A CHARACTERIZATION OF NON-FIBERED KNOTS
Julian Eisner

INTRODUCTION

A tame knot k in S3 is fibered if its complement fibers over st. By the work
of Neuwirth [5] and Stallings [7], an equivalent condition is that the commutator sub-
group of 111(83 - k) be finitely generated. In this paper, we show that a certain sub-
group of a knot group is its own normalizer if and only if the corresponding knot is
non-fibered. To be precise, our main theorem may be stated as follows:

THEOREM. Let k be a tame non-fibered knot in S3, and let F be a minimal
spanning surface [4, Section 7] of k. Let it (83 - F) — (S3 - k) be the inclusion
map, and set U = i*(ﬂ'l(s3 -F)) C 771(83 -K) = G. Then U is its own normalizer
in G.

We remark that when k is a fibered knot, the subgroup U is just G', the com-
mutator subgroup of G, which is normal in G; in particular, since G' is proper, U
is not equal to its own normalizer in this case. We also note that in any case
U C G'. Hence, our theorem implies that when k is non-fibered, Norm(U) = U < G'.

After proving our main theorem, we will use it to show that certain knots have
infinitely many non-isotopic minimal spanning surfaces. More precisely, we con-
struct, for any composite knot K =k # k,, an infinite family of minimal spanning
surfaces, and then, by applying our theorem to the knots k; and k,, we show that if
k; and k, are non-fibered, no two of the minimal spanning surfaces are ambient
isotopic by an isotopy which leaves K fixed at each level.

The author would like to express his appreciation to the referee for his helpful
suggestions concerning the theory of group actions on trees, which helped to make
the proof of the main theorem considerably more elegant.

PROOF OF THE THEOREM

Split S3 along F to obtain a manifold whose boundary consists of two copies of
F, say F; and F,. The inclusions of F; and F; into this manifold induce homo-
morphisms f: 71(F) — 7,(83 - F) and f,: 7(F) — 7,(S3 - F). Since F is minimal,
both f; and f, are injective, by Dehn’s lemma and the loop theorem [5, p. 28]. If
either f; or f, were surjective, then, by the Brown product theorem [1] (see also
[7, Sections 6-10]), (S3 - F) = (int F) x [0, 1], so that k would be a fibered knot.
Therefore, since k is non-fibered, neither f; nor f, is surjective.

If we set G =7,(S3 - k), H=7,(S3 - F), and A =£;(7,(F)), and if we let ¢ be

the isomorphism f; o f;l between A = f;(r1(F)) and ¢(A) = f,(m;(F)), then Van
Kampen’s theorem implies that G is the HNN group
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G = {H, t:t-lat = ¢(a) forall ae A}.

Also, our subgroup U =i,(m;(S3 - F)) € G is just the group H (regarded, naturally,
as a subgroup of the HNN group G). Finally, the fact that neither f; nor f, is sur-
jective implies that A and ¢(A) are both proper subgroups of H.

Using Serre’s construction in [6], we can find a tree I' on which the HNN group
G acts, such that there is a vertex v ¢ I" whose stabilizer I, is H, and for every
edge e incident to v, the stabilizer I, of e is a conjugate in H of either A or o(A).
Since both A and ¢(A) are proper subgroups of H, we have then that I, ¢ I, for

each edge e incident to v.

Now take g € G-1,. Then gv # v, and gl g~ = I,y - Thus if g normalized
I,, then I, would stabilize both v and gv, and hence, since I is a tree, I, would
stabilize all edges and vertices on the unique path between v and gv. In particular,
I, would stabilize some edge e incident to v, contradicting the fact that for such an

edge e, I, g I,. Therefore, no g € G - I, can normalize I, sothat U=H =1 is

its own normalizer in G.

AN APPLICATION

The theorem we have just proved is a useful tool for distinguishing between
spanning surfaces of knots. To illustrate this, we shall reprove the result estab-
lished in [3]: if K =k; # k, [4, Section 7], where k; and k, are non-fibered knots,
then K has an infinite collection of minimal spanning surfaces, no two of which are
(ambient) isotopic by an isotopy which leaves K fixed at each level.

Indeed, let K be the composite of two non-fibered knots k; and k,. Then we
may take a 2-sphere S2 dividing S3 into two 3-Dballs B; and B;, and an arc
a C S2 such that K intersects S% in ga (= two points), (K N B;) U a is the knot k,,
and (KN B,) Ua isthe knot k,. Take minimal spanning surfaces F; and F, for
k; and k,, respectively, with F; N B, =F, N B} =a, and set F = F; U F,, which
is a minimal spanning surface for K (see [4, Section 7]). Take a point x € (S2 - a),
and let R: S2 X1 — S?% be an isotopic deformation of S2 which leaves da fixed at
each level and takes a to itself, such that R(x X I) is a closed path representing a
generator ¢ € m(S% - 9a, x) £ Z. Extend R to an isotopic deformation E of B;
which leaves (K N B)) fixed at each level. Then (E, | B, - K), is the inner auto-
morphism of 7,(B; - K, x) givenby n = ¢-1n¢. (We let ¢ denote its own image
under the maps induced by the inclusions (§2 - K) — (B, - K), (82 - K) — (B, - K),

