PROOF OF THE POINCARE-BIRKHOFF
FIXED POINT THEOREM
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1. INTRODUCTION

The Poincaré-Birkhoff fixed point theorem (also called Poincaré’s last geome-
tric theorem) asserts the existence of at least two fixed points for a so-called area-
preserving twist homeomorphism of the annulus. It was formulated as a conjecture
and proved in special cases by Poincaré [3], shortly before his death. In 1913
George Birkhoff [1] published a proof which, though correct for one fixed point,
overlooked the possibility that this fixed point might have index 0 in deducing the
existence of a second fixed point. This error was corrected in his paper [2] of 1925,
in which a generalization of the theorem in question is proven, with “area-preserv-
ing” replaced by a purely topological condition and “homeomorphism?” replaced by a
more general situation. However, some mathematicians have claimed that this proof
too is incorrect, and the last few years have seen some extensive efforts to try to
find a correct proof for the second fixed point.

We present here an elementary proof for two fixed points which is a simple
modification of Birkhoff’s well known original proof for one fixed point. Our modifi-
cation to get the second fixed point is essentially the same modification that Birkhoff
sketches in the 1925 proof of his topological version to get from one fixed point to
two.

This paper is therefore in a sense an expository paper, and to make the proof
as transparent as possible we shall restrict to the simplest situation—a twist homeo-
morphism of the annulus which is just a rotation by a fixed angle on each boundary
circle. As we point out in a final section, the proof goes through almost word for
word without this restriction. It also extends to more general measures than the
standard Lebesgue measure on the annulus.

Since our proof is so close to Birkhoff’s proof, which has met with some skepti-
cism, we have felt it advisable to give somewhat more detail than would otherwise be
necessary. This is also in keeping with the view of this paper as an expository one.

2. STATEMENT OF THE THEOREM

Let A={P e R%: 1< ||P| <2} be the annulus. In the literature, a homeo-
morphism g: A — A is usually called a “twist homeomorphism?” if it “rotates the
two boundary components of A in opposite angular directions”. This is ambiguous;
an anticlockwise rotation by 6 is the same as a clockwise rotation by (27 - 6). The
usual way to resolve this ambiguity is by going to the universal cover of A: a ho-
meomorphism g: A — A is a fwist homeomorphism if it has no fixed points on 9A
and if it can be lifted to a homeomorphism g: A — A of the universal cover
AZs={(x,y) e R2: 0<y <1} of A which moves the two boundary components of
A in opposite directions.
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Regarding g as a homeomorphism h of S and extending h in a trivial way to
all of R2, we can formulate the theorem we shall prove as follows.

THEOREM. Let h: R% — R be an avea presevving homeomorphism satisfying

hix,y) = (x-ry,y), y>1;

h(X, Y) (X+I‘2, Y), YZO;

h(x + 27, y) = h(x, y) + (27, 0),

Jor some r|, r, > 0. Then h has two distinct fixed points ¥y and F, which are not
in the same periodic family; that is, F| - F, is not an integer multiple of (27, 0).

Remavk. The periodicity condition h(x + 27, y) = h(x, y) + (27, 0) is precisely
the condition that the restrictionof h to S = {(x, y): 0 <y <1} is the lift of a map
g: A — A, via the covering map 7: S — A, 7(x, y) = ({y + 1) cos x, (y + 1) sin x).

Since we are considering the standard area measure dxdy in IR2, it might
seem that we are considering a nonstandard area in A; namely, drdf instead of
rdr d6. But the homeomorphism ¢: A — A given in polar coordinates by
¢(r, 6) = ((r2 +2)/3, 6) takes the one measure to a constant multiple of the other.

To give the proof of the theorem we must first say a few words about rotation
numbers and index. This is the only real topology which enters the proof. It uses
nothing but the most elementary properties of coverings.

3. ROTATION NUMBERS AND INDEX

Tevminology. I P and Q are distinct points of IR2, then the divection from P
to Q means D(P, Q) = (Q - P)/||Q - P|.

Let X C IR2 be a subset and h: X — IR2 a homeomorphism of X into IRZ with
no fixed points, that is h(P) # P for all P € X. If C is any curve in X we want the
index of C with respect to h to be the total rotation that the direction D(P, h(P))
performs as P moves along the curve C. For example, in Figure 1 this direction
makes a total of 1 and 1/2 turns in the clockwise (i.e., negative) direction, so the
index is -(1 and 1/2).

Figure 1
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To give a precise definition, we first define a new map

h: X -8l = {(x,y) e R2: x2 +y2=1}
by
h(P) = D(P, h(P)) = (h(P) - P)/||n(P) - P| .

