A SELECTOR PRINCIPLE
FOR E% EQUIVALENCE RELATIONS

John P. Burgess

Let J = “2, the space of functions from the set w of natural numbers to
2 = {0, 1} with its topology as a countable product of two-point discrete spaces.
We assume familiarity with the hierarchy of Zn, Hln and Arl1 subsets of J and its
finite Cartesian powers JX. (See e.g., [13], Chapters 14-16.) We will be interested
in equivalence relations E on J which are Zi as subsets of J4. A selector set or
transversal for an equivalence E on J is a subset S C J containing exactly one

element of each E-equivalence class. Our goal is to determine the set-theoretic
strength of the following Selector Principle:

(*) Every Zl equivalence relation on J has a Al selector.

(Let us note right away that any Zl selector S for a Z‘l (or even = 1) equiva-
lence E is automatically Hl and hence AZ, since

= {x: 1Hy(y ¢ S & XEy & x #+ y) }.

Thus in (*) we could have written Z for. Al without affecting the strength of the
principle.)

It has long been known that (*) is consistent with, but independent of, the usual
axioms (ZFC) of set theory. Work of D. Myers [12] provides more detailed informa-
tion. The main contribution of the present paper is as follows: [t is well known that
if every real is constructible, then every Z{ equivalence velation on the veals has a
Ei selector; the converse is not provable in ZFC. This result was announced in [2].

In our work we make use of the following Ramsey-style theorem of Galvin: Le¢
the set [J ] of two-element subsets of J be partitioned inlo finitely many pieces in a
nice enough way (so that for each piece A the corresponding subset

16, ¥): {x, y} e A}

of J2 has the Baire property). Then theve is a pevfect subset P of J such that all
two-element subsets of P belong to the same piece of the paritition. Galvin’s result
was announced in [3] and [4]. Overlooking his work, we rediscovered it and an-
nounced it in [2]. Since no proof has so far been published, with Prof. Galvin’s kind
permission we are including one here.

Section 1 of the present paper contains a survey of known results concerning the
status of (*). Section 2 contains a proof of the partition theorem mentioned above,
and Section 3 a proof of Con(ZFC + (*) + 71(Every real is constructible)).

We wish to thank Profs. Galvin and Myers, as well as E. G. Effros, I. Juhasz,
and K. Kunen, for valuable communications. The referee has suggested many
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improvements in the form and substance of the paper, and has saved us from error
several times. This work originated in conversations with D. E. Miller and R. L.
Vaught.

1. SURVEY OF KNOWN RESULTS

Let us begin by collecting some examples of Ei equivalences on J.

1.1 The Vitali Equivalence. Vitali showed that the equivalence on the real num-
bers obtained by setting two reals equivalent if their difference is rational has no
Lebesgue measurable selector. (See any real analysis text for the proof.) Vitali’s
example can be adapted to J: Fix a reasonable enumeration (u;: i € w) of the finite
subsets of w. For i € w, let h; be the autohomeomorphism of J given by:

x(n) if n ¢ u;,
(hi(x))(n) =

1-x(n) if ne u;.
Define an equivalence by
xEyy <> Hiewhi(x)=y <> dme w ¥n>m x(n) = y(n).

Clearly Evy is Borel, indeed 2(2), and every Ev class is countable. Lebesgue

measure [ on J is so defined that if s € "2 is a finite sequence of 0’s and 1’s and
Jg = {x € J: x extends s} then pJg =2™". (In particular, pJ = 1.) Vitali’s argu-
ment shows: No selecior for Ey is Lebesgue measuvable. An entirely similar
argument shows: No selector for E~ has the property of Baire.

1.2 The Coding Equivalence. Let 7: w X w — w be the bijection
(i, §) = 242§+ 1) - 1.

For x € J, i € w, define (x); € J by ((x);)(j) = x(7n(i, j)), and set

(x) = {&®);ie w}.
Define an equivalence by

xEcy =<—> <x>=<y> <> View dje w (x); = (y); & vice versa.

