INTERPOLATING SEQUENCES FOR HARDY AND
BERGMAN CLASSES IN POLYDISKS

Eric P. Kronstadt and Charles W. Neville

1. INTRODUCTION AND STATEMENT OF RESULTS

Let U" denote the unit polydisk in n dimensional complex space, C". For
(E, ] . |) a non-trivial complex Banach space, 1 <p <, and o > 0, we define the
following Banach spaces: £*(E) is the space of bounded, E-valued sequences; {P(E)
is the space of E-valued sequences satisfying (||(e,)is, “p)p = 2 e, 1P < o
H™(U", E) is the space of bounded analytic E-valued functions on U™; HP(U", E) is
the space of analytic E-valued functions on U" satisfying

m m 0 0
(I£]x)° = sup (2m)7™ ‘g S lt(re’ 1, -, re’ m)|Pdo, - db, < =
r<l - -7
and AP"%(U", E) is the space of analytic E-valued functions satisfying

el o0 = @+ 0/m” | [1@]P I (1 |z H%ava) <=,
n k=1

AP
U

where z = (z,, z,, ***, z,), and dv(z) is Lebesgue measure on U”. When E = C,
these are the familiar sequence, Hardy, and Bergman spaces. (Cf. [6], [10], and
[11].)
If a=(a;, -~-,a,) € U", and f is a function on U™, define T, f = f(a);
n l/p n
TPf = (szl (1- |ak|2)) f(a); and T’ Y1 = (Hk=1 (1- Iaklz))(a+2)/pf(a).
The operators, T, , TP, and TE’® are the normalized point evaluation operators

a?

on H”(U®, E), HP(U", E), and AP'%(U™, E) respectively. If
A= ()i = @y s 2T

is a sequence in U™ define TP f = (TF £)5v,, for 1 <p < ; and
1

TP Xt = (TP ¥ )7

o s iy for 1<p<« and o >0.

The fundamental questions of this paper are: When is TV, (HP(U", E)) = ¢P(E)?
When is Tff (AP (U™, E)) = (P(E)?

The sequence  is said to be HP(U", E) or AP’ ®(U™, E) interpolating if
TP (HP(U", E)) 2 2P(E) or TP, *(AP%(U™, E)) D £P(E). We remark, first, that if a
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sequence is interpolating for one of the spaces of vector valued functions, it is
clearly interpolating for the corresponding class of complex valued functions. Also,
we note that when p < «, there is no a p7iorvi reason to expect that if & is

HP(U", E) interpolating, then T', (HP(U", E)) = (P(E).

Throughout this paper, p(z, w) shall denote the pseudo-hyperbolic metric on
U™. Of course,

p(z, w) = Max{|z; - wi|/|1-2;w;[: 1=1, 2, -+, n}
= sup { [f(w)|: £ € H*(U™, ©), |f]|_ <1, £(z) =0}.
The sequence . is said to be separated if there exists 6 > 0 such that
pla;, a;) > 6  whenever i # j.

The constant 6 is called a separation bound for . The sequence + is said to be
uniformly separated (U.S.) if there exists a constant K and functions f; € H (U™, C),

i=1,2, -, suchthat fj(a;) =1, fi(a;) =0 if i # j, and |f;]| <K for all i. The
constant K is called a uniform separvation bound for A.

A wedge W, in Ul is the region inside U! lying between two distinct circles,
¥; and y, suchthat y; Ny, is contained in the boundary of Ul. W is said to be
tangential or non-tangential depending on whether y) N vy, consists of one or two
points.

A wedge in U" is the Cartesian product of n one dimensional wedges. A near-
wedge in U" is the Cartesian product of one copy of U! and n - 1 one dimensional
wedges. We leave to the reader the definition of tangential and non-tangential wedges
and near-wedges in U".

The central results of this paper are

THEOREM 1.1. Let « = ((a;;, ***, aijp))ie1 be a sequence contained in a

finite union of neav-wedges in U". Let 1 <p <=, and let E be a non-trivial
Banach space. Then each of the following statements implies the othev three.

i) w is U.S.
ii) « is HP(U™, E) interpolating.
iii) TP, (HP(U", E)) = (P(E).

iv) « is separated, and there exists a constant M such that for all i,

25 1L [(1 - Jag @ (- Jap]?)/]1 - a2 < M.
j=1 k=1

p—

THEOREM 1.2. Let Q be a finite union of non-tangential wedges in U". Then
the HP(U™, E) and AP®*(U™, E) intevpolaling sequences lying in Q ave the same for
all p € [1, ©) and all a € [0, ©), and all non-trivial E; and ave, in fact, just the
separated sequences lying in 2.

THEOREM 1.3. Let « be a sequence in U™, (A need not lie in a wedge ov
near-wedge.) Then theve exists & > 0 such that & is A 2,0y @) interpolating if
and only if & is sepavated.
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The n=1, E = C case of Theorem 1.1 is due to Carleson [4] for p =%, and to
Shapiro and Shields [13] for 1 < p < . In particular, for n =1, HP(Ul, C) inter-
polating sequences are the same for all p. For n> 1, the p =« case (at least when
E is a uniform algebra, and only non-tangential wedges are considered) can be found
in [7]. The case n =1, E arbitrary is the main result of [2]. Statement (iv) gives an
explicit characterization of U.S. sequences in near-wedges, which, when n =1, is
essentially the familiar condition involving Blaschke products.

For n =1, results somewhat weaker than Theorems 1.2 and 1.3 can be found in
[13]. An immediate corollary to Theorem 1.3 is the existence of H2(U®, C) inter-
polating sequences which are not U.S.

The results of this paper were announced in June, 1976 [8], and preprints were
circulated in July. In November, 1976, we received a preprint titled “Interpolation
dans le polydisque de C™” by Eric Amar, who, using different techniques, obtained
results which overlap with some of those in this paper.

The second author would like to thank L. A. Rubel for first interesting him in
interpolation theory. He would also like to thank Carleton University, Ottawa,
Canada for inviting him to attend a special lecture series given there by Rubel.

