ADJOINT REPRESENTATIONS OF FACTOR GROUPS
Arthur Lieberman

Let A be a von Neumann algebra which is a factor, and let G denote either the
unitary group of A or the group of invertible members of A. The adjoint represen-
tation ¢ of G is defined by ¢(U)T = UTU-! for all Ue G, T € A. Below we deter-
mine all norm-closed subspaces of A which are invariant under the action of G.

If P, Q are projections in A, we write P < Q if there is a partial isometry
V € A such that V¥V =P and VV* < Q. We write P~ Q if P<Q and Q < P; that
is, if there is a partial isomeiry V € A such that V¥V =P and VV* = Q. We write
P< Qif P<Q and P+ Q. If A is a factor, then for any projections P, Q € A,
either P<Q or Q <P [2, p. 218].

If T € A, let R(T), the range projection of T, be the least projection P € A
satisfying PT = T. Let S(T) be the subspace spamed by {UTU-1: U € G} and let
CS(T) be the norm closure of S(T).

We now recall the ideal structure of a factor. Throughout this paper, ideal
means norm-closed ideal. If A is a finite factor, then A has no proper ideals [2,
p. 257]. If A is of infinite type, then the set of ideals of A is well-ordered by set
inclusion [7, 8]. If A is type I, or type Il , then the minimal ideal of A, here-
after denoted K, is the uniform closure of {T € A: R(T) is a finite projection}; the
members of K are called compact operators. If A is type Io or type Ilo, then K
is the unique minimal proper ideal of A. If A is of infinite type, the unique maximal
proper ideal of A is denoted by J; if A is type III and simple, we define J by

J={0}.

We denote the identity operator by I. If A is semifinite, we denote by tr the
trace on A.

THEOREM 1. Lel A be a finite von Neumann algebra factor, let G be either
the unitary group of A ov the group of invertible members of A, and let ¢ be the
representation of G on A defined by ¢(U)T = UTU-! for all Ue G, T € A. Then G
acts itrveducibly on {7\1: A€ C} and on {T € A: tr(T) = 0}. Furthermore, these
are the only proper invariant subspaces for the action of G on A.

THEOREM 2. Let A be an infinite von Neumann algebva factor, let G be either
the unitary grvoup of A ov the group of invertible members of A, and let ¢ be the
representation of G on A defined by $(U)T =UTU ! forall U e G and T € A. The
propey invaviant subspaces for the action of G on A ave precisely {\l: x € C}, the
proper ideals of A, and for each pvoper ideal ¥ of A, {\l+T:x e C and Te I}.
The nontvivial ivveducible subspaces fov the action of G on A ave {M: )\ € C} and
(if A is not simple) the minimal propevr ideal of A.

If A is a factor of type I or type II, there is associated with A the Hilbert
space L2(A) (see [5]). L2(A) is the completion of the pre-Hilbert space
{T € A: tr(T*T) < =} with respect to the inner product <S, T> = tr (T*S). L2(A)

is a *-algebra, and A acts in a natural manner on LZ(A).
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THEOREM 3. Let A be a factor of type 1 or type U, let G be eithev the uni-
tary group of A ov the group of invertible members of A, and let ¥ be the repre-
sentation of G on L2%(A) defined by ¥(U)T = UTU"! for all U e G, T e L2(A). If A
is finite, then L2(A) = {0xl: x e C} @ {T € L2(A): tr (T) = 0}, and each of these two
divect summands is invarviant under the action of G and is acted on ivveducibly by
G. If A is infinite, then G acts ivveducibly on L (A)

Before giving the proofs of the theorems, we make some observations.

Remark 1. The only nontrivial fact to be proved is that the subspaces listed
above are the only subspaces which are invariant under the action of G. Since the
unitary group of A is a subset of the group of invertible members of A, it suffices
to prove the theorems when G is the unitary group of A. Therefore, for the re-
mainder of this paper, we assume that G is the unitary group of A.

Remark 2. Let T = B +iC be the cartesian decomposition of T. Let D be a
self-adjoint operator which commutes with B. Then

eitD Te—itD -T = i(eitD Ce—itD - C) - i[ (eitD _ I) Ce—itD - C(I _ e-itD)].

