Y.

We may thus identify % (A,I',¢) with the category #(A,I;-I',), if desired.

This new category #(A,I'’M) is a familiar one from several standpoints. On
the one hand, an object (X,Y,g) € # may be considered as a representation of

A
the modulated graph o —— o The representation assigns to the vertex A the
r A

module X € P(A), to the vertexI’ the module Y € P(I'), and to the arrow a I'-
homomorphism g as in (2.3). Such representations have been studied extensively
by Gabriel and Dlab-Ringel, among others, for the special case where A and T
are skewfields. However, their results do not apply directly to our category € (A,I';M),
except in a few isolated instances. Nevertheless, the analogy is extremely suggestive,
and leads to a more natural interpretation of the Drozd-Roiter conditions. It also
suggests many questions worthy of further investigation.

A second approach to the study of #(A,I';M) is to view @ as a full subcategory

A0
of the category mod T of all finitely generated left T-modules, where T = MT

is a ring of triangular matrices (see [9]). To be explicit, given any

X,Y,g) € #(A, T; M),

X 5 0 X ox
a define a I''module by the rule = . The corre-
Y my/\y g(m ® x) + vy

spondence (X,Y,g) - then embeds % in mod T , as is easily verified. For

10 00
the reverse correspondence, let ey = (O 0), eg = (O 1 ) in T, and identify A

with e, T ey, I’ with eg T eg. Let W be a T-module. Then there is a map

gM®,egW— egW,

00
induced from the action of (M O) on W. If W is such that e; W € P(A) and

esW € P(I') then W gives rise to the object (exW,esW, g) € #(A, T'; M), and
this is the inverse of the embedding #— mod T described above. Unfortunately,
we have not been able to use this embedding in any significant manner.

Our final interpretation of the category #(A,I;M) is by means of matrices,
and for this we shall restrict our attention to the category % (A,I',$ ) defined earlier.
Let us consider the case in which A,I’ arise from the orders A,A’ defined as in
(1.11), so we assume A is local and commutative, and A’ maximal. Then I is
a proper ideal of A, so I C rad A, and therefore A/rad A = A/rad A = k (say). Thus
A is also a local ring. Further, k is a field of finite dimension over the residue
class field R of R.

Next, we may write A = H K, where each K, is a finite separable field extension

i=1
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of K. Let R; denote the integral closure of R in K;, so each R, is also a complete
discrete valuation ring, and K, is its quotient field. Then (see [17, (10.5)]) the
integral closure A’ of R in A is the unique maximal R-order in A, and we have

A= H R;. Let P, be the prime ideal of R;. The A’-ideal I may then be written

asl = H P$i, and thus
1

(2.4) r=]®/em -],

where each T is a local principal ideal ring (sometimes called a uniserial ring).

Given any (X,Y,f) € Z(A,I',d), we have X =A™ for some m; since over a
local ring A every projective A-module is free. Likewise, we may write eachY € P (')

as Y= HY“ where Y, is I';-projective and hence T;-free, say Y,=T"?. The

1
A-map f: X— Y then gives A-maps f; : A™ > T, 1 =i =r, so we may represent
(X,Y,f) by an r-tuple of matrices (f,,...,f,), where f; is an mXn, matrix over T;.
Any Z%-endomorphism of (X,Y,f) then corresponds to an mXm matrix a over A,
together with an r-tuple (8,,...,8,) where B; is an n;Xn; matrix over I, such
that

(2.5) afB,=f, l=i=r.

In particular, the object (X,Y,f) is decomposable in £ if and only if there exist
matrices a € GL(m,A),B; € GL(n,,I’;), 1 = i< r, such that

(2.6) (af, B, oy af.B) =€), ... £) O (", ..., ")

for some matrices {f],f7}.

We note that I'/A=A’/A,rad A = (rad A)/I, the latter because rad AD I
If we put r = rad A, then A/r = A/rad A =k, and

rad, ([/A) = r(I'/A) = (*T + A)/A.

Thus we have p,(A'/A) = p,(T/A), p,(rad,(A'/A)) = na(rad ,(T'/A)), and
p, (rad ,(T'/A)) = dim, (#T + A)/(r®>T + A). As in the proof of (1.13), we obtain
dim, (C/rT) =1+ p,(I'/A). Thus, in order to prove (1.11) and the Jacobinski-
Drozd-Roiter Theorem, we must establish the following:

(2.7 THEOREM. LetA,l" be as above. Then «Z/(A,I',d) has only a finite number
of non-isomorphic indecomposable objects if and only if

(2.8) dim,I'/rI’'=38 and dim, (T + A)/@’T +A) < 2.,
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3. CHANGE OF GROUND RING

Let A C A’ be as in (1.11), but for the moment we drop the hypothesis that
A be local. Both A/rad A and A’/rad A’ are direct sums of fields, and for later
calculations it would be most convenient to have these fields all coincide. We
shall show how to reduce the original problem to this case, by using a technique
due to Jacobinski.

Let K’ be a finite unramified extension of K, to be chosen later, and let R’
be its valuation ring. We set A’ =R’ ® A, T’ =R’ ®I', where ® means ® ;. We
claim to begin with that

3.1) rad A’ = R’ ® (rad A).

Certainly rad A’ contains R’®rad A, and to prove equality it suffices to show
that A’ /(R’ ® rad A) is semisimple. This quotient is isomorphic to R’ ® (A/rad A),
and hence to (R’ /PR’) ® (A/rad A), since PA C rad A. (Here, P is the maximal
ideal of R.) Since R’ is unramified over R, R’/PR’ is the residue class field of
R’,and we have (R’ /PR’) ® (A/rad A) = (R'/PR’) ® ,, (A /rad A). Since A/rad A
is semisimple, and R’ /PR’ is separable over R/P, it follows that this latter tensor
product is also semisimple. This completes the proof of (3.1); an analogous formula
holds with A’, A replaced by I'",T, respectively. Furthermore,

I"/A" = [R' ® (T'/A)], rad,. (["/A’) = R’ ® rad, (T'/4), -
which gives
(3.2) o (T'/A) =p,(T/4), py(rady(T'/A")) = p,(rad ,(T'/A)).
;Ne Il;lote alsothat A’ /rad A’ = (R’ /PR’) ®y ,p (A /rad A), and likewise for A replaced
y I

Next, we claim that I'’ is a direct sum of local principal ideal rings. Now
I' is a direct sum of rings of the type S/", where S is the valuation ring in
some finite extension L of K, and %5 is the maximal ideal of S. To prove our
claim about I'’, it suffices to consider R’ ® (S/8"), where ® is ®. Of course,
RT®(S/PB") =R ®S)/(R’ ®B"), so let us turn our attention to R'®S. We have

K'®;L= H L;, a direct sum of fields L;, each of which is a finite unramified
extension of L. Now any R-basis of R’ is also an S-basis of R’ ®S$, so the discriminant
of R’®S relative to S equals that of R’ relative to R, and hence is a unit in
R. This proves that R"® S = H S;, where S, is the valuation ring of L,. (This

incidentally shows that R’ ® ; A’ is a maximal R’-order in K'® A.) Further,
for each i we know that S; is unramified over S, so B'S, is its maximal ideal.