2. FACTORIZATION FOR HP(U", E)
We begin by introducing some notation. If a € U™ and 6 > 0 let
A™a, 8) = {z € U™ pla, z) <6}.
If ae C"and r =(r;, r,, =", ry) € R" (rj >0,j=1,2, -, n), let
UMa, r) = {z € C™ lzj - ajl <r,j=1,2 -, n}.

For n =1, the disks Al(a, r) and Ul(a, r) are related as follows: if 0 <5 <1 and
a € U! then

(1) Ul(a, 8(1 - |a]?)/2) c al(a, 0); al(a, 6/2) C Ul(a, 6(1 - |a]?).

We shall denote the distinguished boundary of U"(a, r) by C"(a, r), and the dis-
tinguished boundary of U™ by C". We shall denote Lebesgue measure on C” by dv,
and normalized Haar measure on C™(0, r) by (27) ™d#. Algebraic operations on n-
tuples of real and complex numbers will be carried out coordinate-wise, and fre-
quently coordinate subscripts will be suppressed. Thus, for example, if r, R € R",
r <R means r;<R; for j=1,2, ---, n; andif a, b, s € C",

(b - a)/s = ((by - a;)/sy, =+, (b, - ay)/s,),
and (1 - |a|2)1/P=((1- |a;|21/P, -+, (1 - |a,|2)1/P). (Fortunately, we shall not

need the Euclidean norm on C", so no confusion need arise.) Finally,

n

II(1 - |a]®l/p = H (1- laj‘z)l/p.

j=1
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It is well known that a function f € HP(U™, C) cannot always be factored into the
product of an inner function and an outer function [11]. Nevertheless, a very useful
weak factorization theorem is valid.

THEOREM 2.1. Let 1<p<=®. Letfe Hp(U E), and £ # 0. The function f

possesses the factorization f(z, , -+, z,) = Gz, -, z,) F(z,)), where F is an outer
Sfunction in Hp(U1 C), “Fll = ]lpr, and G has the propevty thatfor each z, € U',
the function G (z1 Tty Zp 1) defined by G (Zl y oy 2 1) =Glzy, v, 2y, 2y),

is in HP(UP"L | E), and Sup { || G G, “p: Z, € UI}

Note that HP(U", E) is isometrically isomorphic to HP(UX, HP(U"K, E)) via
the natural isomorphism

[(Zl s "7y Zn) - f(ZI » "t Zn)] E’ [(Zl s T, Zk) - ((Zk+1 » "y Zn) - f(Zl y Tt Zn))]‘

Consequently, Theorem 2.1 is an immediate corollary of the following one-variable
vector-valued factorization theorem.

THEOREM 2.2. Let 1<p<w. Let f € HP(U', E), and f #+ 0. Then f = GF,
where G € H°(U!, E), |Gllo =1, F is an outer function in HP(U!, C), and
IFl, = lill,

Proof. Since f € HP(U', E), |f|P has a least harmonic majorant H. Also
log If[ is subharmonic, so log ]f] has a least harmonic majorant h. Let h, denote
the harmonic conjugate of h vanishing at 0. Then }f[ < Iexp h +ih )|. Set
F,=exp(h +ih,) and G, = {/F, . Itis clear that |G, [, < 1. For r € (0, 1), if h,
is the Poisson 1ntegral of log |f| around C;(0, r), then h, /h is r — 1, and clearly
exp(ph,.) < H inside U!(0, r). Consequently, exp(ph) < H in U!. Hence

F; € HP(U!, ©)

and |[F;|p < |[f]lp. Since f=GFy, it is clear that |[Fy [, = [|[f], and |G [ =
Let F; = IF be the inner-outer factorization of F;, and set G = IG; to obtain the
required factorization of f.

Although we shall not need the fact, it is worth noting that G really is inner in
the sense that log ]GI is the sum of a singular harmonic function and a linear com-

bination of Green’s functions. (Cf. [10, especially Theorem 2.2, p. 17] and [9, chap-
ter 2].) From these comments, we see that a version of Theorem 2.2 holds for
HP(R, E), where R is an admissible Riemann surface in Neville’s sense [9, chap-
ter 5].

3. VECTOR VALUED HP INTERPOLATION IN U!

We begin with a formal statement of a result of Shapiro and Shields.

PROPOSITION 3.1 (cf. [13, p. 521]). Let 1 <p <. If A& isan HP(U", E)
intevpolating sequence, then there is a constant K such that for every c in ﬂp(E)
there is an £ in HP(U™, E) with the properiy that Td f=c and Hf“ <K Ilc“p

A similav statement holds if o is AP (U™, E) intevpolating.
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The constant K in the above Proposition will be called an HP(U", E) or
AP'%(U", E) interpolating bound for .

Aron, Globevnik, and Schottenloher [2] have recently proved an interpolation
theorem for H®(U!, E). The theorem is

THEOREM 3.2. Let & be a uniformly separated sequence in ul with uniform
sepavation bound m. Then A is H®(U!, E) interpolating with H®(U!, E) inter-
polation bound Koo(m), depending only on m.

(This theorem may also be obtained from P. Beurling’s result on the existence
of absolutely converging sequences of 0 - 1 interpolating functions in H*(U!, C)

[5]).

Theorem 3.2 may easily be generalized to HP(U1 E).

THEOREM 3.3. Let A be as in Theorem 3.2. Let 1 <p <». Then A is
HP(U E) intevpolating with intevpolation bound k (m) dependmg only on m.