Clearly E is Borel, indeed Hg. Any Aé selector S for E¢ woﬁld yield a Aé
selector T for Ey as follows: Let K be the A}-deﬁnable function such that

(K(x)); = h;(x) for all x € J, i € w, where the h; are as in Example 1.1 above. Then
for all x, y, we have xEyy <> K(x) EcK(y), so that

T = {x: Byly € S & yECK® & (1)o =%}

defines a =} (hence Al) selector.

1.3 Isomorphism, Define a homeomorphism n*: @2 = @ X ®9 by 7k(x) = x7,
where 7 is the pairing function of Example 1.2 above. For x € J, let 'R, be the
binary relation on w whose characteristic function is n*(x). Let the group w! of
permutations of w act on ®X®2 py letting (gz)(m, n) = z(g(m), g(n)) for g € w!,



A SELECTOR PRINCIPLE 67
z € “X93 and m, n € w. Define an equivalence on J by
xly <> (0, Ry = (0, Ry) <> Hge w! gr*x) = 7%(y).

Iis Ei . This equivalence is intensively studied in {17].

A A% selector S for I would yield a Aé selector T for Ec as follows: Let
HF be the family of hereditarily finite sets (sets x such that x itself, all elements
of x, all elements of elements of X, efc. are finite). Let D C J be the set of all X
such that there exist a nonempty A € J and an isomorphism

7 (w, Ry) — (HF UA, €).

Note that for x € D the associated A and 7 are unique; call them Ay and 7, . It is
not hard to see that for all x € J, x € D if and only if (w, R,). is a model of a cer-
tain recursive 1st order theory omitting a certain recursive type, and from this it
follows that D is Al We can define a Al function F: D — J by setting, for x € D,

(i)  if m (i) € J
(F(x)); = ,  Wwhere i, = the least i € w with 7,_(i) € J.
7. (i,) otherwise

Since for every y € J there is an x € D with Ay, <y> , T={F(x):xeDn S}
provides a AZ selector for Ec. =

1.4 Lebesgue Decomposition. Let Q = {x € J: Ry wellorders w } It is known
that Q is II{, and for @ <w;, Q%= {x € J: Ry« wellorders w intype o} is Borel.
Define an equ1va1ence by xEj )y <> x ¢ Q & y ¢ @)V xly. Ej, is the simplest
example of a E equivalence w1th exactly 8, equivalence classes, and is essentially
due to Lebesgue Clearly any AZ selector for I would yield one for Ejy,.

Let us call S C J a semi-selector for an equivalence E on J if for each E-
equivalence class C, SN C # @, but S N C contains no perfect subset. Then any
semi-selector for E i, is an uncountable set with no pevfect subset. To see this,
suppose S is a semi-selector for Ef, and P C S is perfect. Let C be an Ep,
equivalence class (so C=J - £ or C = Q% for some @), D=P N C. Then D is
analytic, and being a subset of C (1 S contains no perfect subset. So D is countable.
Applying this inthe case of C=J - Q,wesee B=PNQ=P-(PN(J -9)) is an
uncountable Borel set. But since B N Q% is countable for every o, BN Q% must
be nonempty for uncountably many «. This contradicts the classical Boundedness
Theorem: Any analytic A € Q has nonempty 1ntersect10n with only countably many
Qo .