Finally, we have (R ® S)/(R'"® B ") = HSi/(QSSi)", and thus I'’ is a ring of

the same type as T.

We now prove that the category 2/(A,I',¢) is of finite type if and only if
(A", T’, ') is of finite type. Here, “finite type” means “has finitely many
isomorphism classes of indecomposable objects.” Let us write &/ &/’ for these
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categories, for brevity. Each (X,Y,f) € & gives rise to an object (X’,Y',f’) € &,
where X’ = R’ ® X, etc. On the other hand, R’ is R-free, say of rank m. Thence
A’ = A"™ as A-modules, etc., so that in .2 we have (X', Y', f') = (X, Y, f)™. Since
the Krull-Schmidt Theorem is valid in the category ./ it follows at once from
the above that if .&7’ is of finite type, then so is .o/ This part of the argument
does not depend on the fact that R’ is unramified over R. This hypothesis is
needed for the proof of the converse, however.

Given any object (U,V,g) € &', we may view it as an object in .« and then
form (R'"® U,R'®V,1®g) € &7’. We shall show that (U,V,g) is a direct
summand (in &’) of (R’" ® U,R’ ® V, 1 ® g). Once this is done, it will follow at
once that if «7is of finite type, so is.&7”.

Let G be the Galois group of K’ over K, and consider the A’-module U. Since
U € P(A’") and A’ is A-free, also U € P (A). We shall investigate the A’-module
R’'® U, formed by viewing U as a A-module and tensoring with R’. For each
o € G, we form a A’-module U° having the same elements as U, but where the
action of A’ is given by

@a®d)ru= (a°®d)u , aceR,de Aue U.
—_— —
in U’ inU

We shall establish that

R'®;U= ]_I U? as left A’-modules.

ceEG

We begin by definingamapT: R’ ® U— H U’ by

T@®u) = ]_Ia"u, a€R’,ue U

oceG

(i). T is a A’-homomorphism. For if b®3 € A’, where b € R’, 38 €A, then

T((b ® d)(a ® u)) = T(ba ® du) = ]_[ b°a® - du = (b ® ) H a“u = (b ® 3)T(a ® u).

(ii). Tisan isomorphism. ForletR’ = H Ra;,G = {0, ..., 0, }.Given elements
1

U;,...,u, € U, we must find w,,...,w_ € U such that T(Z ai®wi) =]_I uj,
1

where u; € U7, This condition gives E ajiw; = u;, 1 = j = m. Since R’ is unrami-
i=1
fied over R, det(a{’),_;;-, is a unit in R (see Weiss [20]). Hence the equations

can be solved uniquely for the w’s in U.

(iii). We started with a triple (U,V,g) € «/’. We have just shown the existence
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of A’- and I'’-isomorphisms
TI:R’®UEH U°, T,:R ®Vs]_[ Ve,

We define g, :U°—> V7byg, (u)=gu,u€ U°. We claim that g, is a
A’-homomorphism. Indeed, we have :

(a°®3)glu) =g . ((a°®du)=g, ((a®3) *u)=(@® d) g (u) =(a’® ) g(u).

Thus we obtain R"®U,R"®V,1®g) = H (U°, V%, g.) in &’. Note that
oceG

V?=T'-g, (U°) because V=T'"-g(U); further, ker g, = kerg C (rad A")U”.
Thus each (U, V?,g_) is an object in .«/’. This completes the proof that .&7'is of
finite type if and only if &/’ is of finite type.

Remark. 1t is easily shown that if (X,Y,f) €97 is indecomposable, then
R"®X,R'®Y,1®f) splits into at most m indecomposable summands in &/,
where m is the R-rank of R’. Hence if </ contains indecomposables of arbitrarily
large size then so does .. '

Now let us return to the original problem, in which A/rad A and I'/rad T
are direct sums of fields {k;}, each a finite extension of the residue class field
k of R. We may choose a finite extension k’ of k containing all of the fields
k;;in that case, k’ ®, k; is a direct sum of (k;: k) copies of k’. Choose an unramified
extension K’ of K, whose valuation ring R’ has residue class field k’ (this can

always be done; see Weiss [20]). Then A’ /rad A’ =k’ ®, (A/rad A) = ]_[ k’, and

likewise for I'' /rad I'’. Replacing our original A,T by A’,I'’ does not affect the
hypothesis (in view of (3.2)), nor the conclusion (since .«7and &/’ are of the same
type). Of course, if A is local, the ring A’ need not be local; this causes no difficulty,
since we may then decompose A’ into a direct sum of local rings, with a corresponding
decomposition of T'’. Therefore, in proving Theorem 2.7, we may hereafter assume
that A is local, that I' is a direct sum of local principal ideal rings, and that

A/rad A=k, I'/rad T = ]_[ k, where k is the residue class field of R.
1

4. INFINITE TYPE

Our aim here is to prove the “only if” part of Theorem 2.7. In the course
of the proof, we shall establish several reduction theorems about the categories
& (A,I',¢) which apply to somewhat more general situations.

As a preliminary step, let 7" be the category whose objects are pairs (V,0),
with V a finite dimensional space over a skewfield k, and 8 € End, V. A morphism
n:(V,0)—>(V’,0’) is a map w € Hom, (V, V') for which n6 =0"p. It is well
known that 7"is of infinite type, as we see from the following argument: for



66 - " E. L. GREEN and I. REINER

each n, choose V =k [x]/(x") on which 0 acts as multiplication by x. Since V
is indecomposable as a k [x] -module, it follows readily that (V,0) is indecomposable
in 77 Thus 7 contains indecomposables of arbitrarily large size, and hence is
of infinite type. This construction lies at the heart of most proofs of infinite type.

_ Now let A =A/a, T =T/b, where a is a two-sided ideal of A, and b of I. Every
A-module is also a A-module, whence if A is of finite representation type, so is
A. Let us generalize this result to the case of categories & (A,T,¢):

(4.1) PROPOSITION. Letd :A— T be a homomorphism of artinian rings such
that &(a) C b, and let &:A— T be the ring homomorphism induced by &. Set
A=A T, d) and o =LA, T, d). Then if «is of finite type, so is .