Then for any curve C: [a, b] — X, since [a, b] is simply connected, we can lift the
composed map hC: [a, b} — Sl to the universal cover of S!:

. C
[as b]—>sl ’

where 7 is the covering map w(r) = (cos(r), sin(r)). The lifting C is unique up to
covering transformations of IR; that is, up to addition of integer multiples of 27.
Hence C(b) - C(a) is independent of the lifting and we can define

Ind, C = (C(b) - C(a))/27.

Pyoperties of index.

1. For a one-parameler continuous family of curves C orv homeomorphisms h
as above, Ind,C waries continuously with the pavameter.

2. If C runs from a point A to a point B, then Ind\C is congruent modulo 1 to
(1/27) times the angle between the divections D(A, h(A)) and D(B, h(B)).

3. If C =C| C, consists of C, and C, laid end to end (that is, C; = C|[a, c]
and C, = C|[e, b] with a <c <b), then Ind,C = Ind,C; +Ind,C,. If -C denotes C
traversed in the vevevse divection, then Ind,(-C) = -Ind, C.

4. IndyC =Ind__; (h(C)).

The first property is a simple application of the homotopy lifting property for

coverings: any homotopy of the map hC: [a, b] — S! lifts to a homotopy of C.
Properties 2 and 3 are trivial. Property 4 is an easy calculation—in fact, to calcu-
late Indh_l(h(C)) we look at the rotation of the direction D(h(P), P). This is 7 plus

the direction D(P, h(P)) used to calculate Ind, C, and it rotates the same way the
same amount.

Finally, for future reference we remind the reader that a relative version of the
homotopy lifting property mentioned above holds: any homotopy of the map hC which
fixes the endpoints hC(a) and hC(b), lifts to a homotopy of C which fixes C(a) and

E(b). Thus to calculate Ind, C, we are permitted to perform a homotopy first on hC
to simplify it, so long as we hold the endpoints fixed.
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4. PROOF OF THE THEOREM

First some notation: let

H, = {(x,y) e R%:y>1},

H. = {(x,y) €e R2:y <0},

S={x,y)e R:0<y<1}.

Now suppose h: R2 — IR2 is as in the theorem; that is, h is area-preserving,
and for some r;, r, > 0,

hix,y) = (x-r;,y), (xy) €H;
hix,y) = x-rp,y), (xy) eH_;
h(x + 27, y) = h(x, y) + (27, 0).

If F is afixed point of h, then so are all its periodic images F + (27k, 0), k € Z.
We suppose h has at most one such periodic family of fixed points and deduce a
contradiction as follows. We shall construct two curves C and C' running from H_
to H, and avoiding all fixed points of h, such that Ind,C = 1/2 = -Ind,C'. This will
contradict the following lemma.

LEMMA. For any curve C running from H_ to H, and not passing through any
fixed point of h,

(a) Ind;C = 1/2 (mod 1);
(b) IndyC is independent of C.

Proof. Part (a) is clear by Property 2 of the index. To prove (b), let Fix(h)
be the fixed point set of h, so either Fix(h) = @ or Fix(h) = fF +(27k, 0): k € Z}.
Suppose further that C;, running from A; € H_ to B; € Hy, i =1, 2, are two curves
in R? - Fix(h). Pick any curve Cj3 from B; to B, in H, and any curve C,4 from
A, to Ay in H_, and let C' be the closed curve C; C3{-C,)C4 (Figure 2). Since
D(P, h(P)) is constant in H, and in H_, Ind,C' = Ind, C; - Indy C,. Thus to show
that Ind), C; =1Ind, C,, we must show Ind, C' = 0. But the fundamental group

71 (R2 - Fix(h), A)) is generated by paths which start from A;, run along a curve
C, to near a fixed point (if there are any), loops around this fixed point, and returns
by -Cy to A;. Hence C' is deformable into a composition of such paths and it is
sufficient to show that Ind;, is zero for any such path (see Figure 3). But any such
path encircling a single fixed point can be deformed into a path C" as in Figure 4.
The contributions to Ind, C" of the top and bottom horizontal sections are both zero,
while the contributions from the two vertical sections cancel exactly, by the perio-
dicity of h. Thus Ind;,C" = 0, and the lemma is proved. The reader may have
realized that we have just proved a special case of the Lefschetz fixed point theorem
for the annulus.

We shall now assume for convenience that the periodic family of fixed points, if
it occurs, lies on the lines x = 0 {mod 27). This can be achieved by a trivial change
of coordinates.

Let W denote the periodic union of vertical strips
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W = {(x, y): 2k + 7/2 < x < 27 + 31/2 for some k ¢ Z},

so W does not contain any of the fixed points. Choose & > 0 such that

This is possible:
compact region

¢(P) =

[P-hP)|>e forall Pew.