Proof. Let ¢ =(c;)52; € LP(E), and let e; = c1|c |1 if ¢;# 0, e; =0, other-
wise. Let d, = |c;|. Then e =(e)2, € ¢ (E) and d = (d; )°°1 € 2P, Furthermore,

le|o <1 and |d]|,= [lell,. Let G € H®(U!, E) be such that T%, (G) = e and
|G|l < Ke(m). Let g € HP(U', €) be such that TP, (g) =d and ||g||p < ey (m),
where ¢ (m) depends only on p and m. The existence of G is guaranteed by Theo-
rem 3.2, and the existence of g is guaranteed by Theorem 2 of [13] (cf. also [6, pp.
152-153]). Set f = Gg. Then TY,(f) =c and |f||p < Kkp(m).
We may easily obtain an interpolation theorem for the Cartesian product of in-

terpolating sequences by applying Theorem 3.3 to the Banach space HP(un-! , E) to
obtain an HP(U!, HP(Un-1, E)) = HP(U™, E) interpolation theorem. More generally,

let & =(a;){2, be as in Theorem 3.3, and for each i let B; = (b; )J 1 be an
HP(U™"!, E) interpolating sequence in U™"! with HP(U™™!, E) interpolation bound

K. Let C =(c;){2; be a univalent enumeration of the double sequence ((a;, b;;));
We immediately have

COROLLARY 3.4. C is HP(U", E) interpolating with interpolation bound
K, (m) K.
P

i,j=1-+

By induction, it follows that the Cartesian product of n U.S. sequences in U! is
HP(U", E) interpolating.

4. UNIFORM PSEUDO-HYPERBOLIC CONTINUITY

If &« =(a)i., and B = (bi)zo:l are sequences in U™, and if sup;[p(a;, b;)] <&,
it follows from the definition of p that H T‘:od f - T:%f“ < 2¢ Hf“w, for every { in
H®(U™, E). This inequality can be used to show that if « is H®(U™, E) interpo-
lating, and % is sufficiently close to « in the pseudo-hyperbolic metric, then & is

also H®(U™, E) interpolating [7, Corollary 3.4]. The following uniform pseudo-
hyperbolic continuity result can be used to obtain an analagous result for p < .

Let 0: C™ — C™"! pe the map o(z) = (Zy, oy Zn_1)-
THEOREM 4.1. Let 1 <p <« and suppose A = (ai)(f:l is a U.S. sequence in

U™ with U.S. bound M, and that o() may be rvearranged so that it is a subse-
quence of a multi-sequence of the form Ry X Ry X - XR,_1, wherve each R; is
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U.S. with bound m. Then theve ave constants C(n, m, M, p) and T'(n, m, M, p)
(depending only on-n, m, M, and p) such that for all £ in HP(U", E):

i) TP, f € (P(E); in fact || TP, f| < Cln, m, M, p)|f],.
ii)If B = (bi)ioil is a sequence in U" satisfying b;, = a;, and
p(o(ay), olby)) < 6 < 1/(36m)  for all i,
then | TP, - Thf[| < 6T(n, m, M, p)|£],,

In proving Theorem 4.1, we lose no generality in assuming that o(.«) is
identified with all of #| X &5 X < X R, _| .

Before proving this theorem, we must recall a few facts about Carleson meas-
ures. If 0 <h <1, we will say an h-sector is a region in Ul of the form
S={z=reif: 1-n <r<1, 6g<8<06p+h}. A Carleson measure on Ul isa
finite positive measure pu w1th the property that u(S) < A, h for every h-sector, S,
where A is a positive constant associated with yu. The lelmdamental property of
Carleson measures is the following:

PROPOSITION 4.2. (¢f. [6, Theorem 9.3]). The measuve p. is a Carleson
measuve if and only if theve exists a constant Cu such that

I/p
(2) (SUI |£(z) [P du(z)) < Clll/p “f“p for all £ € HP(UY), p € [1, »).

Moveover, if p is a Carvleson measure, Au < SCH and C‘u < 16(80)8Aﬁ .

By letting f = FG as in the statement of Theorem 2.2, it is clear that 1f U is a
Carleson measure, (2) also holds, with the same constant, for all f € HP(U!, E), and
all p € [1, ©). Similarly, if g, g,, ***, i, are Carleson measures on ut’ and p
is the product measure of ©i, uz, ***, n On U™, then an elementary induction
argument, using Theorem 2.1 and the canonical isomorphism between HP(U™, E)
and HP(U!, HP(U™"1, E)), shows

1/p n 1/p
(S |£(z) P d.li(Z)) < ( II Cui) Ilf”p for all f € HP(U", E), p € [1, ).
gn i=1

Now, if « = {ai}?:l is a U.S. sequence in Ul with U.S. bound m, and 6, is
=]
the unit point mass at z then it is well known that u = Ei:l (1- |2;|%) 6, satisfies
1

(2). These observations immediately yield the following lemma and its useful
corollary.

LEMMA 4.3. Let (a; )1 1 be a U.S. sequence in Ul with U.S. bound m; let y;
be the circle y; = C (a r;) wherve r; < (1 - [all 2)/(6m); and let . be arc length

measuyre avound y U -1 7i- Then p is a Carleson measure and (2) holds with
constant C = C depending only on m.

COROLLARY 4.4. Suppose R, R,, ---, Ay ave U.S. sequences in Ul, each
with U.S. bound m. For each point a in the multi-sequence Ry X Ry X -+ XAN,
let v, be the poly-circle CN(a, r,) where r, <(1 - |al2)/(6m), and let |1 be sur-
face area measure on the (disjoint) union of all the y,’s. Then

1/p
( (YN lpdu(z)) <@NPtl oran e HYUN, B), pe [1, =),
8)
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where C) is the constant in Lemma 4.3.

Pyoof of Theovem 4.1. The proof of part (i) is essentially the same, but easier
than that of part (ii), so we will only verify (ii). Before doing so, we record the fol-
lowing elementary fact.