A trick of Solovay’s shows that any =) > selector S for E g would actually yield
a H selector T: By the Kondo-Addison Umforrmzatlon Theorem, we may assume
that S ‘is the projection to the 1st coordinate of a Hl set P C J2 such that for each
X € S there is a unique y € J with (x, y) € P. Let F: J% — J be the function such
that for any x,y € J, if R = Rp(x ,y) then: (i) R linearly orders the odd elements of
w in their natural order, with the exceptlon that the positions of 4n + 1°and 4n + 3
are switched for precisely those n with y(n) = 0, (ii) (i, j) € R for all pairs with i
odd, j even, and for no pairs with i even, j odd, and (iii) for all i, j € w,

(2i, 2j) € R if and only if (i, j) € Rx. It is not hard to see that F is a recursive in-
jection with a Hl range, and that there exists a recursive G: J — J2 such that

F-l=G|range F. Let T ={F(x, y): (x, y) e P} = {x € range F: G(x) € P}. Let
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Ty be a A% set containing one element of J - §, and containing for each n € w one
x € § coding a wellordering of type w + n, and containing no other elements. Then
T =ToU T, isa 1] selector for E .

1.5 A Universal Equivalence. Every x € J can be regarded as coding an inte-
ger i(x), the least i with (x)y (i) = 0 if such exists, and 0 otherwise. Fix a reason-

able enumeration (0t i € w) of the £! formulas of 2nd order Peano arithmetic with

three free variables for elements of J. Let U = {(t, x, y): oy (B, %, y)}. Then
every analytic binary relation T on J has the form of a cross-section

U= 1{(x,y): (t, x,y) € U} of U. We call sucha t an index for T. The smallest
equivalence relation E containing the binary relation T = U, is:

{(x, y): 4ne wdzg, -+, 2z, € I (x=2¢9 & y=2, & Vi<n (z;Tz;;; or vice versa))}.

We leave it to the reader to write down an explicit definition of a Ai function
F: J — J such that F(t) is an index for E¢ whenever t is an index for T. Let E*
be the equivalence:

{(&x, ¥): ®o=Eo & (F(lx)g), )1, (¥)1) € U} .

Then E* is a Zl equivalence which is “at least as complicated as” any other such
equivalence. In partlcular, a Aé selector for E* would yield one for Ev, Ec, E;,

I or any other Z)l equivalence. (Miller [10] constructs a similar “universal” equiva-
lence.)

Let us now turn to the question of the status of the Selector Principle (*). A Zl
good wellordering of J is a wellordering < of J in order type w; such that the re-
lation {(x, y): {y) = {x x' <x}} is Z1. (it then follows that both this relation
and the order < are AZ ) Addison [1] shows that if every real 1s constructible, then
the natural order <; on the constructible universe provides 2 >-good wellordering
of J. (Recent work of Mansfield, improving on earlier results of Friedman, shows
that the existence of any Eé wellordering of J implies, and hence is equivalent to,
the constructibility of every real.) The following establishes the consistency of (%)
relative to ZFC.

1.6 PROPOSITION (Folklore). If every real is constructible, then for every
n>1, every Al (=) (IIrll) equivalence relation on J has a AL (respectively, ml)
(respectively, Zrll) selector.

Proof. Assume every real is constructible, so <;, is a Zé-good wellordering
of J. Let E be an equivalence on J. Then the following set is a selector for E
which, for n> 1, is Il if E is =}, and =! if E is 1l:

{x: T@y(y <{,x & xEy)} = {x: Hy(<y> ={xtx' <, x} & View Wy),Ex)}.

1.7 PROPOSITION. (a) w1 < w, implies Ey has no I selector.
(b) Con(ZFC) implies Con(ZFC + wlL = w; + Ey has no E% selector).

(c) Con(ZFC + There exists an inaccessible cardinal) implies Con(ZFC +
E has no ordinal-definable (OD) selector).

(d) The following are equivalent:

- L___
(i) w, =w,.
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(ii) E1, has a Hi selector.
(iii) Theve exists an uncountable 2% set having no pevfect subset.
(iv) E{ has a E; semi-selector.

(e) Con(ZFC + There exists an inaccessible cardinal) émplies Con(ZFC +
E1, has no OD semi-selector).

Proof. (a) Solovay has shown that if the constructible w,, wlL, is less than
the real w;, then every Zé set has the Baire property. (For a neat version of this
proof see [6].) But as we have noted, no selector for Ev has the Baire property.