Proof. For each object A € &7 we shall find an object F(A) € & in such a
manner that

@). If A is indecomposable, then so is F(A), and
(ii). If F(A) = F(B), then A = B.
This clearly implies the desired result.

Given A = ()—(,Y_,f' ) € o, let W= F(X)CY and let p: Y =Y be the I'-projective
cover of Y. Since Y is projective, it follows readily that ker p =bY C (rad Y.
Now define W as a pullback

P
W--—=>Y
0': lp
. ¥
x—f W Y

Then {§ is monic, and ker o = ker p. Let 7: X— W be a A-projective cover of W,
and set F(A) = (X, Y, ¥7). We now verify that F(A) € .« First of all,

ker Y7 = ker v C (rad A)X,

since ¥ is monic and 7 gives a projective cover. Secondly, from Y = ' W we obtain
Y =T{Y7(X) + bY, whence Y = I'y7(X). Thus F(A) € .& as claimed.

Suppose now that (X, Y, ¢7) = X,,Y,, gl) ® (X,,Y,, g,)in & Then we have
W=W/bY =W, ®W,, where W, = o7(X,), and correspondingly

Y=Y/6Y=Y,®Y,,

with W, C Y,. If V, is a [\-pro;ectlve cover of W,,i= 1,2, then we find at once
that A= (X, Y, ) =(V,,¥,,2,)®(V,,Y,,g,) for some maps g,, g,. This shows
that if F(A) decomposes, then so does A. Property (ii) is an easy consequence
of the type of reasoning given in Section 2.

At the end of this section, we shall give an example in which .7 is of finite
type, but &7 of infinite type. Thus, the converse of (4.1) need not hold in general.
Nevertheless, we may establish: -
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(4.2) COROLLARY. Let d:A— T be a homomorphism of artinian rings with
kernel a, and let &:A/a— I' be the induced inclusion. Then &/ (A,I',d) is of finite
type if and only if &Z(A/qa, T, &) is of finite type.

Proof. Taking b =0,a =ker¢ in (4.1), we see that if &/ is of finite type,
then so is .. To prove the converse, we define a functor G:.&— & as follows:
given an object A = (X, Y, f) € &/ we have f(aX) = $(a)f(X) =0, so f induces
a A-map f: X— Y, where X = X/aX. We set G(A) = (X, Y, ) and verify that
G(A) € . It follows from the equality Y = I'f(X) that also Y =T f(X), so it
remains for us to show that ker f C (rad A)X. But

ker f = (aX + ker f)/aX C (aX + (rad A)X)/aX
C {(a+radA)/a)} {X/aX} C (rad A)X

as desired. It is clear that G is a well defined additive functor.

Furthermore, let F: & — & be the set map defined in (4.1). Then we have
A = FG(A) for each A € .«7; hence noh-isomorphic A’s give non-isomorphic G(A)’s
in .7, and if A is indecomposable, so'{ is G(A). Thus, if &/is of infinite type, then
so is .. This completes the proof.

We may observe that the categories .« and . of (4.2) are representation
equivalent. Hence, in discussing the category «/(A,T',d), there is no loss of generality
in assuming that ¢ is monic. We shall restrict our attention to this case hereafter,
and omit the symbol ¢. The above methods of proof (compare section 2) also yield

(4.3) COROLLARY. Let ACT, and let b be the conductor of T in A, that is,
the largest two-sided T-ideal in A. Then &7(A,I') is representation equivalent to
A(A/b,T/D).

Turning now to specific calculations, for the remainder of this section we put

I‘=HFi, r;=rad T}, N=radF=Hri, I',=Te,,
(4.4) ! !
r=radA, A/r=Xk,

and assume that A is local (so k is a skewfield). The next result is essentially
due to Dade [3]):
(4.5) PROPOSITION. 7(A,I') is of infinite representation type if s = 4.

Proof. Replacing I'y X ... XI', by a new I', and changing notation, we may
hereafter assume that s=4. Put L;=T,/r,,1=1i=< 4. Since A is local, we
have r =N N A; choosing a=r, b =N in (4.1), we ‘see that in order to prove
that 27(A,I") is of infinite type, it suffices to show that &/(k, L, X L, X L, X L,)

is of infinite type. We may write L = H L;,L; = Le;, with the {&;} central
idempotents.

Nowlet 7" be the category defined earlier in this section. For each indecomposable
object (V,0) € 77 we shall construct an indecomposable object F (V, 8) € «(k, L).
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Since 7~ has arbitrarily large indecomposables, the same will then be true for
& (k,L).

We choose F(V,0) = (V®V,L®,V, {), where
YW, v )=e, ®v+e, v +e,®v+v)+e,®v+0ov), v,v. € V.
Each .&7-endomorphism of F (V,0) is given by a pair (o,8) such that
(4.6) a € End, (V®V), B € End,(L®, V), Ya =B .
Write o = (a;;) ©%, with each o;; € End, V. We may also write
Be;®v)=¢e,®B;v for somef ;€ End, V,1=i=< 4.
The condition ya (v, 0) = B¥(v, 0) then becomes

e, ®a, ,v+e,®a,,,v+e;®@,,v+a,v)+e, @, v+0a, V)
=€,0B,v+e,®Bv+e,B®B,v forallve V.

This gives a;, =f,;,0,, =0,a,;, =B;,0,;,; =B,. On the other hand, from the
condition Yy a (0, v) = BY(0, v) we obtain a,, = 0, &, = 6‘2 =B;,00,, =B ,0.Hence,

v~ O
o= (O , B=1®+~, where vy € End, V and 0y =+v0. But then v is a
Y

7 -endomorphism of the indecomposable object (V,8). Hence vy cannot be a non-trivial
idempotent, whence neither can o«. This shows that F(V,0) is indecomposable in
&7 and completes the proof.

(4.7) COROLLARY. LetR be a complete discrete valuation ring with quotient

field K and let A be a local R-order in a K-algebra having at least 4 idempotents.
Then .Z(A) is of infinite type.

In the same vein, we prove

(4.8) LEMMA. Let T be a finite dimensional algebra over a field k, and let
N = rad I" be such that dim,N/N? = 2. Then o/ (k,I') is of infinite type.

Proof. By taking @=0 and b= N? in (4.1), it is clear that we need only
test the case where N”? = 0. For this case, letI' = M @ N as k-spaces, where

M=I:Ikyi, N=];Ikxj;

we may assume that y, = 1. Then n = 2 by hypothesis.
Now define G: 7" —» Z(k,I') by G(V,0) = (V@ V,I'®, V,¥), where

v, v ) =10 v+x, ®v' +x,®0v’, v,v: € V.