LEMMA 4.5. If Ay, **, AN € C satisfy |1-2;| <g for i =1, -+, N, then
N
[1- ILi ;[ S N +e)N-e
N N i-1
Proof. |1 - Hi:l )‘i] < 21:1“ - kilHk:I l7‘i|‘
If @ € U1, let ry be the poly-radius, (1/6m)(1 - |a|2); let

U, = U -1(a, ry);

let v, = CU~ l(a ry); let po be the surface area measure on y,; and let
S dpg = (217)“'1 II ra). For 1 <p <, define HP(U,,, E) to be the space

of holomorphlc E-valued functions g on U, satisfying
(lgllp)® = sup {(1/sa>§ rz)ypdua(z)} < o
r<rgy

Clearly if g is in fact holomorphic in a polydisk containing ﬁa , then
(gl )P = (1/84) S le(2) [P dp o (2)
Ta

Recall that for a;, a; € «, if o(a;) # O'(aJ), then p(o(a;), o(a )) > 1/m. Note
that the Ty ’s are defmecf so that the above inequality along with (1) implies that

Ug (a;) " Uo(a ) = @ whenever o(a;) # U(aj)-

Fix a o(a;), say o(a;) = a. If f € HP(U", E), let fy, =f anxul and consider

f, as an element of HP(u!, HP(U,, E)). By applying the factorization Theorems 2.1
and 2.2, we have f, = Fo Go where Fy € HP(UL, €), |F|, =[],

G, € H (U, HP(U,, E)),

and |Gy |l = 1. We shall write Gu(z;, -, 2,) for (Gg(zy) (2], **, 2,.1). Asin
Section 2, we shall identify HP(U®, E) with HP(U™~!, HP(UI, E)) so that if

g € HP(U™, E), and z € U™, then (|| g(z, )“ )P = sup 21ﬂ |g(z, reif)|Pds |.
r <1 -7
Now let J be the set of integers, j, such that ¢(a;) = @. Since 2jn = Din,

2T @ -TE 0[P = T (1- a,[D)|Fyla,)|P
€T . J j€J

(3)
I - [ HPGy(a) - T - (o) Paym)|P .
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For j fixed in J, and 1 <k < n - 1, by applying inequality (1) and the fact that

plaje, bj) < 6, we obtain |1 - (1 - [bjic|2)/(1 - |aj|?)| < 46. An application of
lemma 4.5 yields

@ |- |e|®dr-I11- lom)|H/P] <2?m-16 I (1- |a|H)/P.

We claim
(5) |Gg(a;) - Go(b)| < 7(n - 1)4"mb, and

so that |Gg(b;)| < n4™. By combining this with (4) and (5), we have

| IL(1 - |@|?/PGglay) - IL(1 - |02 /PGy(bs)|

(7)

< Cym, mo IT(1 - |a|H1/P,
Finally
(8) IFall? = It I = a/s0) X,, Iz, 17 auale)

o

Since o is U.S. with bound M, {a; };cy is U.S. in U! with bound M. Thus

(9) 27 (1 - lajan)IFa(ajn)ip < C, || Fy “E :
j€J

From (3), (7), (8), and (9) we see that the right hand side of (3) is dominated by

(10) C3(m, M, p) GPS || £(z, -)I]g dp o (2) .
701

By summing (10) over all @ € 0() and using corollary 4.4, we get the desired
bound on | TP, f - TEf|.

It remains to establish (5) and (6). To do this we note that if
P, (2, eif) = (s2 - |z - a|2)/|selt - (z - a)|2

is the Poisson kernel for the disk Ul(a, s), then

11- P, ,(z eif)| < 4(lz;al)/(1 - lz;al)z .

In particular, if s =(1 - |a]|2)/(6m) and |z - a] < 26(1 - |a|?) <(1 - |a|?)/(18m),
then

(11) |1- P, (2, etf)] < (108)ms .

Hence if P,(z, t) is the Poisson kernel for the (n - 1)-harmonic functions in the
polydisk U,, Lemma 4.5 shows that for z € U and p(z, o) <$§,
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|1-Pylz, )] < Un-1)4"ms.

Now ||Gg(-, 2jn) Ilp < 1, so by Holder’s Inequality,

(217)1'“5 |G, (t, ajn)ldf)(n‘l)(t) <1

Yo

where (27)1-n dg{m-1) i n - 1 dimensional normalized surface area measure on
vq - Inequality (6) follows from the above inequality and the fact that |G, (-, ajn)l

is n - 1 subharmonic. Inequality (5) is obtained by applying (11), and the above
inequality, to the observation that since Qjp = bjn s

Galay) - Galb)) = 2" ™ [ Gult, a,) (1 - Po(a(y), )a0™ ™ ®.
Ya

COROLLARY 4.6. Suppose « is a U.S. sequence in U" satisfying the condi-
tions of Theovem 4.1.

Then TP, (HP(U", E)) = (P(E).
Proof. Apply Corollary 3.4, f.f., and Theorem 4.1.

COROLLARY 4.7. Let m, M, and .« be as in Theovem 4.1, and p € [1, «<].
Let 6 < min {[2T(n, m, M, p) k,(m)*~} ko (M)]-Y, (36m)~1}, and suppose & is a
sequence in U™ with the property that bjn = ajn and p(aj, bj) <d for j=1, 2, *--.
Then & is HP(U®, E) interpolating with bound Z(KP(m))n'1 Kp(M).

Proof. The p =« case of corollary 4.7 (with I'(n, m, M, «) = 2) is a special
case of Theorem 3.3 of [7]. The p < case is similar: if A € ¢P(E), there is an f
in HP(U", E) such that ||f] < xp(m)®~1y(M) |2, and T5, £ =X, By Theorem 4.1,
“T}% f- A“ < “?\ “/2. Corollary 4.7 now follows from the following well known fact.

LEMMA 4.8 (c¢f. [3, Theorem 1.2]). Suppose H and L are Banach spaces and
T is a bounded linear map from H to L. Suppose theve ave constants 0 <k <1 and
K < such that for every x € { theve is a fin H for which |Tf - x| <k|[x|| and
Hf“ <K “?x“ Then for evervy X € { theve is an £ € H for which Tf =X and
el <x fxf/1 - .

5. HX(U™, E) INTERPOLATING SEQUENCES

We are now ready to prove Theorem 1.1. The p = «© theorem is essentially the
main result of [7], and it is also an important tool in proving the p < = case, so we
will state it separately.

THEOREM 5.1. If « is a sequence contained in a near-wedge, 2, in U", then
< is H*®(U™, E) interpolating if and only if it is U.S.

Proof. The necessity of U.S. is obvious. If £ is non-tangential, and E is a
uniform algebra, then the H®(U™, E) case is Theorem 5.9 of [7]. If E is an arbi-
trary Banach space, apply Theorem 3.2 of the present paper to the arguments of [7].
To remove the restriction to non-tangential near-wedges, one replaces Lemma 5.10
of [7] with the following lemma and proceeds with the proof of Theorem 5.9 of [7].