25

it clearly suffices by periodicity to satisfy this only for P in the
(%, y): 7/2 <x < 31/2, 0 <y < 1}, and on this region the function
“ P - h(P)I is continuous and positive and hence has a positive minimum.
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Figure 4

Define T: R%? —» R? by T(x, y) = (x, y + (¢/2) (] cos(x)| - cos(x))). Observe that
T is just a constant upward shift on any vertical line (Figure 5), so by elementary
calculus it is area-preserving. Furthermore T moves only points of W, and it
moves each a distance at most €. Hence Th has no fixed point in W, since
P = Th(P) with P € W would imply

e > |Th(®) - a(@) || = |P -n@)] > ¢.
AT r T T
. T 17 . 111
X =-27 X=-7 x=0 X=7
Figure 5

Let us now summarize the course of the remaining argument. We shall show
that there exists a point Py € H_ such that (Th)" Py € Hy for some n. This will
allow us to find a curve C from H_ to H; which is a “flow line” for Th; that is, it
is mapped into itself (except near one endpoint) by Th. However, the index can be
easily calculated for a flow line, and we shall see that Ind,, C is very close to 1/2.
Since Th is close to h, we shall be able to deduce that Ind;, C = 1/2. An easy sym-
metry argument then shows that another curve C' exists with Ind, C' = -1/2, giving
the required contradiction.
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To see that a point Py as above exists, we proceed as follows. Define
D, =H_-(Th)'H, D, = (Th)D, = (Th)H_ - H_,

and more generally

D, = (Th)'D, foriec Z.

1

0 //[/6 1/////// m /////{) 1////////
N Qs

Figure 6

y

Since D) C Int(S) U Hy and Th(Int(S) U H,) C Int(S) U H,, a trivial induction shows
D; C Int(S) U Hy for all i > 1. Similarly, D; C H_ for all i <0. In particular,

D; N Dy =@ for i >0, so by applying powers of Th to this equation we see that

D; N Dy = @ whenever j # k.

Now by “area” we shall mean area in the “rolled up” plane
S! xR = R%/((x, y) = (x+2m,y)).

In this sense each D; has the same area (namely, 2¢), since T and h preserve
area, and hence Th does also. Thus the D; with i > 1 must eventually exhaust S,
which has area 27, and hence eventually intersect H, .

Since D, C (Th)"H_, we have shown that there exists an n > 0 such that
(Th)®H_ N Hy # @. For such an n choose a point P_ € (Th)"H_ with maximal y-
coordinate. Such a P, need not be unique, but it exists, since by periodicity, we
need only look at the compact region Th® (H) N {(x, y):y >0, 0<x <27}, and y
is a continuous function on this region, so it attains a maximum. Define

P, = (x;,y;) = (Th*™P_  for i€ Z,

so P;;; = Th(P;) for all i, and P_;, Py € H_ and P_, P_,; € H,. Let C;, be the
straight line segment from P_; to Py, and let C; = (Th)iC, for i € Z. P, actually
lies on the line y = 0, but we do not need this (Figure 7). Let C = CyC; --- C,_.1C,,
so Th(C) =C;C, --- C,C, ;1. We shall need the following facts about C.

Properties of C
1. The curve CCL1 =Co - Cy has no double points.
2. No point of C has larger y-coordinate than P, .
3. No point of Th(C) has smaller y-coordinate than P_, .

Property 2 is clear by observing that C C (Th)” H_ and that for (%, y) € H_ we
have y <y, <yn+1, by the choice of P,,. Property 3 is proved by an easy induction
using the observation that if Th(x, y) = (x', y') and y >y_;, then y' >y_;. To see
Property 1, suppose two curves C; and C; with i # j intersected in some point
other than the common endpoint which occurs when Ii -j | = 1. By applying a large
negative power of Th, we can make i and j negative. But this would be absurd,
since for i nonpositive C; lies completely in the strip
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Pn+1
.) /—O\Pn = (xpn, yn)
y=1
U L/'Pn'l
Cn+l

Figure 7

and intersects the boundaries of this strip only in its endpoints (because this is true
for C,, and the x-component of (Th)-! in H_ is just translation by -r,). For i# j
these strips intersect at most in a boundary.

We can now calculate Ind.,, C. By construction,
Poy1 = Kpg1s Vng1) =&y -1y, y,+0), 0<6; <e;
Py = (xg,¥9) = (x_; +1r,,y_; +6,), 0<59,<e.
Thus the angle between D(P_;, Py) and D(P_, P_,;) is
6 = 7 - (arctan (6; /r) + arctan (5, /r,))
(see Figure 8), whence
Indy, C = 6/27 = 1/2 - (1/27) (arctan (6; /r;) + arctan (5, /r,)) (mod 1) .

Observe that 0 < 6; < € <r; for i =1, 2, so 0 < arctan (§; /r;) <7/4, so
1/4 < 0/21 < 1/2. We shall show that the above congruence can be replaced by
equality; that is, Ind ; C = 6/2n. Here is an intuitive sketch of the argument.