(b) Martin and Solovay [9] construct a model where w; ™ = wi, CH fails, and

Martin’s Axiom (MA) holds. But as is shown in [9], MA + 7ICH implies every E
set has the Baire property.

(e) uses Solovay’s result [16] that in the model obtained by collapsing an inac-
cessible, every OD set is Lebesgue measurable.

(d) Mansfield [8] and Solovay [15] establish the equivalence of (i), (iii), and the

existence of a Zé selector for E; . This last trivially implies (iv). By our remarks
on Example 1.4 above, it also implies (ii). By the same remarks, (iv) implies (iii).

(e) again uses Solovay’s model [16].

1.8 COROLLARY (Myers [12]). (*) implies w," = w,, but Con(ZFC) implies
Con(ZFC + w & = w; +71(¥).

Proof. The first implication follows from 1.7(a) or (d), the second from (b).

Though Myers [12] is explicitly concerned only with the equivalence I of Exam-
ple 1.3, implicitly [12] contains many observations akin to 1.7(a)-(e) above. (Note
that since the existence of selectors for I implies the existence of selectors for
Ev, Ec, and Ep, 1.7(a)-(e) have negative consequences for the existence of selec-
tors for 1.)

Myers also makes an argument which may be paraphrased as follows: Consider
a model of ZFC of the form L[x] where x is Cohen-generic over L. With h; as in
Example 1.1, it is readily seen that L[x] = L[h;(x)] and h;(x) is Cohen- genemc, for
every i € w. Standard forcing arguments using the homogeneity of the Cohen forcing
conditions establish that any OD set S in L[x] containing one h;(x) contains them
all. This establishes the following improvement of 1. 7(b) and (c):

(f) (Myers [12]). Con(ZFC) implies Con(ZFC + w;" = w, + Ey; has no OD
selector).

By similar arguments we have established:
(g) Con(ZFC) implies Con(ZFC + w = w; +Ec has no Z}% semi-selector).
(h) Con(ZFC) implies

Con(ZFC + v, = w; +7ICH
+ T1H OD set S VE-equivalence class D (0 < card(S N D) < 250 ,
To entirely clear up this area, it would be desirable to show Con(ZFC) im-

plies Con(ZFC + w; L' = w; + CH+ E has no OD semi-selector). (We omit proofs
of (g) and (h) on account of the partial and technical character of these results.)
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2. PARTITION THEOREMS

Let X be a Polish space (separable topological space admitting a complete
metric). For n < w, we mean by <X>n the nth deleted power of X
{x:1<n): vi<j<n (x; # xj)} with its topology as a subspace (open for n < w and
Gg for n = w) of the Cartesian power X®. By [X]® we mean the set of all n-mem-
bered subsets of X with the following topology: Let &, be the group of permuta-
tions of n. Let &, act on <X>n by setting g((x;: i <n)) = (xg4(;): i <n) for
g € ¥, x; € X. This action induces an equivalence; (x;: i < n)E(y;: i <n) if and
only if (y;: i <n)=g(xi:i <n) for some g € ¥,. It is natural to identify an n-
element subset A of X with the E-equivalence class of some/any enumeration
(x;:1 <n) of A. Then we can impose on [X] the quotient topology <X> "/E. Each
<X>rl is clearly Polish; we also have:

2.1 PROPOSITION. For any Polish space X and n < w, [X]|" is Polish.

Proof. This can be proved in several ways. Put the usual order on the unit in-
terval [0, 1], and the lexicographic product of copies of this order on the Hilbert
Cube [0, 1]®. Any Polish X can be embedded as a subspace of the Hilbert Cube,
and so inherits a linear ordering < which is Gy (as a subspace of X2). Using this
order we obtain a Gy selector S = {(x;: i <n): vi<j<n (x; < xj)} for the equiva-
lence E on <X> ™ for any n < w. S is Polish'in its own right and clearly [X]" = 8.