Dividing by t and taking the norm limit as t — 0 yields (DC - CD) € CS(T). If T is
not normal, D can be chosen such that DC - CD # 0, so CS(T) contains a nonzero
self-adjoint operator.

LEMMA 1. Lel A be a finite factor and let P be a projection in A with
P#0,I. Then CS(P) = A

Proof. By the cartesian decomposition and the spectral theorem, it suffices to
prove that CS(P) contains all projections in A. By the comparability of projections,
it suffices to prove that if 0 <X < 1/2, then CS(P) contains a projection Q with
tr (Q = . Since I € CS(P) [2, p. 254, Corollary], we may assume (replacing P by
I - P if necessary) tr (P) < 1/2. Let 0 <X < 1/2, and let Q be a projection in A
such that tr(Q) =X and PQ = 0. Apply [2, p. 254, Corollary| to P considered as a
member of the von Neumann algebra (P+QA(P+Q H(I-P-QA(I-P-Q) to
obtain (P + Q) € CS(P).

Proof of Theovem 1. It suffices to show that if T € A, T ¢ {M: A€ C}, and
tr (T) # 0, then CS(T) = A. Let T satisfy the above conditions.

Assume first that T is normal. Since I € CS(T) [2, p. 254, Corollary], we can
add a scalar to T, if necessary, to assure that the spectral projection Q of T for
the open right half- -plane satisfies Q # 0, I. Apply [2, p 254, Corollary]to T as a
member of the von Neumann algebra QAQ() I-QA(- Q) to obtain

(tr (QT) /tr (Q)Q + (tr (I - QT) /tr I - QNI - Q) € CS(T).
Since tr (QT) has positive real part and tr ((I - Q)T) has nonpositive real part,

forming a suitable linear combination with I yields Q € CS(T).

If T is not normal, by Remark 2, CS(T) contains a nonzero normal operator
T, with tr (T,) = 0. Apply the previous part of the proof to T, + I

LEMMA 2. Let A be a lype 1, ov type Il factor, and let T be a compact
opevator. Then CS(T) contains a nonzevo finite vank projection.

Proof. By Remark 2, CS(T) contains a nonzero normal operator, so we may
assume that T is normal. Let P be a spectral projection of T such that tr(P) <
and tr (TP) # 0. Apply [2, p. 254, Corollary], and [6, Theorem 10] to the operator



ADJOINT REPRESENTATIONS OF FACTOR GROUPS 111

TP @ T(I - P) considered as a member of the von Neumann algebra
PAP®(I - P)A(1 - P) to obtain P € CS(T).

LEMMA 3. Let A be a type 1, or type 1l factor, and let T be a compact
opevator. Then CS(T) = K.

Proof. By Lemma 2, CS(T) contains a nonzero finite rank projection P. Let S
be any finite rank operator. Choose a finite rank projection Q such that P < Q and
R(S) < Q. By Theorem 1, applied to P and Q considered as members of the von
Neumann algebra QAQ, S € CS(P) € CS(T). However, the finite rank operators are
norm-dense in K.

LEMMA 4. Lelt A be an infinite factor, and let T genevate the propeyr ideal I
of A. Assume I + K. Then CS(T) = 4.

Proof. Let P, = lub {R(T), R(T*)}. Assume P| € . Let P, be any projec-
tion in A such that P, P, =0 and P; ~ P,. Let P=P; +P,. Then P e 4, and
PTP is not a member of any ideal in the infinite factor PAP. By [6, Theorem 10],
P e CS(T). '

If Q is any projection in A such that QP =0 and Q <P, then (P + Q) ~ P, so
that P+ Q € CS(T) and therefore Q € CS(T). Thus

{Q € A: Q is a projection and Q <R(T)} < CS(T);

this set of projections spans a dense subset of .

If P, ¢ J, let P(A) denote the spectral projection of T*T for the interval
(A, ©). Then R(T*) =1lub {P(A\): A > 0}. Thus if Q <P, then there exists A < 0
such that Q << P(A). Therefore, it suffices to show that P(A) € CS(T) for all x > 0.
Since 4 # K, P(M) is an infinite projection for A sufficiently small; thus we may
assume P()) is an infinite projection.