Note that ¢ is monic, and thatT' - imy =T'® V, so G(V,0) is indeed an object in
& (k,I'). The .«”-endomorphism ring of G(V,0) consists of pairs (a,B) satisfying (4.6).
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Since ' ®, V = Hyi®V@ij®V,we may write

B(1®v)=zyi®ﬁiv+xj®ij, vey,

with each B;,y; € End, V. The condition ya (v, 0) = B s (v, 0) then gives

o0; =B, 0=B,=...=B,, as =v;, 0ay =v,, Yg=...=v,=0.

On the other hand, from Y« (0, v) = B¥ (0, v) we obtain
g, =0, azp=0,, B,0 =0a,.

oy 0

Thus a=( ),aue =0a,,. Suppose now that (V,0) is indecompos-

Qg Qi1
able in 7] and let (a,B) be idempotent. Then «,, is idempotent, hence «o,;, =0
or 1. Replacing (o,8) by 1 — (a,B) if need be, we may assume that o,, = 0. But
then the equation a® = « shows that a,, = 0, so « = 0 and = 0. This shows that
G (V,0) is indecomposable, and completes the proof of the lemma.

From now on we restrict our attention to the case where A and I" are commutative,
and A is local. Then A N rI"' = r, and hence

4.9) T +A)Y/(r°’T + A) =rT'/(r + r°T).

We are now ready to establish the “only if” part of Theorem 2.7. Keeping the
notation of (4.4), we have seen in Section 3 that it suffices to treat the case
where I'; /r; = k for each i, and we assume this to be so hereafter. We must show
that if either dim, I'/rT" > 8 or dim, rI'/(r + r°T') > 1, then &/ (A,T') is of infinite
type.

Case 1. Suppose first that dim I'/rI" > 3; by (4.1), it suffices to prove that
&Z(A/r,T'/rT) is of infinite type. Changing notation, we must now show that .7 (k,T’")
is of infinite type whenever dim I' > 3. By (4.5) and (4.8), we already know that
& (k,T) is of infinite type whenever s > 3 or dim N/N? > 1. Thus, we may assume
that s = 3 and dim N/N? = 1 from now on. We keep the notation of (4.4).

Since dim N/N? = 1, it follows that at most one r; is nonzero. If each r; = 0,
then dimI' = s < 3, contradicting our hypothesis. Hence exactly one r; # 0, so
suppose that r;, # 0. We are assuming that each T is a principal ideal ring, so
we may choose a generator mw, of r,. Let b =1 be minimal such that w} = 0;
then dimI' = b + s — 1, so there are exactly three possible choices for I', namely:

Fr=r,xkxk b>1 TI=I,xk b>2 TI=I, b>3.
Now define G: 77— & (k,I') by G(V,0) = (VO V,I' ®, V, ), where

P, v)=x,@®v+x,®v +x,QvV+v)+x,®(v+0v'), v,v €V,
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The {x;} are to be chosen as follows, according to the possible I'’s:

X,=€,, Xo=@€,, Xz=€,;, X,=1,;
— — — — 2.
X; =€, Xo=8€,, X;=m,;, X,=1m,;

2 3
x, =1, xX,=mw,, X3=7], X,= 7.

It is easily checked in each case that if (V,0) is indecomposable, then so is G(V,90).
Thus 7 (k,I") is of infinite type in this case, as claimed.

Case 2. Suppose now that dim I' /T’ = 3, and that
(4.10) dim s /(r+r’T)=2
By (4.1), it suffices to show that./(A/r?, ' /r*T) is of infinite type. The hypotheses
on dimensions remain valid if we replace A by A/r? and T’ by I'/r*T; doing so,

and changing notation, we may hereafter assume that r> = 0. Let

r,=I;m, I=i=<s,

1 1

and let b; be minimal such that @i = 0. If 7T’ = l—[ r{i, then each a; = 1, and
1

8=dimT/rT = a;.
1

From the above inequality and condition (4.10), we find readily that the only
possible choices for I" are

=, XTI',xI';, rT'=r,XryXr;, b,=b,=b;=2;
I'=r,xT,, rmm=rixr,, b,=4, b,=2;
r=r,, rT=r?, b, = 6.

In each case, r = Ax for some x € A.

Given (V,0) € 7 let V = k™ and choose P = A™. We now set
G(V,0) = (P®P,T®, P, ),

where ¥(p,qQ) =y, ®p +xy,®q+ xy,®0q,p,q € P. The {y,} are chosen as
follows, according to the three cases described above:

yv.=1, y.=¢€,, ¥y3=é€;;
yi=1, y,=m,, yz3=e,;

y1=1a y, =y, y3=17f‘

Again, it is easily checked that if (V,08) is indecomposable, then so is G(V,0).
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/

Thus &7 (A,I“)I is of infinite type, as claimed. This completes the proof of the “only
if” part of Theorem 2.7.

To conclude this section, consider the following example: let k be a field,
and set A=k[x]/(x?),[ =A XA XA, with A embedded diagonally in I.\Then
dimT'/rTI' =3 and dim (T + A)/(*T + A) = 2, so by the above proof we know
that &7 (A,I') is of infinite type. On the other hand, &7 (A/r, T'/N) =/(k, k X k X k),
and the latter is of finite type (as follows from the calculations in Section 5,
or the results of Gabriel [10} and Dlab-Ringel [4]).

5. FINITENESS THEOREMS

We are now ready to prove that .#(A) is of finite type whenever A satisfies
the hypotheses of Theorem 1.11. As shown in Section 2, the problem reduces to
the study of the category o/=.27(A, I'), where A and ' are commutative artinian

rings with A local, and A C I'. Here, T is a direct product H I'; of local principal

ideal rings I';. We keep the notation of (4.4); by the results of Section 3, it suffices
to treat the case where

(5.1) I/ri=k=A/r, l=i<s.

At this stage in the proof, we can safely forget about the original order A, and
simply start with a pair of rings A and I' as above. By (4.9), the conditions on
A and I may be stated thus:

(5.2) dimI'/rI'=38, dimsT/@r+7rI)=<1,

where dim means k-dimension.

As we shall see, the proof that .&7'is of finite type can be reduced to a small
number of test cases, which we now list explicitly:

(I) T =T,, and there exist elements x,y € r such that I'x =r2, Ty = ri orr?
(II) T =T, XT,, and there exist x,y € r such that ’'x=r, ®r:, 'y = riorr,
(IIl) ' =T, XTI, X I';, and there exist x,y € r such that

Ix=r,®r), Ty=r,®r,, for some b= 1.

Further, if b; denotes the nilpotency index of r;, thenb, =b, =b,.