LEMMA 5.2. Let W be a wedge in U1 | Let € > 0. Theve exist constants
Ko and m (independent of € and depending only on Wo) and finitely many sequences,
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Cy, -+, Cns in Wy such that Wy C U{An'l(cj ,€):j=1,2, .-, N}. Further-
move, each C; is H*(U™"1, E) interpolating, with interpolation bound K, , and each
Cj is of the form Cj =R; X -+ XR wheve each R; is U.S. in Ul with U.S.
bound m.

n-1»

In stating this lemma, we have used some notation and conventions which we
shall use throughout this section. First, if A is a subset of U,

AA, €) = U {a™a, e):ae A}.

(Recall A™(a, €) = {z: p(z, a) <&}.) Second, we shall sometimes identify sequences
with the point sets comprised of their elements. Thus we shall feel free to write

N
A™(Cy, €), or even C; C szl C;. Third, for o € U™ ! and Qc un-!,
D%a, ) = A™ 1(a, ) x U!

and D™(Q, €) = A" 1(Q, €) x Ul. Finally, for convenience, we have adopted a nota-
tion which makes all near-wedges appear to be of the form

W, XW, X X W, _; xUL,

where each WJ- is a wedge in ul.

Pyroof of Lemmab.2. The proof is essentially the same as that of Lemma 5.10
of [7]. For tangential wedges, replace o(z) in that argument with

7(z) = (B - iz)/(1 - iBz),

where 8 = (1 +1i)/2.

We also need the following three lemmas from [7]. The first is Corollary 3.6
of [7]. The second two are consequences of Proposition 4.5, Lemma 4.6 and Lemma
5.11 of [7], and Lemma 5.2 above. We will let 0: U™ — U™~! pe the projection onto
the first n - 1 coordinates as in section 4, and 7: U? — U! be projection onto the
nth coordinate. Let kK, and K, be as in Theorems 3.2 and 3.3.

LEMMA 5.3. Let a € U" and let « be a U.S. sequence with U.S. bound K. If
a; # aj, and both lie in Do (a), €5) N A, wheve £y = (4Kk(4K))" 1, then
7(a;) # ﬂ(aj). Furthevmore, n(D"(0(a), gg) N ) is U.S. with U.S. bound 4K.

LEMMA 5.4. Let Q =W, X Ul, wheve Wq is a wedge in UMl . Let A bea
sequence in Q. Let m be as in Lemma 5.2. Let 0 <7n <m/2, and let
0<e<n3/2. Let €y, €1, "=, €N be as in Lemma 5.2. In particular, the
DN®;, ), i=1, 2, ---, N, cover . Suppose  NDN&,, n)is H (U, C) inter-
polating for each i = 1, 2, «--, N. Then o is H®(U", C) intevpolating.

LEMMA 5.5. Suppose £ is a sequence in U™ such that
A C QU QU U Q,

where each ;= W;X U!l, and each W, is a wedge in U""!. For each i=1,2, -+, s
let m; be the constant corvesponding to the constant m in Lemma 5.2 and let

m = Max; {mi}. Let ﬁi = An(ﬂi, 1/(2m)), and suppose £ N Qi is U.S. for each
i,i=1,2, =+, s. Then A is H (U™, E) interpolating.
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Lemma 5.5 and Theorem 5.1 have the following three corollaries.
COROLLARY 5.6. If « is a sequence contained in a finite union of neav-
wedges in U™ then T oy (H®(U", E)) = £°(E) if and only if & is U.S. (This is the

p = case of Theovem 1.1.)
COROLLARY 5.7. Fix p, 1<p <. If A& C&, where Q is a finite union of

N
neay wedges, and £ is U.S., and A = Uizl A ; wheve each «. is HP(U", E)
interpolating, then £ is HP(U™, E) intevpolating.

N ' '
Proof. Write « as a disjoint union, A = Ui:l <., where «; C A, for
each i. Let f; ¢ H”(U", C) be such that f; =1 on «; and f;=0 on ¥ for i # j,
i, j= 1, ---, N. The proof is now obvious.
COROLLARY 5.8. Suppose A is a sequence in §2y U Q, U --- U Qg where each

Q; is a near-wedge in U". Suppose A has the property that for every neav-wedge,
Q, A& N8 is US. Then A is U.S.

Proof. For i=1, 2, ---, s. Let ﬁi be as in the statement of Lemma 5.5. Each

ﬁi is itself %é)ntained in a near-wedge, so by hypothesis « N ﬁi is U.S. By Lemma
5.5 « is H (U™, E) interpolating and therefore U.S.

As a result of the above corollaries, it will be sufficient to prove Theorem 1.1
for the case where 1 <p <~ and £ is contained in a single near-wedge. Through-
out Ehe remainder of this section « C @, where 2 =Wy X Ul and W, is a wedge in
Ut

Proof of Theorvem 1.1. We first show (i) implies (ii). Let K be the U.S. bound
for .. Let m be as in Lemma 5.2. Let M = k_(m)""! k,(4K). Let
0 <& < min{[2T(n, m, M, p) k,(m)" " k()] !, [4KK,(4K)]™, (36m) 7'},

where I'(n, m, M, p) is as in Theorem 4.1. Let €;, -+, @y be as in Lemma 5.2.
N
In particular, Wy C Uj:1 An‘l(i?j, €). For each i, let

i = U{{CJ} Xn(Dn(cj, )N A): cj € %} .

By Lemma 5.3 and Corollary 3.4f.f., «; is H(U", C) interpolating with inter-
polation, and hence U.S., bound M. Similarly, «; is HP(U™, C) interpolating.
Clearly, o(#;) C #;, so «; satisfies the hypotheses of Corollary 4.7.

For each i let #; = «/ N D"(%;, €). Clearly, the sequences ; and %; can
be rearranged so that if (aj)gozl = 4; and (bj)(j";l = #;, then p(o(a;), o(b;)) <e and
ﬂ(aj) = w(bj) for all j. By corollary 4.7, #; is HP(U™, E) interpolating for each i.

N
By Corollary 5.7, « = Ui:1 #; is HP(U", E) interpolating. Therefore, (i) implies
(ii).