- Alternatively we could obtain a Gg, hence Polish, selector S by appealing to a

general selector theorem of Kuratowski and Ryll-Nardzewski [7], or we could di-
rectly define a complete metric inducing the topology on [X]™ given one for X.

Let X be a Polish space. P C X is perfect if it is nonempty, closed, and dense
in itself. Thus X itself is perfect if it has no isolated points. Any perfect set has

cardinality 280 Recall that a subset B C X is Baire (has the property of Baire,
is almost open) if there is an open U C X such that the symmetric difference
SAU=(S-U)U (U - 8S) is meager (1st category). The class of Baire sets contains
all analytic sets and is closed under complementation and countable union. It is
readily verified that B C [X]|™ is meager (Baire) if and only if

{(xi: i <n): {x4:1 <n} € B}

is meager (respectively, Baire) in <X >n and equivalently X" . The following
lemma is in Mycielski [11], but we include a proof for completeness.

2.2 LEMMA. Let X be a perfect Polish space, n < w, N C X" meager. Then
there is a pevfect P C X such that <P>n NN = @.

Proof. Fix a complete metric & inducing the topology of X. By an open disk
we mean a nonempty open subset of X of the form {y: 86(x, y) < p} for some x € X
and p > 0. The topology of X™ is generated by products of open disks. Let

N = Ujew Nj, where each Nj is nowhere dense (NWD). This means for any open
disks U;, i < n, there exist open disks V;, i <n, with V; € U; for each i and:
(Vox -+ XV, 1) NNj=¢. A

For each k-tuple s € k9 of 0’s and 1’s and i =0 or 1, let s*i be the (k +1)-
tuple extending s with last term i. We wish to assign to each s e (= Ukew k2)
an open disk Ug in such a way that: '

(i) o-diameter Ug < 27K, for s € X2,
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(ii) closure U, q N closure U_,; = @, for all s.
(iii) closure U U closure Ug,; € Ug, for all s.
s*x0 skl s

(iv) (Ug(g)X *** X Ugn-1)) N Nj= @, for any k, any injective function f: n — X2,
and any j <Kk.

This is easily accomplished. Having Ug for all s € k2, choose U; for
t € (+1)2 to satisfy (i), (ii), (iii), and then use the NWD property of the Nj, j <k,
to refine these U, if necessary to satisfy (iv).

Let P = ﬂkw Usekz Uy . It is readily verified that P is a perfect subset of

X. (This claim is a special case of the “Fusion Lemma? of Sacks; see [5].) If
Xy, **"5 X,_) € P are distinct, there is an m € w such that for all k > m, the
s € X2 to which the x; belong are distinct. By (iv), (x¢, **, X,_1) ¢ N; for every j,

and <P>n NN =@,
2.3 COROLLARY. Let X be a pevfect Polish space, Y a topological space with
a countable base, n < w, f: <X )n — Y a function such that the invevse image of any

open set is Baive. Then theve is a pevfect P C X such that the vestriction of £ to
<P>“ is continuous.

2.4 COROLLARY. Let X be an uncountable Polish space, Y a Polish space,
BCY Borel, n<w, f: B — <X>n a Bovel measurable surjection. Then theve
exist pevfect P C X and continuous g: <P>n — B such that ig = identity.

Proofs. For 2.3, pick for each V in a countable base for the topology of Y an
open U C <X> " such that U A £-1(V) is meager. The union N of these symmetric
differences is meager, and by 2.2 there is a perfect P C X with <P>n NN =¢@.
Clearly f is continuous on <P>n .

For 2.4 we may assume X perfect, since by the Cantor-Bendixson Theorem, X
n
has a perfect subspace X', and f-1( < X' > ) is still Borel. By a lemma of von

Neumann (¢f. [18], 448 ff.), there is a G: <X>n — B with fG = identity, such that
the inverse image of any open set under G belongs to the o-algebra generated by
the analytic sets. Such sets are Baire, so 2.3 applies to yield the required P and

g=G|<P>n.

