GROWTH CONDITIONS AND UNIQUENESS FOR WALSH SERIES
William R. Wade

Let ¥y, ¥, --- denote the Walsh functions defined on the group 2% (see [2]).
Let F be a finite-valued function belonging to L!(2%), and let E* be a countable

subset of the group 2%. Skvortsov [5] has shown that if S = 27 a, ¥, is a Walsh
series satisfying

(1) lim inf Szn(x) < F(x) < lim sup Szn(x), x¢dE",

n—oo n — oo

and if a; converges to zero as k — «, then S is the Walsh-Fourier series of F.
Crittenden and Shapiro [1] have studied Walsh series which satisfy the weaker
growth condition lim, _,,, 27" Szn(x) =0, x € 2%, Under this condition, they showed

that if the right-hand side of (1) holds, and if

(2) lim sup ISzn(x)| <w, x¢gE*,

n-—oo

then S is a Walsh-Fourier series.

We shall obtain the following result concerning uniqueness under an even weaker
growth condition.

THEOREM. Lef S = 2 a; ¥y be a Walsh sevies and suppose that (1) holds for
a finite-valued integrable function F and a countable subset E* of the gvoup 2%.
Suppose fuvther that

(3) liminf2 S (x) <0< limsup2"8S (x), xe E*UD*,
Zn —_— —_— 21’1

n —>o0 n —co

wheve D* is the set of points in the gvoup 2% which teyminate in 0’s ov terminate
in 1’s. Then S is the Walsh-Fouvrier series of F.

Our result generalizes Skvortsov’s theorem, but it does not generalize Critten-
den and Shapiro’s theorem. Instead, it restores the left-hand side of (1) in order to
get rid of hypothesis (2). In connection with this, it is interesting to note that
éaginjan [4] has shown that condition (1) holds off a set of measure zero whenever (2)
is satisfied. Hence, our theorem shows that if we insist that this null-set be count-
able, we can discard (2) altogether. For other related results, see [6] and [17].

To prove the theorem, for each x € [0, 1) set f(x) = F(u(x)), ¥(x) = ¥(u(x)), and
s(x) = S(u(x)), where p is Fine’s map from [0, 1) to the group 2¢ (see [2]). Extend
f and s to (-, ) as periodic functions of period 1. Let E = u-1 E*, and let D be
the set of dyadic rationals.
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As in [1] and [3], set HG) = | £(9) dt and L) = Dyog a ("9 ® at, and ob-
0 0

serve that L exists for every dyadic rational x. Use the Vitali-Carathéodory theo-
rem to choose absolutely continuous functions g and hy, k=1, 2, ---, such that

H(x) = lim g (x) = lim h(x), xe€ [0, 1),

k— oo k >0

and such that the derivatives of g (respectively, h,) are less than (respectively,
greater than) f at each point in [0, 1).

Fix an integer k and set G(x) = g)(x) - L(x), x € D. What properties does G
inherit from hypotheses (1) and (3)? Recall [2] that szn(x) = 2" [L(B,(x)) -~ Lia,(x)],

where a,(x) = p/27, B,(x) = (p +1)/2", and p is an integer satisfying
p £2"x <p+ 1. In particular, since all the derivatives of g1 are less than f{,

lim inf 2™ [G(B,,(x)) - G(e,(x))] < f(x) - lim sup S, n(¥) .

n— o n—co
Hence, by hypothesis (1), we conclude that

(4) lim inf 2" [G(B,(x)) - G(a,(x))] < 0, x¢E.

n—oo

Similarly, since g, is continuous,

lim inf [G(B,(x)) - Gla,(x))] = -lim sup 2"ns2n(x) .

n-— oo n — oo

Hence, by hypothesis (3),

(5) lim inf [G(8, (x)) - Gla,(x))] < 0, x€E.

n-—oo
Finally, if we set a '(x) = a,(x) - 27 for x € D, then
Gla,'(x)) - Gx) = 2778 (n'(x))
[1, p. 553]. Since p'(x) € D* when x € D, we conclude from (3) that

(6) lim sup G(o,'(x)) > G(x), x€ D.

n — o0
Lindahl [3] has shown that conditions (4), (5), and (6) are sufficient to conclude

that G is increasing on D. And by considering -G, we can show that G is decreas-
ing on D. Hence, G is constant on D, and upon letting k tend to «, we conclude that

(7) L(x) =5 ft)dt, xe D.
0

It suffices, therefore, to prove that s is the Walsh-Fourier series of f when (7)
holds. Crittenden and Shapiro [1] established this in the special case that f = 0.



GROWTH CONDITIONS AND UNIQUENESS FOR WALSH SERIES 155

Their proof was by induction, and if we use the fact that certain linear combinations
of Walsh functions are Haar functions, we can obtain the general result in much the
same way.

However, N. R. Ladhawala has suggested a much simpler proof which uses the
fact that each Walsh function is a step function with jumps at dyadic rationals. In-
deed, fix k and choose dyadic rationals «;, 8; so that Yx(x) = ¢1(e;), x € [a;, B),
and so that [0, 1) is partitioned by the intervals [a;, B;). Then by (7),

{ () () dx 2 § 1y dx = T yyey) [LE) - Lia))
0

B n
27 z,!/k(ai) lim 2 apyy(t)dt

i n— oo Olﬂl

B;
But S Yp(t)dt = 0 for £ large, so there exists an ng > k such that
a5

S 1) Y0 dx = 20 g e S Z‘ ag¥o(t)dt .

a; £=1

1 1 1‘10
Hence, S f(x) Y (x) dx = S Y () 27 g=1 2g¥(t)dt = ay, by orthogonality of the
0 0

Walsh functions.
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