Let us show how the general problem can be reduced to one of these cases.
After factoring out the conductor as in (4.3), we may assume that A contains
no nonzero I'-ideal. If dim I'/ rT" = 1, then of course s = 1 and rI'; = r,. From (5.1)
we obtain rT'; C r+ r®I,. If r # 0, let e be its nilpotency index; then

_1 — u—
re'f,Cre ™+ 7T, =r7Y,
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€

so r° ! is a nonzero I'-ideal in A, a contradiction. Therefore r = 0 and
(A, T) =k, k),

which is obviously of finite type (and is a “degenerate” case of (I)).

Suppose next that dim I'/rI' = 2; define I'* =T X k, and let A— I'* be given
by x — (x,X), x € A, where the bar denotes image in k. Then rI'* = rI', and so
dimI'*/rT'*=3,rT'*/(r + r’I'*) =rI'/(r + r’T'). Thus the pair A, T'* also sat-
isfies hypotheses (5.2), but now dim I'*/rI' * = 3. But choosing b =0 X k in IT'¥,
we have ' =T*/b and A N b =0. Hence by (4.1), if & (A,'*) is of finite type,
then so is 27(A,IN).

We are thus reduced to treating the case in which dim I'/»I" = 3. Suppose for
the moment that rT" = r + r?T;if r # 0, then as before we obtain a nonzero conductor
of T in A. Thus r must be 0 and dimI' = 3. If s = 1, then r = 0 and we have
aspecial case of (I). Likewise s = 2 or 3 gives special cases of (II) and (III), repectively.

We turn finally to the cases of most interest and greatest difficulty, namely
those for which

(5.3) dimI'/rT =3, dim rT'/(r + r’T) = 1.

Of course s =3, and we consider successively the cases s = 1,2,3. When s =1
and I'=T,, we have rI' =r?, so there exists an x € r such that xI' = r]. We
shall say that x has “degree” 3. Furthermore, the second condition in (5.3) becomes
dim 72 /(r + r{) = 1. It follows from this that r must contain an element y of
degree 4 or 5, so we are in case (I). When s =2 we must have I'r=r, ® r2, so
there exist x,,x, € r such that x,I', =r,,x,[,=r2 If x,I',=r2, use x, as
the desired x for case (II). Likewise, if x,I';, = r, we can choose x = x,. However,
if x, I, #r%, and x,T', #r,, then we need only take x = x, + x,. Furthermore,
from dim (r, ® r2)/(r + r>®r3) = 1 it follows easily that there exists an element
y € r for which I',y = r2 or r2. If T,y = r3, then r contains I',r}; hence r; = 0,
since otherwise I'rj is a nonzero I'-ideal in A. Thus, when s = 2 we are in case
(II). An analogous argument shows that case (III) must occur when s = 3.

We now prove that /= .o7(AI') is of finite type in cases (I)-(III), and we shall
begin with case (I), the hardest of all. The methods introduced here will be useful
for the other cases as well. Since our results differ somewhat from those of Jacobinski
[14] for this case, it seems desirable to give a fairly detailed calculation for case

(D.
(6.4) THEOREM. . (A,T') is of finite type in case (I).

Proof. For convenience of notation, we write = and I' in place of w, and I',.
If z € T is such that zI' = #™T, we shall call z of degree m. We note that x has
degree 3, y degree 4 or 5, from which it follows that r D I'nw® or 'm®, respectively.
Since the conductor of I' in A is assumed to be 0, we have w° = 0 or w® = 0, depending
on the degree of y. Of course, there may be degenerate cases in which a lower
power of m vanishes; as we shall see, the proof applies equally well to these cases,
but some of the modules listed below become decomposable.
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Given (X,Y,f) € & we may write

m

X =]]ax. Y=]i[ry,.,
1

1

and
f(x) =D vy, 1=i=m
j=1

We put F = [y;], an nXm matrix over I'. Since we wish to classify the object
(X,Y,f) up to isomorphism in .2/, we may make basis changes in X and Y. This
has the effect of replacing F by UFV, where U € GL (n,I'), V € GL(mm,A); we write
F ~ UFV for convenience. Note that A/r = I'/nT" = k, and that there are surjections
GL(n, I')— GL(n, k), GL (m, A)— GL(m, k).

Since (X,Y,f) € &/, we have Y = I'f(X), which implies that I has rank n; as
always, bars denote images in the field k. Choose U,V so that UFV = [I 0] over
k;then F~ [I +wF,,w F,] forsome F,, F,.But I +« F, € GL(I'),s0

F~{+wF,)' [I+aF,,nwF,] = [I,wF,] for some F,.
Furthermore,
[LwF,] ~V, [V, wF;V,] = [I,wV,F;V,] for any V,, V, € GL(A). Choosing
the V’s suitably, we can diagonalize F;, and we obtain

/ I 0 «wl+x°G, =°G,
(5.5) F ~

0 I w2 G, w?G,

. o I 2 2
where the symbol 2 denotes a matrix of the form w>G, and 1* a matrix of the
form w(I + wG); likewise, 2* will denote a matrix of the form w>(I + wG), and
so on. We shall now apply to the matrix (5.5) a certain number of standard types
of operations, which will be used repeatedly below. For convenience, let C; denote
the j set of columns in a partitioned matrix, and R; the i™ set of rows.

Type (i): Starting with (5.5), choose a matrix G, over A such that G, = G,
overk. Add G, times C,to C,, then multiply Fonthe leftby (I + nG, + w>G, G,) .

o 1 0 wl+n*’H 2
This yields F ~ . for some H. Adding a suitable
7w GG, I 2 2

multiple of R, to R,, we can eliminate the (2,1) block.

I 0 1* 2
for some matrices {G,}. For brevity, we write this as F ~ [ ] ,

By hypothesis, A contains an element x of degree 3; without loss of generality,
we may assume that x = w° (mod w*). Now add x-multiples of C, to C,, so as
to change the w°H term to one of the form w*H,. The new (1,3) block is of
the form =« (I + w®H,); choose H, over A so that H,= H,, and then multiply
C, by (I + xH,) ~". This changes the (3,1) block to (I + w*H,) for some H,. Now
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let y € A have degree 4 or 5; in the first case, the same operation as above can
be used to change the (3,1) block to w(I + w>H,); on the other hand, when y
has order 5, we can accomplish the same result by subtracting y-multiples of
C, from C,. Continuing in this manner, we eventually obtain

I 0 «I 2
(5.6) F ~ )
0 1 2 2
Type (ii): Having performed the type (i) operation on F, we now start with
the matrix (5.6), and begin by diagonalizing the (2,4) block over k; this can always

be done by multiplying the new F on the left by a block diagonal matrix in
GL(T') and on the right by a block diagonal matrix in GL(A). Thus we obtain

I 0 0 I 2 2
F ~ I 0 2 2*
I 2 3 3

where 2* = 7*(I + 7 G) for some G. We now use very strongly the fact that
I'=A+r,,

so every degree zero element of I' is congruent mod r, to a degree zero element
of A. Subtract degree zero A-multiples of R, from R,, and add the corresponding
multiples of C, to C,, so as to change the (1,5)-entry from 2 to 3. Likewise,
the (2,4)-entry can be changed from a 2 to 3; this procedure replaces wlI by 1%,
but type (i) operations bring it back to the form «I.