Theorems 2.5 and 2.6 below were proved a number of years ago by Galvin, and
were later rediscovered by Simpson [14] and the author [2], respectively; we had
overlooked the announcement [3], [4].

2.5 THEOREM (Galvin [3), [4]; Simpson [14]). Let X be a perfect Polish
space, n < w. Then:

(a) If AC <X> " is Baive and nonmeager (2nd category), then theve exist
pevfect P; C X, i <n, such that Hi<n P; C A ' ‘ ’

(b) If <X> "= Ukew Ay, wheve each Ay is Baive, then theve exist k € w and
perfect P; C X, i < n, such that Hi<n P; C Ak.
2.6. THEOREM (Galvin [3], [4]; Burgess [2]). Let X be a perfect Polish space

K<w. If [X]?= Uk< K Ak, where each A\ is Baive, then theve exist a perfect
P CX and a k <K such that [P]%> C Ay.

’
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Proofs. For 2.5, see [14].

For 2.6, we may without loss of generality assume the Ay, are disjoint. We may
also assume that the sets By = {(x, y): {x, y} € Ax} are openin <X> 2. (Other-
wise, apply 2.3 to the map sending (x, y) € (X) 2 to the point k in the discrete
space {0, 1, ---, K- 1} with {x, y} € Ay, to obtain a perfect X' C X such that
this map is continuous on < X‘> 2; i.e., each By N <X'>2 is open. Then replace X
by X'.) We begin by considering the case K = 2.

Solet [X]% =Ag U A, (disjoint), where for k =0 or 1 {(x, y): {x, y} € Ar}
has the form <X > “n Vi for some open V. C X2. We must find a perfect PC X
and a k such that <P>2 C V. If for some nonempty open U C X, U2 C Vg, then
any perfect subset of U will do. If no such U exists, then for any nonempty open
W CX, <W>2 N V; will be a nonempty open set, and there will exist disjoint non-
empty open W', W" C W with W' X W" C V,. In this case, proceeding as in the
proof of Lemma 2.2, we may fix a complete metric 6 on X and define for each
s €¥2 an open disk U, so that:

(i), (ii), (iii) of the proof of Lemma 2.2 hold.

(iv) Ug X Ugy S Vy, for every s.

Then P =ﬂk€w U «. Ug is a perfect set with (P Y2V, and [P]2CA;.

s €72
To extend this result to a partition into more than two pieces Ay, Ay, -+, Ax_y,
proceed by induction: First consider the partition into two pieces A, and
(AyU +--U Ak_}), and if we get a perfect Q with [Q]% contained in the second piece,
consider the obvious partition of this [@]% into K - 1 pieces.

The Axiom of Choice (AC) is not needed for the proof of Theorem 2.6, since the
open sets “chosen” in its proof can all be taken from a countable, hence wellorder-
able, base for the topology of the Polish space X. Solovay [16] shows

ZF (without AC) + (Every set of reals is Baire)

is consistent relative to ZF + (There exists an inaccessible cardinal). From 2.6, it
follows that

8
ZF + (The cardinal k =2 0 (which is not an aleph)
satisfies the Erdds property « — (x)3)

is consistent relative to ZF + (There exists an inaccessible cardinal). By contrast,
under AC this ErdSs property implies that « is (strongly) inaccessible, hyperin-
accessible, Mahlo, efc. The Axiom of Determinateness (AD) also implies this Erdds

R
property for 2 0, since it implies that all sets of reals are Baire.