Let F denote the semigroup with identity generated by T and T*; F is count-
able. Let P3 =1lub {R(SP(A\): S € F}. Then P(A) ~ P;. Then P;TP; is not a
member of any ideal in the infinite factor P3AP3. Apply [6, Theorem 10] to the
operator T = P3TP3 + (I - P3) T(I - P3) considered as a member of the von
Neumann algebra P3AP; @ (I - P3)A(I - P3) to obtain P3 € CS(T). Since
P; ~ P(\), P(A) € CS(T).

LEMMA 5. Let A be an infinite factov which is not countably decomposable, let
T € A, and assume T +A1 ¢ J for any \ € C. Then CS(T) = A.

Proof. Let F denote the semigroup with identity generated by T and T¥*; note
that F is countable. If Q is any infinite projection in A with Q -<I, then
lub {R(SQ): S € F} ~ Q. Thus T reduces many subspaces, and by a routine argu-
ment, there is a projection P € A suchthat P~ 1, (I-P) ~1, and PT = TP.

Apply [6, Theorem 10] to the operator T = PTP + (I - P) T(I - P) in the von
Neumann algebra PAP (D (I - P)A(I - P) to obtain A; P + (I - P) € CS(T) for
some Ap, A, with X} # X,. Since I € CS(T) [6, Theorem 10], forming a suitable
linear combination yields P € CS(T). Now proceed as in the second paragraph of
the proof of Lemma 4.

LEMMA 6. Let A be an infinite countably decomposable factor, let T € A,
and suppose T+ ¢ J for any X € C. Then CS(T) = A.

Proof. If T is normal, let P be a spectral projection of T such that P ~ I and
(I - P) ~ I, now apply the last paragraph of the proof of Lemma 5. If T is not
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normal, let T = B + iC be the cartesian decomposition of T. Without loss of gen-
erality, C +XI ¢ J for any A € C. Let P be a spectral projection of C such that
P~1and (I-P)~1 ByRemark?2, BP - PB e CS(T). If BP - PB ¢ J, then pro-
ceed as in the case when T is normal; by [3, Theorem 3.8], BP - PB + AI ¢J for
any A € C.

If A is type I, the proof is finished since in this case A is a simple algebra.
If A istype I, or type I, note that J =K. If BP - PB € K, then by Lemma 3,
K € CS(T). By [4, Lemma 1], there is an operator D € K such that
BP - PB=DP - PD. Then T - D € CS(T), and (T - D)P - P(T - D) = 0. Now apply
the last paragraph of the proof of Lemma 5 to the operator T - D.

Proof of Theovem 2. The proof of Theorem 2 follows from the ideal theory of
infinite factors and the lemmas. One need only note that if T =AI+ X, where A # 0
and X € J, then by [6, Theorem 10], I € CS(T), so that X € CS(T).

Proof of Theovem 3. If A is finite of type I, then LZ(A) = A as a linear space,
and both are finite dimensional. Thus the two topologies on this space coincide.
Now apply Theorem 1.

Assume now that A is type II;. For bounded operators, the convergence of a
sequence in A implies its convergence in L2(A). Thus if T € A and tr(T) =0, the
closed subspace CSY(T) spanned by ¥(G)T contains, by Theorem 1,

{W € A: tr (W) = 0}; this set is obviously dense in {W € L2(A): tr (W) = 0}.

If T is unbounded and normal, let P be a spectral projection of T such that
PT is bounded and the spectrum of PT contains at least two points. Choose a uni-
tary U in A such that U(I- P) =1- P and UPT # PTU. Then UTU-L - T is
bounded and is in CSY(T). Now apply the previous part of this proof. If T is not
normal, let T have cartesian decomposition T = B +iC. Then CSy/(T) contains the
normal operators eitBTe-itB - T = j(eitBCe-itB - C); for some t, this operator
must be nonzero. Now apply the previous parts of this proof.

Assume now that A is of infinite type. Let T e L2(A); it suffices to show that
CSY(T) contains a nonzero finite rank operator. We may assume that T is normal,
since CSY¥(T) must contain a nonzero normal operator. Let P be a spectral projec-
tion for T such that tr (P) <, TP # 0, and T(I - P) is bounded. By “averaging”
T using unitary operators U satisfying UP = P, one obtains TP € CSy(T).
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