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We shall study the set of Riemannian metrics % by considering 2 dimensional
quadrants in C*(M, S°M) where M is a paracompact manifold and S*M is the 2
symmetric tensor bundle over M. In particular, we are interested in quadrants
defined by two Riemannian metrics; that is, if g,, g, € &% we shall consider the
quadrant {sg, + tg,;: s > 0 and t = 0}. These quadrants are of interest in studying
complete metrics because if g, is complete then so are all metrics in the quadrant
(Lemma 2). Using these ideas we prove that, whereas the set of complete metrics
has empty interior (Proposition 5), the set of incomplete metrics must lie on the
edge of the set of all Riemannian metrics. See Theorem 6 for a precise statement.
Our interest in the study of the set of complete metrics started with the result
of Nomizu and Ozeki [5] that if g is an arbitrary Riemannian metric then there
is a complete Riemannian metric which is conformal to g. In particular, the set
of complete Riemannian metrics, %, is non-empty. (Of course, if M is compact
then = %.) We investigate the relationship of # to % deriving as a corollary
J. Morrow’s result [4] that #is dense in Z%. We also prove that the incomplete
Riemannian metrics are dense in & if M is non-compact (Proposition 5).

Let S>M be the vector bundle of 2 symmetric tensors on M then C* (M, S®M), the
set of C” sections of S°M, is a topological space with the C” topology (topology
of uniform convergence of the sections and their derivatives on compact sets, see
[1]). The set of all Riemannian metrics #Z = % (M) is given a topology as a subspace
of C*(M, S°M). We let €= #(M) C % (M) be the subspace of all complete Rieman-
nian metrics on M.

PROPOSITION 1. Ifg,, 8, € Z M), g, € M) and f: M— R is a positive C*
function which is bounded away from zero then g = fg, + g, € ¢ (M).

Proof. Let d, (resp. d) be the metric on M induced by g, (resp. g). Let L> 0
be such that f(x) = L for all x € M and {p,} a Cauchy sequence in the d metric.
We will show that {p,} is Cauchy in the d, metric. Since d, is complete, there
will thus be a point p € M such that p, — p in the d, metric, hence in the manifold
topology [2, page 70].

For € > 0 there is an N such that for all m,n=N, d(p,, p,) <V Le. Thus
form,n=N

V'L ¢ > inf S Vg, (&, &) + g, (&, &) = \/finf& Vg, (@&,&) =VLd,(p., p.).

Thus d,{p,,, p,) < eif m,n = N and so {p,} is Cauchy in the d, metric.
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This proposition is false if we omit the hypothesis that f is bounded away
from zero. For a counterexample take M = R, g, the usual Euclidean metric,
f(x) = e and g, any incomplete metric. That fg, + g, is not complete will be
obvious from Proposition 8. The form of the above proposition which is most useful
is:

LEMMA 2. Ifg,, 8, € Z M) and g, € €M) then

g.. = 880 + tg, € ¥M) foralls >0andt=0.

COROLLARY 3. The set of complete Riemannian metrics on M is a dense,
convex subspace of the space of Riemannian metrics.

Proof. If g, and g, are complete then the straight line of Riemannian metric
g.1_s is a path of complete Riemannian metrics (by the lemma) joining g, to g,
so that #(M) is convex.

If g, € 2 (M), let g, be an arbitrary element of #(M). By the lemma,

1
gn=;go+g1 € ¢M).

Since g, — g, as n — oo, (M) is dense in % (M).

J. Morrow [4] has proved that ¥is dense in . He proved this fact by showing
that given any Riemannian metric g, and compact set K there is g, € % such
that g, = g, on K. In some sense, our approximation of g, is more uniform. In
particular, note that if we took g, to be conformally related to g, (as we may
by the result of Nomizu-Ozeki) then each metric of the sequence g, would be
conformally related to g,. In spite of the corollary, ¢ is still not very thick as
the next proposition shows.

LEMMA 4. Let M be a non-compact manifold and K be a compact subset
of M. If V =M — K then thereis a Riemannian metric g on M and a non-convergent
sequence {p,} which is Cauchy in the metric induced by g such that p, € V for
all but finitely many n.

Proof. Since there is an incomplete Riemannian metric on M, the result follows
immediately from the fact that a Cauchy sequence has a convergent subsequence
if and only if it converges.

If M is compact then (M) = % (M). In the non-compact case we have

PROPOSITION 5. If M is non-compact then the interior of ¢ (in %) is empty.
(In particular, the set of incomplete Riemannian metrics is dense in %.)

Proof. Let g, € ¥ and W(K, U) be a basic open set of % (so that KCcM
is compact and U C S®M is open). We will show that there is g € W (K, U) which
is not complete, hence Int_,#= §.

Let V be an open set of M which is properly contained in M — K. Let h, f
be non-negative C” functions with h(K) =1, h(V) =0, f(K) = 0 and f(V) = 1. Let
g, be the Riemannian metric given by Lemma 4 and set g = fg, + hg,. Since
g. =g,(x) if x € K, g€ W(K, U). Since g, =g,(x) if x € V and there is a
non-convergent Cauchy sequence in V, g & &
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We now introduce the notion of the endpoints and inner points of % and show
that (although Int #= ¢ ) the complete metrics are precisely the inner points.
This will say that the incomplete metrics lie on the “edge” of %. A line is any
set L for which there are g,, g, € 4 such that

L=L(g, g) = {tg, + (1 —t)g,;: t € R} C C"(M, S*M).