and (8% - K) — (8> - K).) For each integer j, set F] = (E)i(F|) and F) =FJ U F,,
which is again a minimal spanning surface for K.
 Letil: (B; - Fi) = (B; -K) (j e Z), i, (B, - F,) — (B, - K), and
iJ: (83 - Fi) - (S3 - K) (j € Z) be inclusion maps, and let
Ul = (), (B, -Fl,x) cn(B,-K x) (jeB),

UZ = (iz)*(ﬂl(Bg - F,, X)) < WI(BZ - K, x),
and

U= (1), -F,x) cn83-Kx (e z).
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Since FJ1 = (El)j(Fl), and (E, | B, - K), is the inner automorphism of 171(B1 - K, x)
given by conjugation by C‘l , we see that Ujl =¢- U(l) Cj; for arbitrary integers j and
g, we have UJ = ¢-iul¢d = g-0-0) (g -Lulelgli-0 = ¢ (L yle-2-3),

Note that 7,(B; - K, x) is naturally isomorphic to (83 - k,, x) in such a way
that, for each j, UJi corresponds to the image of m, (83 - FJ1 , X) in 7, (83 - K, , X)
under the inclusion map of ($> - F1) into (8* - k). Similarly, 7,(B, - K, ) is

naturally isomorphic to TTI(S3 -k, X) in such a way that U, corresponds to the
image of m(S3 - F,, x) in 7,(83 - k,, x) under the inclusion map of (s3 - F,) into

(S3 - kz). Thus, we may apply our theorem to conclude that, for each j,
Norm(U?}) = U} c(n,(B; - K, x))', and that Norm(U,) = U, C (r,(B, - K, x))".

Also, 7,(83 - K, x) is a free product with amalgamation

7,(B; - K, x) % (B, - K, x),

and, using the argument in [2], we can find homomorphisms
¢yt 771(83 -K, x) - m(B; -K,x) and ¢, 7 (s3 - K, x) — m(B; - K, x)

such that ¢, | (m{(B; - K, x)) =id, ¢, kills (7;(B,- K,x))", ¢, | (7, (B, - K, x)) = id,
and ¢, kills (7,(B) - K, x))'. Here we are regarding 7, (Bl - K, x) and
711(B; - K, x) as subgroups of 71(S> - K, x) = 7;(B] - K, x) > (B2 - K, x).

Plainly, UJ is the subgroup of 711(S - K, x) generated by UJ cw (B - K, x) and
by U, c m;(B; - K, x). Since ¢1(U ) = U1 and ¢,(U,) =0, whlle qbZ(UJ) =0 and
¢,(U,) = U,, we have that ¢; (UJ) = U{ , while ¢,(UJ) = U,. We note also that if

n;:71(B; - K, x) > Z and n,: 71(B;, - K, x) = Z are the abelianization maps which
take § to 1 € Z, then n; © ¢; and n, ©¢, are also abelianization maps, since they
both map 7,(S3 - K, x) onto Z. Thus, since

n, O(I)I(C) = nl(C) =1= n2(§) = np 0¢2(§)a
we have that n; o¢, =n, o¢,.

Now suppose that Fﬁ is isotopic to Fl by an isotopy which leaves K fixed at
each level. Th1s implies that U{ is conjugate to UJ (see [2], [3]), say UL = gulg-l
where £ € TII(S - K, x). Then

UZ = ¢2(Uﬂ) = ¢2(§Uj§—1) = (‘f)z(&)) (¢2(UJ)) ((f)z(g))_l = (¢2(£)) Uz(qbz(g))_l .

Slnce Norm(U,) € (71(B, - K, x))', it follows that ¢,(£) € (7;(B, - K, x))*, so
n, (E) = 0. On the other hand

Ul = ¢U-Dude-(-i) = ¢ (=il (uh) gD = gL-i(p (puig-ly) g -(L-d)
glE= gy (£)) (,(UD) (9 () "1 &= 18-3) = (- g (£)) Ul (gE-T g (£))-L.

Since Norm(U"}) < (m,(B, - K, x))', it follows that ££-i)¢,(¢) € (7,(B; - K, x))', so

i
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n, (g (E'j)tbl(g)) = 0, and hence n; o ¢,(£) =j - £. However, n; o ¢,(£) =n, o ¢,(£),
so j -£=0,or j=4£L. Thus, F{ is isotopic to FJ) by an isotopy which leaves K
fixed at each level only if £ =j.

Therefore, K has an infinite collection of minimal spanning surfaces, no two of
which are isotopic by an isotopy which leaves K fixed at each level, as desired.
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