A NOTE ON THE X-OPERATOR OF AN [FIA] GROUP

R. J. Archbold

An [FIA] group is a locally compact group G for which the set of inner automorphisms I(G) is relatively compact in the (topologized) group Aut(G) of all topological automorphisms of G. For such a group, Mosak [4] has constructed a mapping $a \to a$ from the C*-algebra C*(G) onto its center Z. This mapping is a center-valued trace, and in this note we show that it is related to an averaging process in C*(G) similar to Dixmier's process for obtaining the trace in a finite von Neumann algebra [1; Chapitre III, Sections 5, 8].

We begin with some definitions and notation. G will be understood to be an $[FIA]^-$ group, A will denote its C*-algebra C*(G), and \widetilde{A} will denote the C*-algebra obtained by adjoining an identity 1 to A (except in the special situation where A has an identity, in which case \widetilde{A} should be taken as equal to A). We will denote closure in the norm topology of A by norm-c ℓ , and convex hull by co. If $\beta \in Aut(G)$ and f is a complex valued function on G, then $f^{\beta}(x) = f(\beta^{-1} x)$ ($x \in G$). If f is continuous, then

$$f \mathbb{X}(x) = \int_{I(G)^{-}} f^{\beta}(x) d\beta$$

where $d\beta$ is the normalized Haar measure on the compact group $I(G)^-$. For further details, including the definition of a^{β} and $a^{\frac{1}{N}}$ when $a \in A$, we refer the reader to [4].

THEOREM. For each $a \in A$, $a^{\times} \in \text{norm-cl}$ co $\{u^*au : u \text{ unitary in } \widetilde{A}\}$.

Proof. Since the X-operator is linear and norm-decreasing [4; 1.5], a simple approximation argument shows that it suffices to consider the case where a is a continuous complex-valued function on G with compact support. By [4; 1.4],

(1)
$$\mathbf{a}^{\mathbb{X}} \in \operatorname{norm-cl} \operatorname{co} \left\{ \mathbf{a}^{\beta} \colon \beta \in \mathbf{I}(\mathbf{G})^{-} \right\}.$$

Furthermore, since $I(G)^-$ is a subgroup of Aut(G), it follows from [4; 1.0] that if $\alpha \in I(G)^-$ then

(2)
$$a^{\alpha} \in \operatorname{norm-c} \{ a^{\beta} : \beta \in I(G) \}.$$

In view of (1) and (2), it suffices to fix $\beta \in I(G)$ and show that

(3)
$$a^{\beta} \in \text{norm-cl co} \{u^* au: u \text{ unitary in } \widetilde{A} \}.$$

Let π be the universal representation of A (extended to \widetilde{A} by defining $\pi(1)=1_{\pi}$), and let π also denote the associated unitary representation of G. Let $x \in G$ be such that $\beta(g)=x^{-1}gx$ ($g \in G$). From the proof of [4; 1.2] and the discussion of $\Delta(\beta)$ which follows it, we obtain $\pi(a^{\beta})=\pi(x)^*\pi$ (a) $\pi(x)$. Since (by the double commutant theorem) $\pi(x)$ lies in the von Neumann algebra generated by $\pi(A)$,

Received May 17, 1977.

Michigan Math. J. 24 (1977).

it follows from [3; Theorem 2] that there is a net (u_λ) of unitaries in \widetilde{A} such that $\pi(u_\lambda) \to \pi(x)$ in the strong operator topology τ_s . Since each $\pi(u_\lambda)$, and also $\pi(x)$, is unitary, it is also true that $\pi(u_\lambda)^* \to \pi(x)^*$ (in τ_s). Hence

$$\pi(u_{\lambda})^* \pi(a) \pi(u_{\lambda}) \rightarrow \pi(x)^* \pi(a) \pi(x)$$
 (in τ_s),

since multiplication is jointly $\,\tau_{\,\mathrm{S}}\text{-continuous}$ on norm-bounded sets of operators. Thus

$$\pi(a^{\beta}) \in \pi(A) \cap [\tau_s - c\ell \operatorname{co} \{\pi(u)^* \pi(a) \pi(u) : u \text{ unitary in } \widetilde{A}\}]$$

$$= \operatorname{norm-c} \ell \operatorname{co} \{\pi(u)^* \pi(a) \pi(u) : u \text{ unitary in } \widetilde{A}\},$$

the equality holding by [2; V.2.14] since a linear functional on $\pi(A)$ is τ_s -continuous if and only if it is norm-continuous. Since π is an isometric *-isomorphism, (3) now follows.

Remark. By defining $1^{\times} = 1$, the --operator can be extended to a continuous linear mapping from \widetilde{A} to $Z + \mathbb{C}1$ such that $(ab)^{\times} = (ba)^{\times}$ (a, b $\in \widetilde{A}$). Slight modifications of the arguments used in [1; p. 254, Corollaire] then lead to the following facts:

- (i) For each $a \in A$, $Z \cap [norm-cl co \{u^* au : u unitary in \widetilde{A}\}] = \{a^{\times}\}$.
- (ii) The X-operator is the only centre-valued trace on A.

REFERENCES

- 1. J. Dixmier, Les Algèbres d'opérateurs dans l'espace Hilbertien. 2^e éd., Gauthier-Villars, Paris, 1969.
- 2. N. Dunford, and J. T. Schwartz, *Linear Operators*, *Part I.* Interscience, New York, 1966.
- 3. J. G. Glimm and R. V. Kadison, *Unitary operators in C*-algebras*. Pacific J. Math. 10 (1960), 547-556.
- 4. R. D. Mosak, The L¹- and C*-algebras of [FIA]_B groups, and their representations. Trans. Amer. Math. Soc. 163 (1972), 277-310.

Department of Mathematics University of Aberdeen Scotland