We note that for each i, T}%i(Hp(Un, E)) € (P(E) by the proof of Corollary 4.7.
Hence TP, (HP(U", E)) c £P(E). Consequently, we have also shown that (i) implies
(iii).

Since (ii) clearly follows from (iii), we will be done if we can show (ii) implies
(i) and (i) holds if and only if (iv) does. To do this we need the notion of local uni-
form separation.
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Definition. Let & be a sequence in U™ . @ is locally uniformly separated
(L.U.8.) if for some € > 0 and K < «, the sequence D™a, €¢) N & is U.S. in
D™(a, ) with U.S. bound K, for all & € UR-1, That is, for each @ € U*-! and

d; € D™a, &) N D, there exists f; € H (D™a, &), C) such that

“f“oo _.<_ K, fl(dl) = 1:
and f;(d:) = 0 for all d; # d; such that d; € D™a, £) N 9. The constant K is called
an £-L.U.S. bound for <.

Clearly, every L.U.S. sequence, with €-L.U.S. bound K, is separated with
separation bound £/K. This follows from the same conformal mapping argument
used to prove

LEMMA 5.9. Let a € U", and let @ be an L.U.S. sequence in U™ with ¢-
L.U.S. bound K. If d; # d; and both lie in D™(0(a), eg9) N D, wheve

gy = [4Kko(4K)]™!,

then u(d;) # n(d;). Furthermore, 7(D™o (a), eeg) N D) is U.S. with U.S. bound 4K.

Proof, Map D™o(a), ¢) conformally onto U™ via the obvious map ¢, note that
#(D™o(a), €) N @) is a U.S. sequence in U™ with U.S. bound K, and apply Lemma
5.3.

LEMMA 5.10. « is U.S. if and only if  is L.U.S. [Remember A C Q.]
Proof. The only if direction is obvious. So assume & is L.U.S. Let m be as
in Lemma 5.2. Let K be a 6-L.U.S. bound for #, for some 6 > 0. Let
M = K (m)" ! ko(4K) .

Let 0 <7 < min{6[4Kk (4K)]™!, [4M]!, [36m] '} . Let 0 <& <7n°/2. Let

€., -+, @y be as in Lemma 5.2. In particular, £ C Ull\il D"(%;, €). Construct
sequences «/;, i=1, ---, N, and &#;, i=1, ---, N, as before. By Lemma 5.9
and Corollary 3.4 for each i, «; is H”(U", C) interpolating, with interpola-
tion bound M. Hence, by Corollary 4.7, #; = « N D™(®,, &) is H®(U", C) inter-
polating for each i. By Lemma 5.4, « = Ull\il RB; is H°°(Un, C) interpolating, and
hence is U.S.

In addition to Lemma 5.10, we shall need the elementary estimate
(12) (1-2r) < (-1¢ld/Q- |9 <1+2r for 0<r <1/2
and for all £, n € Ul suchthat |¢ - 7| < r(1 - |n|?).

We are now ready to prove the rest of Theorem 1.1. Let 1 <p <, and let «
be an HP(U™, E) interpolating sequence in 9. Then . is HP(U®,C) interpolating.
We must prove « is U.S. By Lemma 5.10, it suffices to prove .« is L.U.S.

Let € =1/6 andlet b € U”. Let «« N D"o(b), €) = (aj)°j°:1 . By Proposition

3.1, there exists (£;)52) in HXU™, €), such that ||f;]| <M and

IT(1-|ay 2)1/pfj(ak) =6, forallj k.
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By Theorem 2.1, f;(z;, -, zp) = G(z1, **, 2,) Fj(z,) where F; is an outer func-
tion in HP(U1 C) with IIF “i) = ||f ||p <M, and Gj has the property that for each
z, € UL, Gy(+, )EHP(Un , €) and ”G(’Zn Ilp_

By (1), if z € D™(c(b), 1/6) then

|z; - b;| < (1-p;]%/3, forj=1,2, -, n-1.

-1
Therefore, by letting gj(z) = HE:I (1- Ibklz)l/p Gj(z), we have by inequality (12),
|gj(z)] < 3(n-1Yp 5 ¢ DNo(b), £);

gj(ai) =0, j#i; and

n-1 n-1
lg5ap| = IL (1 - Jop [P IT (1 - Jag] &7HP | Fylaga) (1 - [ajalMP|-
k=1 k=1

> MY(3/5)0-1)/p,

Hence «f N D0 (b), €) is U.S. in Do (b), &) with U.S. bound 5 1VPM, for all
b € U", so « is L.U.S. This completes the proof that (ii) implies (i).

To prove (i) implies (iv), observe that if  is U.S. then # is separated, and
that the proof that (i) implies (iii) shows that Tzd is bounded. Let K(z, a) be the

normalized H%(U®, C) reproducing kernel, K(z, a) = II ((1 - |alz)1/2/(1 - az)).
Then

0
2 - _ 2 2 2 2
2 I0 I - ag]2 (- ag]2/11 - 5] 2) = |72, (K, a)) |2 < 722
j=1
Conversely, suppose ¢ is separated with separation bound 6, and satisfies the
inequality of (iv) for some M< =, Let 0 <& < 5/32; let b € U”~!; and suppose

a;, aj € D™(b, €) N . By inequalities (1) and (12) p(o(ay), o(a;)) < 16c < 6/2.
Since pl(a;, a; ) > 6 for i # j, the sequence n(# N D™b, 8)) is separated Also

3/4°1 2 1 - (p(n(ay), @))? < 20 I (1 - playy, a;,0)%)
k=1

j=1 j=1

=2 I [(1- |a]® (@1 - ‘ajlz)/ll— iiajlz] <M, foralli.

e

Hence m(. N D*b, €)) is U.S. in U! with U.S. bound Ko, depending only on M
and 6. Since there is only one point in .« N D™(b, £) with given projection (a;), the
sequence « N D™b, £) is H (D™, &), C) interpolating, by Corollary 3.4, with in-
terpolation bound depending only on M and 0, but not on b. Hence .« is L.U.S.

By Lemma 5.10,  is U.S. This proves (iv) implies (i) and completes the proof of
Theorem 1.1.