The set of endpoints of the line L = L(g,, g,) is

&L(g;, 8) = L(g,, 8) N (C"(M, $°M) ~2 (M)) N Z (M).

An endpoint of 22 is a Riemannian metric g which has the following property:
if g appears on a line on which a complete Riemannian metric does, then g appears
as an endpoint of the line. More precisely,

E={g€ Z:g€ LandL N ¥+# @impliesg € &L}

where L denotes a line. The set of inner points of #is #= # — &
THEOREM 6. /= &
Proof. Letg € Fand set g, =2g and g, =g/2. If

L=L(g, g) = {a-1t g+ tgz}’

then g € L (take t=1/3) and g€ L N ¥so L N €# @. Since g& & L(g,, g,)
this shows that g & &hence is an element of %2 — & Therefore ¥ C A= # — &

Conversely, let g € .4 then there is a line L such that there is a complete
metric on L but g & &L. By Corollary 3, g is complete.

Example. Let M =R'. In this case £ is in one-to-one correspondence with
C7% (RY), (positive infinitely differentiable functions) where g € 2 corresponds to
g.(& m) = f(t)%&n for f € C,”(R"). The induced metric is then

dx,y) = S f(t)dt.

X

LEMMA 7. Every Riemannian metric on R' is an endpoint of some line.

Proof. If g € £, let g,(x) = (1 + | x]) g(x). Define L by

L={Ag,x+(1-\Ng(x:\x€ER]}.

1 1
Ifg ,=——g, + (1 + —) g, then for n > 0,
n n

1 1
g .,n)=——@0+n)gn) + (1 +—)g(n) = Q.
n n
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Hence g_,, £ %. However, g_, —» gasn— xoso g € &L; that is, g is an endpoint
of L.

On R’ there is the following characterization of complete Riemannian metrics.

PROPOSITION 8. Let g(x) correspond to the positive C” function, f. Then g
[¢]

=3

is complete if and only if both of the integrals X f(x)dx and S f(x) dx diverge.

—00

o

==

Proof. If f(x)dx < o then {a, = n} is a Cauchy sequence and so g is not
V]
complete.

Now assume that g is not complete. This means that there is a non-convergent
sequence a, which is Cauchy (in the metric from g). Since a non-convergent Cauchy
sequence can have no convergent subsequences we may assume that a_,— o and
for convenience assume that a, > 0.

S f(x) dx = S Of(x)dx+2 S

a a

i+

f(x)dx + E d(a;, a;,,),
i=0

0 0 0

l f(x)dx = S

aj

which is finite if and only if z d(a;, a;,,) converges. If s, = Z d(a;, a;, ) then, for
i=0 i=0
n=m,

Sn_sm:z d(ai’ai-n) = S f(X)dX:d(amaan)

m

and so s, is Cauchy (in the usual metric on R'). Thus s, converges and so
S f(x)dx < oo,
0

From Theorem 6 we may prove the following well-known result (without having
to use the Hopf-Rinow Theorem as is usual [3]).

COROLLARY 9. IfMiscompactthen every Riemannian metric on M is complete.

Proof. Let {U;}!_, be a finite cover of M by precompact sets such that there
exists a global basis {X;;};_, for the vector fields on U;. Let

€ Cc*(M, SZM)—> (O (U,)

be given by &;(g)(x) = g,(X;;, X;;) if g € C*(M, S’M) and x € U;. Since
P n

ZM) = n n sgl {f € C*(U,): f(x) > 0forallx € U,}
i=1 1=1

Z (M) is an open subset of C*(M, S*M).
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We therefore have the following chain of inclusions:
RA=Int #C #7Z=¢C %,

where the first is because & is open, the second and last ones are from the definition
and the third inclusion is Theorem 6. Thus #Z = &

Remark. The construction of the straight line g, ., in the case of the upper
half-plane M = {(x, y) € R?: y > 0} has an amusing consequence. Let

8o = 9 and g, = E'ij/y2
(the Hyperbolic metric). If a(t) = (0,1 —t) for0 =t <1 — ¢ then the length of «

in the d metric is
1—e \/ s
L = 1—58)+—— dt
(@) S =9+

0

S 1= /s

1-—s,s

v

——dt=V's/n1/e).
o 1—1t

This means that L(a)(s) stays finite as € > 0 only when s = 0. This shows that
if we fix the curve a and define a function from % (M) — R U {«} by “computing
the length of o up to the boundary in the given Riemannian metric” this function
is not continuous!

REFERENCES

[y

. D. Ebin, On the space of Riemannian metrics. Bull. Amer. Math. Soc. 74 (1968), 1001-1003.

o]

. N. Hicks, Notes on differential geometry. Van Nostrand Mathematical Studies, No. 3.
D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965.

V]

. S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. I. Interscience
Publishers, New York-London, 1963.

4. J. Morrow, The denseness of complete Riemannian metrics. J. Differential Geometry 4
(1970}, 225-226.

5. K. Nomizu and H. Ozeki, The existence of complete Riemannian metrics. Proc. Amer.
Math. Soc. 12 (1961), 889-891.

Mathematics Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Current addresses:

Mathematics Department
Rice University
Houston, Texas 77001

and

Mathematics Department
Southern Illinois University
Carbondale, Illinois 62901