Having brought the (2,4) block to the form 3, we can now add r-multiples
of R, to R, and r-multiples of C, to C,, so as to eliminate the (2,4) block. This
procedure introduces r entries in the (2,1) position, and these can be eliminated
by adding suitable r-multiples of C, to C,. In a similar manner, adding r-multiples
of C, and C, to C;, we can eliminate the (1,5) block. Note that this elimination
process depends on having a block 3 rather than 2.

Type (iii): We wish to convert the (2,5) entry 2* to L. First subtract x-multiples
of C, from C;, so as to make 2* have the form w>( + w>G) for some G. Then
choose G, over A so that G, =G, and add G, times C, to C,; then multiply
R, on the left by (I + w°G, + 7w*GG,) "', which changes the (2,5) block to

w20 + w*H) for some H.

Continuing in this way, as with type (i) operations, we can eventually bring the
(2,5) block into the desired form w?I. During this procedure, the extraneous 2’s
introduced into the (1,2) and (3,2)-positions can be eliminated, and the wI in position
(1,4) can be kept in that form by additional type (i) operations. Thus we obtain
I w1 3 2
F ~ I 3 «’1 3
I 2 3 3
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Our next step is to add r-multiples of C, and C; to Cg, so as to change both
3’s to 4’s. Likewise, the (3,5) entry can be changed to 4. Now “diagonalize” the
2 occurring in position (3,4); then using operations of types (i)—(iii), we may bring

w? 0
this block into the form ( 0 0 /) This partitioning of the (3,4) block induces

corresponding partitions of blocks (1,4) and (1,6), and we may bring the upper

w21 0
half of the (1,6) block into the form 0 0 )’ in the same manner as above.
Thus we obtain
1 wl w2l 0 | 7x13
I al 0 0 0
1 al 2 2
5.7 F ~ I 0 1| 4 4
I w’l 4 4 4
I T | 4 4 4
L I 0] 4| 4 4_

Now eliminate the (3,12) block by subtracting multiples of R, from R,, and
adding r-multiples of C, and C,, to C,,. The (3,13) block may then be brought

w2l 0
into the form ( 0 0/ and the zero rows split off. These yield indecomposables

of the form [1,w], and we are left with a new F in which the (3,12) block is
zero, and the (3,13) block is [w’I, 0].

Let us at once settle the easier case where y has degree 4. In the above array,
we may change each 4 to a 5, and then eliminate all 5’s except that appearing
in the lower right corner. But then we may diagonalize it, and F splits into a
direct sum of

1], [1 121512[1017][10““2]
:['ﬂ'],[ﬁ]’[“]’[w’”]’o 1’"2 ’0 1,n_2 0 *

Thus -£(A) is of finite type in this case.

Now suppose that y has degree 5, and that r contains no element of order
4. Let us write down the matrix in (5.7), with the (3,12) block 0, and the (3,13)
block [w?I, 0]. We have then (blanks denoting zeros)

I wl w1 0 0 ]7x14
1 Tl 0 0O O
I arl 0 «%I1 0
F ~ I w’l|l 4 4 4
I w?l 4 | 4 4 4
I I | 4 | 4 4 4
B I 0|4 |4 4 4
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4
=1 0
We can replace the (7,14) entry by [ 0 . ], and use the w*I to eliminate

all terms above it and to its left (except for the 1’s on the extreme left). Then
F splits into a sum of copies of [1 w*], and a new F whose (7,14) block is 7.
7
'l O

This block can be put in the form 0 o | Consider the upper left =7 entry;
if any w* term lies in the column above it, this w* can be used to eliminate
w’. The same argument applies if a w* term lies to the left of w". On the other
hand, if no such 7* terms occur, then we may use 7 (and other allowable operations)
to sweep out the row and column containing =’; thus copies of [1 "] split off
from F, and the new F has 0 in position (7,14).

I 0
Next, replace the (6,14) block by [ 0 0 ], and split off indecomposables

1 O ™ 0
of type [0 . . . ] . The new F has O in position (6,14). Likewise, we

aw w

1 0 =« =°
may replace the (7,13) block by 0, after splitting off copies of [ o 1 o . ] .
aw

It now remains for us to introduce a new operation:

Type (iv): Suppose that the (4,12) block is congruent to w* T (mod «°), where
T is a matrix over R. Then add T times C,, to C,, and subtract =T times R,
from R,. This eliminates the w* terms from the (4,12) block, and other allowable
operations then reduce the block to 0, after some obvious steps to eliminate some
extraneous w* and w° terms introduced by this procedure. Analogously, if the
(5,12) block is w*U (mod w°), with U over R, then add U times C4 to C, and
subtract w2>U times R, from R,; in this manner, we can make the (5,12) block
eventually vanish. Continuing thus, we can eliminate the blocks (5,11),(6,11),
(6,12),(4,13) and (5,13).

Once these changes have been made, it is clear that F splits into the direct
sum of F, and F,, where

I w1 0 O |3x6 I wl 0 «°1 0 |4x8
F, = 1 0 «I =1 F, = 1 0 w1 0 4
I+’ 0 4 |, I w1 0 0 4
I|] 0 4 4 0

After diagonalizing the (3,6) block of F,, it is easily seen that F, decomposes
into
[l = «%], [1 0 = |, 100 « 0 O
[0 1 172] 010 0 w« «°
001 w0 =*

Diagonalizing the (3,8) block of F,, and then the left hand part of the partitioned
(4,7) block, we find eventually that F, splits into
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[1 w%], [1 =% ='], [1 0 11'2]

o 1 ~=*
1 0 & =« 0 1 0 =« =
[0 1 =2 0 11'4]’ [0 1w 0]’
1 0 «* =* 100 =« =° 100 =« =« 0
[011:“0],010«20,0101720774
001 0 = 001 0 =« O

This completes the proof of Theorem 5.4.

It may console the reader to know that these same techniques work quite
efficiently, and with less complication, in cases II and III below. We shall give
some indication of this below, but first let us translate the results of Theorem
5.4 into corresponding results about lattices over orders.