2.7 COROLLARY. Let X be an uncountable Polish space, R a transitive
binary velation on X which is Baive as a subset of X2, E the induced equivalence
(XEy if and only if xRy & yRx). Then either (i) theve exists an E-equivalence class

of cavdinality 2™o , or (ii) there exists a Bovel subset B of X linearly ovdeved by
R in the ovder type of the veal numbers, ov else (iii) theve exists a pevfect set of
paivwise R-incomparable elements of X.
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Proof. We sketch the proof for X = the real numbers, leaving 1t to the inter-
ested reader to reduce the general case to this case. Partition [X] into four
Baire pieces as follows: If x <y in the natural order on the reals, put {x, y} in
Ag if xEy. Put itin A; if xRy & TlyRx, and in A, if the opposite happens. Finally,
put it in A3 if x, y are R-incomparable. Apply Theorem 2.6 to get a perfect P C X
and a k < 4 w1th [P]2 € Ax. If k =0 we get alternative (i) of the Corollary, and if
k = 3 we get (iii). Since any perfect set contains a Borel subset whose natural order
is order-isomorphic to the natural order on all of X, if k = 1, we get (ii). We also
get (ii) if k = 2, since the reverse of the natural order on X is order-isomorphic to
the natural order.

Note that if X is, say, J, and R is the relation of Turing reducibility (relative
recursiveness), then alternatives 2.7(i) and (ii) are impossible. Thus 2.7 generalizes

8
the old theorem of Sacks that there exists a set of 2 © pairwise incomparable Turing
degrees.

Two examples (apparently known to Galvin, pointed out to us by Kunen) rule out
certain extensions of 2.6.

2.8 Example. Unlike 2.5, 2.6 does not extend to partitions into infinitely many
pieces. For consider the partition of [J 1% into pieces

A= {{x v} x[k=y|k & x(&) * yk)}.

Clearly any perfect P C J must have [P]% N Ay # @ for arbitrarily large k. A,
Taylor has an (unpublished) result to the effect that this is in some sense the “only”
counterexample to the extension of 2.6 to infinite partitions.

2.9 Example. Unlike 2.5, 2.6 does not extend to X3. For let X be the real
numbers, and partition [X]3 into two pieces as follows: If x <y < z in the natural
order on X, put {x,y,z} in Ag if y-x <z -y, andin A; otherwise. Clearly any
perfect subset of X contains triples of both types. Galvin has proved that this is in
some sense the “only” counterexample to the extension of 2.6 to X3. Recently A.
Blass has proved the following general theorem {due to Galvin for n =2 or 3): For

any partition [X Uk < K Ay with the Ay Baire, there exist a perfect P C X and
a subset M C {0 - 1 of cardinality less than or equal to (n - 1)! such that

[Pl c Uk eM Axk.

3. THE SET-THEORETIC STRENGTH OF THE SELECTOR PRINCIPLE (*)

We have seen in Section 1 that (*) implies, but is not implied by, (vl = w,);
also (*) is implied by the hypothesis that every real is constructible. To complete
the picture, we have the following result, which was announced in [2].

3.1 THEOREM. Con(ZFC) implies Con(ZFC + (*) Every Z| equivalence
relation on J has a A% selector + There is no OD wellordering of J).

Proof. We make use of Sacks’ perfect set forcing, for the main properties of
which see, e.g., [5]. A perfect tree is a subset T _c_\‘gz such that: t | n € T when-
ever t € T and n < length t, and for every t € T there exist n > length t and
distinct t', t" € "2 extending t such that t', t" € T. x € J is a branch through a
tree T if xln € T iorall ne w. If T is aperfecttree

#(T) = {x € J: x is a branch through T}
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is a perfect subset of J; while if P C J is perfect,
JP) = {x|nixeP, ne w}

is a perfect tree. Clearly (4 (P)) =P and J(£(T)) =T

Let us start from a countable, transitive model M of ZF + V=L. Let $ ¢ M
be, in M, the Sacks forcing conditions, the set of all perfect trees partially ordered
by inclusion. Let G be P -generic over M, and let N = M[G]. It is known that: In
N, there is no OD wellordering of J.