It is easy to see that condition (iv) is a necessary condition on # in order that
de (HZ(Un, C)) = 22, even when ¢ is not contained in a finite union of near



340 ERIC P. KRONSTADT and CHARLES W. NEVILLE

wedges. On the other hand, the examples given at the end of section 7, show that it is
not, in general, a sufficient condition for T:{ (H®(U", €) = ¢~.

6. INTERPOLATION IN WEDGES FOR AP'® SPACES

In this section we will use Theorem 1.1 to prove Theorem 1.2.

Proof of Theorem 1.2. The statement concerning HP(U", E) follows immedi-
ately from Theorem 1.1 and the fact that a separated sequence in a finite union of
non-tangential wedges in U" is uniformly separated [7, Theorem 5.16]. The state-
ment that a separated sequence in £ is AP-%(U™, E) interpolating will follow im-
mediately from the HP(U™, E) statement and the following proposition:

PROPOSITION 6.1. Lel 1<p<«® gnd 0 < a <. The linear map

. s
S HP(U", E) — AP ¥(U", E)

defined by Sp,a(f)lz =£(z) [T (1 - 22) VP 45 poundea.
Suppose we grant proposition 6.1 for the moment. Let £, be a wedge in ul
bounded by the arcs of two circles intersecting at +1 on Cl. Let

Q=90X90X"°X90£Un_

It is clearly sufficient to prove Theorem 1.2 for wedges such as 2. There exists a

constant K, depending on &, such that 1 - |z|?2 < |1 - 2z2] < K(1 - |z|2) for z € Q.
Hence if .« is a separated sequence in £ and c € (P(E), we may easily interpolate
c by an AP-%(U", E) function F, by first solving a related HP(U™, E) interpolation
problem and then mapping via Sp,a .

To prove Proposition 6.1, we need the following fact [¢f., 13 p. 530].

LEMMA 6.2. The mapping S: f(z) — (1 - z)-1/2£(z) is a bounded linear trans-
formation from H2(Ul, C) onto A2(U!l, C).

Proof of Proposition 6.1. First, note that the mapping
S: f(z) — (1 - z2)-(@+1)M 24,)

is a bounded linear transformation from H2(U!, €) into A2:%(Ul, C), for each
0 < @ <o, To show this, it suffices to show S': f(z) — (1 - z)-{@+1)/2{(z) is a
bounded linear transformation from H2(U!, C€) into A2.¢(yl, €). But for

f e H3(U!, ©),

S 1£(z) (1 - 2)-(@F1)/212(1 - 2|9 %dp(z) < zaS |£(z) (1 - 2)71/2|% dv(z) ,

which is bounded by Lemma 6.2.

Now let ¢ be analytic and non-vanishing on U!, and suppose the linear map
f — f¢1/2 is a bounded linear map of H2(U!, C) into A2 %(Ul, C). Then for each
p € [1, =), the linear map S, defined by S,f(z), -, zp) = f(z)H?zl o(z) /P isa
bounded transformation from HP(U", E) into AP-%(U"™, E). This follows from the
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factorization theorems 2.1 and 2.2, and the observation that AP,%(Un, E) is canoni-
cally isometrically isomorphic to AP-@(Uk, AP.@(gn-k E)).

Finally, set ¢(z) = (1 - z2) to obtain Proposition 6.1.

7. INTERPOLATION IN A%'®

In this section, which was largely inspired by Shapiro and Shields’elegant appli-
cation of the classical theory of quadratic forms to interpolation theory [13], we
shall prove the following more specific version of Theorem 1.3.

THEOREM 17.1. Lel « = (ai);il be a sequence in U". Then theve exists
a >0 such that o is A%%(UM, C) interpolating if and only if A is separated.
Furthermove,

(1) 1f 0 <6 < 1/2 and the sequence of polydisks (U™(a;, (1 - |a; |2)6))?;1 is

pairwise disjoint, then £ is A2,2(UM, C) intevpolating for all o such that
(6-2n - 1)(1 - 82)(@-2)/2 < 1,

(ii) If 0 <6 <1 and A is sepavated with sepavation bound 6, then < is
A2,%(Un | C) intevpolating for all a such that (42 6-2n - 1) (1 - 82)(@-2)/2 < 1,

The machinery for proving Theorem 7.1 comes in three parts. First we have
the following theorem.

THEOREM 17.2. (i) If 0 <6 < 1/2 and 4 has the property that the polydisks
U™(a; , o(1 - lai|2)) ave paivwise disjoint, then Tg;zo‘(Al"’a(Un , E)) C (P(E). In fact,
if @€ (0, =), TP < (3)*"/PMax[32/P, 6-27/P]. If a =0, then

p,0 -2n/p
I2/ <5 :
(i) If 0< 86 <1 and A is sepavated with constant 6, then
TP X (AP Y (U™, B) C (P(B).

In fact, for a € [0, =), “TF:e’Ia “ < (3)an/P(4/6)2n/p.

Proof. Statement (ii) follows from statement (i) and inequality (1). The proof of
statement (i) is modelled on the Shapiro-Shields proof for the special case of
A%:0(ul | ©) [13, p. 530].

Let r; = 6(1 - |a;|2). Since |f(z)|P is n-subharmonic,

TP < 672 rn IL(1 - |y |2 5 |#(z)|P dy .
Un(ai,ri)

Here, dv is Lebesgue measure on C*. If a > 0, assume without loss of generality
that 0 < 6 < 1/3, and apply inequality (12) to conclude that

| TP *£|P < (3%/6% 7)" 5 |1(z)|P II (1 - |2]%)%dw.
1 UMa;,r:)

1’71

We obtain the desired bound on |]TE’;¢O‘ ” by summing the above inequalities over
all i.

The next step in the proof of Theorem 7.1 is:
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THEOREM 17.3. Suppose A is APY(U", E) interpolating for some non-trivial
Banach space E, some p € [1, ©), and some a € [0, ©). Then A is separated.