(5.8) COROLLARY. LetR be a complete discrete valuation ring with quotient
field K, and let A be a local R-order in a finite extension field A of K. Let A’
be the maximal R-order in A, that is, the valuation ring of A. Let w be a prime
elementof A’, and suppose that A/rad A = A’ / nwA’. Suppose that A contains elements
x,y such that A'x =w>A’, A’y = w*A’. Then every indecomposable A-lattice is
isomorphic to one of the following:

AA+wA A+ T2A A+ 7°A A+ A+ 7°A, or
Au, + Au, + A(wu, + w’u,), Au, + Au, + A(mu, + w2 u,) + Aw’u,,
where A'u, ® A’ u, is a free A'-module on two generators.

Of course, not all of the above need be indecomposable; this depends on what
other elements lie in rad A. For example, in the extreme case where A = A’, there
is only one indecomposable A-lattice, namely A itself. On the other hand, if A
contains no elements of degree 2 or 5, then the lattices listed in (5.8) are
indecomposable, and no two of them are isomorphic. If A contains no element
of degree 2, but does have one of degree 5, the same holds true with the exception
that A + w°A coincides with A.

We remark that (5.8) is an immediate consequence of (5.4). Each of the (possibly)
indecomposable matrices given in (5.4) corresponds to an object (X, Y, f) € &/ (A, I'),
since it is easily verified that Y = I'f(X) ahd that ker f C rX. Each such object
then gives rise to a A-lattice as in Section 2. For example, the matrix [1 m?]
yields a A-lattice M on two generators, contained in a free A’-lattice on one generator
u,, namely, M = Au, + Aw’u,. Likewise, the matrix

l:l 0 'rr:l
0 1 =?

yields the A-lattice Au, + Au, + A(wu, + w°u,), a sublattice of the free A’-lattice
A'u; ® A’u, on two generators.
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In the same manner, we obtain

(5.9) COROLLARY. Keep the notation and hypotheses of (5.8), except that
A’y = w°A’ (instead of w*A’). Let ]_[ A’u; denote a free A’-module on n generators.
1

Then every indecomposable A-lattice is isomorphic to one of the following:

AMA+ TA A+ T°A A+ 7'A A+ 7 A, A+ TA+ w2A, A+ wPA+ A,
Au, + Au, + A(my, + 72u,) = M, (say),

M, + An®u;, M, + An'u,, M, + An*u, + Anu,,

Au, + Au, + A(m?u, + 7'y,) = M, (say), M, + An*u,,

Au, + Au, + Au, + A(wu, + 7°uy) + Amu, + Alw’u, + wtuy),

Au, + Au, + Au, + A(mu, + w°u,) + A(w®u, + 7wtuy) = M, (say),

M, + Antu,.

If A contains no elements of degrees 2,4 or 7, then all of the above lattices
are indecomposable, and no two of them are isomorphic. The same holds if A
contains an element of degree 7, but none of degrees 2 and 4, except that in
this case A + w’A = A. There is a similar list in Proposition 6 of Jacobinski’s
article. However, the lattices he lists in e) and f) turn out to be decomposable;
specifically, his L., and L correspond to matrices

100 « =2 0 1 000 &« o0 T

010 «> 0 ™ 0100 =« & 0

001 O 0 =4’ 0010 0 O «
| 0 0 01 w0

and both of these can be decomposed by using operations of type (iv) described
in the proof of Theorem 5.4. Similar remarks apply to his lattices

L, + An*u,, L, +Aw*u,.

Turning next to the easier alternative in case (II), we prove

(5.10) THEOREM. Suppose that T =T, X I',, and that there exist elements
X,y € rsuch thatTx =r, ®r2, Ty = r2. Then «/(AT) is of finite type.

A
Proof. Each object (X,Y,f) € &/ determines a matrix F = (E), where A has

entries in I';, B in I',. Basis changes correspond to letting GL(A) act on the columns
of F, while GL(I',) acts on the rows of A, and GL(I,) on the rows of B. As in
the first part of the proof of (5.4), we may bring A into the form [I =,A,],
where w, generates r,. Subtracting x-multiples of C, from C,, we can change

1 0
w, A, tow3 A, ;then subtract x>-multiples, and so on, until we obtain F ~ [B 3 :I .
1 2
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I wB,

Next, we bring B, into the form [ J, where w generates r,. Using

wB, wB;,
row operations over I';, we can eliminate B, so now

[T O 0 1]
F ~ B, I =B,| ,
B,, 0 =B,
say. Subtract A-multiples of C, from C,, to bring B,, into the form #wB/,. Now
observe that the rank of the original matrix B must equal the number of rows
of B, since otherwise I',f(X) # I', Y. Therefore when we “diagonalize” B,, as our

next step, we can bring B,, into the form [ «B,]. Then “diagonalize” the entry
7B, of F, getting a new matrix

1
wD, wD, wD,
F ~ I 0 =D,
0 I =D,

0 1 4x6
I =B, =B,
0 =l 7B,
0

2 2
7 B, ™ B,

]
I
i
l
1
I
I
!
t

By subtracting I',-multiples of R; and R, from R,, we can eliminate D, and
D,, Further, adding y-multiples of C, and C, to C, and C, enables us to replace
B,,B,B,; by wB%y,wB’,,m B’;,, respectively. Next, we can add A-multiples of
R, to R,, and subtract the corresponding multiples of C, from C,, so as to replace
wB., by w?B/. It is then easy to eliminate this block altogether, so we obtain

[ 4 o]
00 «D,!I 0 =E,

F~{I1 0 «D,|{0 «I =°E,
0 I @aDs; 0 «°E, «°E,

We next add y-multiples of C, to Cg, so as to replace w’E, by w*E,; then
add y®-multiples of C, to Cg, so as to make this entry a multiple of =°. Continuing
in this manner, we eventually make the (2,6) block vanish. In a similar way,
we can eliminate the blocks wD, and w’E,;. Now bring wE, into the form

[ﬂl w’E,,
':'A'2E21 w2E22

and replace w°E ,, by w®E/,. Changing notation, we now have

] . It is easily seen that we can eliminate both off-diagonal blocks,

I | 0 7 5x8
0 0 1 |\ I 0 0 «I O
F~]0 0 1 |, 0 I 0 0 3
I 0 0 ! 0 0 «I 0 O
o I 1! o o o 3 3],

where 1 represents a matrix of the form wG, and 3 represents one of the form
3
w" H.
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By subtracting A-multiples of C, and C, from C,, we can eliminate the (2,3)
block. Further, by using the (2,7) block wI, and the (5,2) block I, we can eliminate
the (5,7) block altogether. But then F splits into a direct sum of copies of the

10 *
matrices , ,and a new matrix
v 1 =

I 0
F,=| 0 «G,|I «°H,
|
I wG,|0 w’H,

*

The matrix |: ] ] corresponds to the object (X,Y,f) € o for which

v
X=AX1®AX2, Y=F2Y1’

and f(x,) =y,, f(x,) =7y,.