For all x € J N N, either x € M, or else
Gy = {T € P: x is a branch through T}

is P -generic over M, and N = M[x]. In the latter case, x is said to be a Sacks real
(over M).

Now let 0 be a Zi formula of 2nd order arithmetic which, in N, defines an
equivalence relation E* on J. Define:

Dy = {T € $: Vx,y € N (x, y are branches through T — xE*y)};

D; = {T € $: Vx,y € N (x, y are branches through T & x # y — IxE*y) }.

By standard absoluteness considerations, E = E* N M is defined in M by the same
formula o, and:

Dg = {T € $:Vx,y € M (x, y are branches through T — xEy)};

D, {T € $: VX, y € M (x, y are branches through T & x # y — TxEy)}.

(We use the fact that membership in D; can be expressed as a II condition, and
apply Shoenfield’s Theorem.)

CLAIM. Do U D; is dense in .

To show this, we work “inside” M. Let T € ﬂ3, and let P be the Polish space
#(T) € J. Apply Theorem 2.6 to the partition [P]2 = Ag U Ay, where
Ag = {{x, vy}:xEy}, A; = {{x, y} : xEy}, to obtain a perfect QC P and an i
with [Q]J¢C A;. Then J(Q < T in $ and #(Q € D;, proving the Claim.

From the Claim it follows that if x € J N N is a Sacks real, then x is a branch
through some T € Dy U D;. “Inside” N we thus have: Every element of J is either
(i) constructible (¢ L = M), or else a Sacks real, in which case it is either (ii) a
branch through some T € Dg,, hence E*-equivalent to some constructible element
(viz., any constructible branch through T), or finally (iii) a branch through some
T € D,; i¢.e., through some constructible perfect tree, no two branches through
which are E*-equivalent. To recapitulate, still inside N, for every x € J there
exists an object u € L such that either (a) u € J and xE*u, or else (b) u is a per-
fect tree, no two branches through which are E*-equivalent and having some
branch E*—equlvalent to x. Let us call the <j -least such object u(x); and let f(x)
be u(x) in case (a) or the (unique) branch through u(x) E*-equivalent to x in case
(b); and finally let S = range f = {x € J: f(x) = x}. It is readily verified that, inside
N, S isa Aé selector for E*. (The verification uses the fact that <, yields a le—
good wellordering of J, plus a tedious but routine coding of trees by elements of J.)
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Theorem 3.1 can be slightly extended as follows: A subset E of J2 is abso-
lutely A% if it has E% and Hé definitions which are not merely equivalent, but which

also remain equivalent in any forcing extension of the universe V of set theory (i.e.,
which are forced to remain equivalent by any partially ordered set of forcing condi-

tions). E.g., any finite Boolean combination of Z% and H% sets is absolutely Aé .
Solovay (unpublished) has shown that any absolutely A % set is Baire. It can be shown
that in the model N of the proof of 3.1, every absolutely Aé equivalence has a (not
necessarlly absolutely) AZ selector. We do not know whether the hypothesis that
every AZ equivalence on J has a A2 selector 1mp11es that every real is construc-
tible.

The results of Section 1 hold in “boldface” form. Indeed, Myers [12] states all
his results in this form. Thus the assumption:
(A) dteJ Vxe Jx e Lt]
(which is equivalent to the existence of a (good) PCA wellordering of J) implies:
(**) Every analytic equivalence relation on J has a PCA selector.
This in turn implies, but is not implied by:
(B) AteJ w M = o) .
(It is worth noting that (*) implies (**): Simply apply (*) to the universal equiva-
lence of Example 1.5.)

We do not, however, have a proof of the boldface analogue of Theorem 3.1,
Con(ZFC + (**) + 71(A)), and so the question whether (*¥) implies (A) remains open.
A suitable generalization of Theorem 2.6 might yield an answer (negative), but as the
examples at the end of Section 2 show, it is not so easy to find (and prove!) correct
generalizations of 2.6.
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