Theorems 7.2 and 7.3 show that if TE’"la(Ap*a(Un, E)) D LP(E), then in fact
T%Q(Ap’a(Un, E)) = (P(E) and TE&O‘ is a bounded linear operator from AP-%#(U™, E)
to (P(E).

To prove Theorem 7.3 we need:

LEMMA 7.4. Suppose b € U™ and c € U™b, (1 - |b|2)e) for some ¢ € (0, 1/4).
Let 1<p<«, 0<a <%, gud f € AP¥(U", E). Suppose f(b) =0. Then

[£(c)|P II (1 - ICIZ)O“LZ < ePcC(n, p) ”f“zp,a ,» wheve C(n, p) is a constant depending
only on n and p.
Proof. Since f(b) = 0, we have

lt(e)| < (HS"Z) 70 S |K((w - b)/s, (c - b)/s) - 1] - |f(w)| dv(w),

U™(b, s)
n -
where K(a, B) = Hi:l (1 - @;B;)7? is the Bergman kernel for U™, and
s = (1-|bl?)/2.

Since lcj - bj!/sj <2 <1/2, for j=1, 2, ---, n, an application of Lemma 4.5
gives |K((w - b)/s, (c - b)/s) - 1| <20n6™ !¢ = C_e. Hence

|1(c)| < (HS-Z) 70 S\Un(b )Cn € lf(w)] dv(w)

1/p
. | f(w)P dv(w):l .
U(b,s)

<c,e [ O3 |
By substituting s = 1/2(1 - |b|?), raising both sides of this inequality to the pth
power, multiplying both sides of the resulting inequality by II (1 - Iblz)a+2 , and
applying inequality (12), we obtain the desired estimate on |f(c)[P Il (1 - |c|?)®*2.

Proof of theovem 1.3. Suppose « is AP'¥(U", E) interpolating, and .« is not
separated. Then .« is AP-®(U™, C) interpolating, and by Proposition 3.1, there
exists a constant M and a sequence of functions (f;).; in AP*%(U", €) such that
I£:ll ,p, @ <M for all i, and TP-*(f;) = (6;;);2; where 6&;; is the Kronecker .

Since & is not separated, there exist integers i and j, such that i # j but

p(a;, a;) <e/2, where £ € (0, 1/4) and is so small that P C(n, p) MP < 1/2, where
C(n, p) is as in Lemma 7.4. But, by inequality (1), a; € Un(aj, (1 - laj| 2)e), so by

Lemma 7.4, |t;(a;)|P II(1 - |a;|9)%*2 < 1/2. This is a contradiction.

The third part of the machine needed to prove Theorem 7.1 is the following
result of J. Schur:

Let A = (aij) be an infinite Hermitian matrix. Schur proves that if
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Zilagl <M forall g,
J
then A defines a bounded operator on £ and I]A“ < M [12, p. 6].
We also need to observe that A%:®(U™, C) is a Hilbert space under the inner

product <f, g> =(a+ 1)27g 7" S f(z) g(z) I - lziz)adv. The reproducing
Un

kernel for A% (U™, C) is K,(z, w) = I - W’)'(OH'Z).

Proof of Theorvem T.1. The only if part of Theorem 7.1 follows from Theorem
7.3. The if part will be disposed of by proving statements (i) and (ii). Let us first
consider statement (i). Since

UMy, (1- [a;|)0) NUMay, (1- |a]2)06) =9 ifiz],
|T2°| < 6™ by Theorem 7.2.

For each i, let o(z) = II(1 - Iailz)/(l - éiz)z, and let

0i; = H(l - |ajl2)01(aj) = H((l - Iailz)(l - lajlz))/(l" iiaj)z) .
Then 0 ; € A%:0; Hoi“AZ,O =1; and 0 = 1.

Consequently, for all i,

o0

D Joyl? = T30 1% - 1 < TR o 12 -1 < 020w,
j#Fi
j=1

By inequality (1), p(aj, aj) > 6 if i # j. Thus for each i # j,
los5] < 1-(plag, a)? < 1- 62,
Now let a@ be so large that (672 - 1)(1 - $2){@-2)/2 <1, Then for all i,

(13) IUUI (@+2)/2 _ IU |2|0 l(a -2)/2 < (6720 - 1)(1 - 62)(a_z)/z <1,
_]?‘:1 j#i
j=1 j=1

Let B be the inner product matrix of normalized A% ¥(U™, C) reproducing
kernels, B = ((0;;)(*"2)/2);;. Then ||I - B|| < 1 by inequality (13) and Schur’s re-
sult quoted earlier, so B is invertible. Consequently, Ti*{a carries Az’a(Un, C)
onto £2 (cf., [13, Theorem 3]). (This follows easily from the fact that B is the
matrix of TZ’ a TZ' a*)

Statement (ii) follows from the same argument, since ||T || = 47/6™, and
pla;, a;) > 6 if i # j. This concludes the proof of Theorem 7.1.
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It is easy to show that the minimal norm interpolating function in AZ.Q(yn , C)
is unique and is a sum of reproducing kernels. From this we can show that minimal
norm interpolation can be done linearly.

An immediate corollary to Theorem 1.3 is the following counterexample which
should be compared to Theorem 1.1.

COROLLARY 17.5. Theve is a sequence which is HZ(U5 , C) interpolating, but
not uniformly separated.

Proof. Let 1/2 < 6 < 1 be such that 63(1 - 62)1/2 < 1. Construct a sequence
« 1 =(a)).; € U! which is separated, with separation bound 8, but not uniformly
separated. Theorem 7.1 and the choice of 6 guarantees that «; is A2:3(U!l, C)
interpolating.

Now let « =((a;, a;, a;, a;, a;));=; € U?. I f is a function defined on U™
and z € U, let (21 (z) = f(z, 2z, *--, z). Then @ maps H%(U™, C) onto

AZ,n-2(Ul , C)

[11]. Clearly as maps from H%(U>, C) to £2, Tfj’ - g = Tid . Since Tif and @

are surjectiveg o is HZ(U5, C) interpolating. Since «+Z, is not U.S. in UI, & is
not U.S. in U°,

The above corollary is a weaker result than that in [1], in which an HZ(UZ, C)
interpolating sequence that is not U.S. is exhibited.
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