We then decompose F, further, first “diagonalizing” G ,, and so on. We eventually
obtain the following list of possible indecomposables:

S R )

1 =™

where m = 1,3,5,..., up to the first odd integer q such that w® € r.

(56.11) COROLLARY. LetR be a complete discrete valuation ring with quotient
field K, and let K, be an extension field of K with valuation ring A;, prime element
w,i=12.Let A=K, XK,,A" = A, X A,,and let e e, be the central idempotents
in A. Let A be a local R-order in A such that A/rad A= A;/w;A;,1i =1, 2. Suppose
that A contains elements x,y such that

ANx=m,A,®niA,, Ny=miA,,

and let q be the smallest odd integer for which w5 € rad A. Then every indecomposable
A-lattice is isomorphic to one of the following:

A Ae,,Ae,, (A +Any)e,, A+ w5y Ae,, Ale, + 75 e,) + Ae,,
Afu, +u,) + AV, + w3y u,),

with m = 1,3,...,q—2. The last expression denotes a A-sublattice of the direct sum
Aju, @A, v, ® A,u, of two copies of A, and one copy of A,.

We may remark that the above result also includes information about a simpler
version of (5.8). Suppose that, as in (5.8), A is a local order in A, and that A

contains an element x such that A’x = w”A’. The corresponding matrix problem

is precisely the classification of the matrices (E), in the notation of (5.10). Hence
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for this case, the indecomposable A-lattices are given by
AA+AT™, m=13 ...,q-2

A slightly more involved calculation of the type given in (5.10) enables us
to determine all possibly indecomposable matrices in case (II), for the alternative
in which I'y = r3. We omit the details, only noting that the condition that rJ =0
is vital, and simply list the possible indecomposables:

S) ) ) B

10 1 00 10 0 7]
1 0 0 0 1 IjOl'n' 010
[1 w oW ], 1 @ | 10 #2|° 1 & o ] ’
100 ] [1t0007 100 0 7]
01 0 01 00 010 O
10« |"loo0o 1w ['|]10 =« =?
L 01 2] L1 w0 «*] LO 1 = 0 |

We leave it to the reader to write down the corresponding lattices.
To conclude this section, we sketch the calculation for case (III).
(56.12) THEOREM. 2 (A,T') is of finite type in case (111).

Proof. Let w; generate r;,i = 1,2,3, and let x,y € r be such that

I'x=r®r®r;, Ty=r,®r,,
whereb = 1, ¢ = 1. The actual values of b,c are irrelevant. We must classify matrices

A,
F=|A,|,
A,
where A; has entries in I';. As in the first part of the proof of (5.10) we may
D, I w,B,

D, @,B, w,B;
where the D’s are below the matrix I which occurs in A,. Using the element
y and its powers, it is a simple matter to eliminate D,, B,, B,, and to bring
F into the form

»

bring A, into the form [I 0], and then A, into the form [

[ 1 : 0o ]
0 0 ! I o0
I 0 ! 0 0

L El E2 : E3 E4_J



82 E. L. GREEN and I. REINER

with each E; a matrix over I';. Upon “diagonalizing” E,, we may at once split
off direct summands of the type

and are left with a new F in which E, is replaced by w,E,. D1agona11z1ng E,,
we obtain a further splitting off of summand of the type

1

'
*

1

Continuing in this manner, we readily obtain the following full list of poss1b1y
indecomposable matrices:

* 1 * 1 *
Sl s a1 o
1 Lad Led Led Ly
o
10 1 0 1 0 0 1
10 |"lo1}{]o 11 0
1 w, 11 m, 1 [ 1 7, |

As emphasized before, some of these matrices may be decomposable; this is
certainly the case if w; = 0, for example, or if A = A’. We leave it to the reader
to describe the analogues of (5.9) and (5.11) for the case where A = K, X K, X K3,
and to list the indecomposable A-lattices.

6. CONCLUDING REMARKS

In Sections 4 and 5, we gave necessary and sufficient conditions that &7 (A,I')
be of finite representation type, in the following situation: A and I' are commutative

artinian rings, A C T', A local, and I" is a product H T, of local princip4l ideal

rings T, such that A/rad A =T, /rad T, for each i. In this section we shall point
out some directions for further research, and shall state a few relevant results
without proof.

First of all, we may drop the condition that A and T be commutative, but
still require A to be local. It would be of great interest to determine precisely
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when (A, T) is of finite type. The solution to this problem should enable us,
by means of reduction techniques analogous to those of Section 2, to decide which
noncommutative local orders A have finite type. In this connection, see Drozd-
Kirichenko [7]. .

Secondly, we may seek to investigate the general commutative case, where

I' is not necessarily of the form H I'; as above. For instance, suppose that

A=k[xyl/xy’CTl=k([xy,12]/&xy, 2>

It is easy to prove that </(A,I') is of finite type in this case; note that A and
I' are themselves artinian rings of infinite representation type. Of course, conditions
(2.8) are satisfied in this case.

We note further that for A an arbitrary left artinian ring, not necessarily
commutative, the category .«7(A,A) is always of finite type. However, the category
Z(A,A) may be of infinite type. Indeed, if I' is of infinite representation type,
then so is Z (A,I') (for all A).

Finally, and perhaps of greatest interest, one may study more general diagrams.
Let .# be a modulated graph in the following sense: .# consists of a finite directed
graph, with a local artinian ring A_ assigned to each vertex «, and 'a

A, -Ag-bimodule ;M assigned to each arrow o — B. A representation of ./ assigns
to each vertex o a left module P, € P(A_), and to each arrow from « to 8, a

A -homomorphism f,, : M, ®, P — P, . Defining morphisms in an obvious man-
ner, we obtain a category 9(//{ ). The basic problem is to find necessary and
sufficient conditions that .2 (.#') be of finite representation type.

In the case where each A, = A, and each ;M _ = A, the study of the category
9 (A') may be regarded as a generalized matrix problem over A.

The most accessible case is that in which the underlying graph of .# has the
form o— o, For such .#, we have already defined the category Z (A, I, :M,) in
Section 2. In this setting the category analogous to </ (A,I') is the full subcategory
& * (A, M) of €(A,I',M) whose objects (X,Y,f) have the property that f is surjective.
What are necessary and sufficient conditions on A, I', and M so that .o *(A,I',M)
(respectively ¢ (A,I,M)) be of finite type?
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