Ind 1, C is the total rotation of D(P, Q), Q = Th(P), as P moves along C. The
idea is to observe that we get the same total rotation if we first hold P = P_, fixed
and just move Q along Th(C) from Th(P_;) = P, to P,,;, and then hold Q at P
and move P along C from P_; to P,. But now instead of moving Q along Th( r}
and P along C, we can move Q along the straight line segment from P, to P4,
and then P along the straight line segment from P_; to P, . In this situation the
total rotation is easily seen to be as claimed (see Figure 8).
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Figure 8

For the precise argument, parametrize the curve Co by a map [-1, 0] — R?2
and then extend this to a parametrization P: [-1, n+ 1] = IR2 of CC,+] by requiring
Th(P(t)) = P(t +1) for -1 <t <n. Thus P(i)=P; for i=-1,0, «--, n+ 1.

By definition, Indp; C is calculated from
P:[-1,n] — s!, P@) = D), P(t+1).
We can use instead Pg: [-1, 2n+ 1] — S! defined by

_ Pt), -1<t<n,
Py =9 _
P(n), n<t<2n+1.

We now define a continuous family of maps Py: [-1, 2n+1] —» 81, 0 <A <n+2, all
with the same endpoints, such that the final map §n+ 2 is just a monotone angle in-
crease from arctan(6,/r,) through 7 - arctan(6,/r;). Our claim then follows im-
mediately from the remark on homotopy lifting at the end of Section 3.

We define the family ?;\ in two parts.

Part1l: 0 < A<n+1.

D(P(-1), P(t + 1)), -1<t<A-1;

. D(P(t - 2, Pt +1), Ar-1<t<n;

Py(t) =
D(P(t - A), P(n+1)), n<t<n+2;

D(P(n), P(n + 1)), n+tA<t<2n+1.
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Observe that for any A and t as above, P)(t) always has the form D(P(ty), P(t;))
with -1 <ty <t; <n+ 1, and is hence well defined, since CC,;; is a simple curve
(Property 1 of C), so P(tgy) # P(t;).

Part 2. n+1<2<n+2. Let P': [0, n+1] = R% and P": [-1, n] — R? be the
straight line segments from P(0) to P(n + 1) and from P(-1) to P(n), respectively.
For 0< u <1, define

_ D(P(-1), (1 - p)P{t+ 1) + uP'(t + 1)), -1 <t < n;
Pn+l+u(t) =
D((1 - p)P(t-n-1)+pPt-n-1), Pa+1), n<t<2n+1.

To see that this is well defined, we must check that the right-hand side always has
the form D(P, Q) with P# Q. For P=(1 - u)P(t-n- 1)+ uP"(t - n- 1) and
Q=Pn+1), n<t<2n+1, P always has smaller y-coordinate than Q, by Prop-
erty 2 of C, except possibly when t =2n+ 1 or g =0, in which case

P=Plt-n-1 # Plnt+1) = Q,
by Property 1 of C. Similarly, P = P(-1) never equals
Q=(1-uPt+1)+pP{t+1) for -1<t<n,

by Properties 3 and 1 of C.

It is now a trivial trigonometric calculation to see that P, ,(t), -1 <t < 2n+ 1,
is a monotone angle increase by exactly 0, as claimed, whence

Indp, C = 6/2r = 1/2 - (1/27) (arctan (6, /r{) + arctan (6, /r,)) .

Thus we have completed the calculation of Indp; C.

Now define Ty RZ — R? by T4(x, y) = (x, y + (s£/2) (|cos(x)| - cos(x))), so
Ty=id and T; =T. Thenfor 0 <s <1, Indp j, C is defined and

IndehC = 1/2 - (1/27) (arctan(s6, /r;) +arctan(sé, /r,)) (mod 1),

for the same reasons that the corresponding statement held for Th = T; h. But we
have seen that this congruence is actually an equality for s = 1, so by continuity of
Ind, it is an equality for all 0 < s < 1. In particular, for s =0 we get Ind; C = 1/2,
as desired.

We can now repeat the whole argument using h-! in place of h but using the
same T. Everything is then left-right reversed and we get a curve C; with
Indh_1 C, =-1/2. Property 4 of Ind then shows for C'=h-!C, that Ind, C' = -1/2.

We have thus found the curves C and C' giving the desired contradiction to the
lemma.
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5. FINAL REMARKS

In the proof we did not really need that h be an actual translation on each
boundary of S; it suffices that h move the boundaries of S in opposite directions.
For if we extend h in the natural way to all IRZ, it is then no longer area-preserv-
ing on H; and H_. This, however, does not matter since the proof needs only that
h be area-preserving in S.

The proof also easily extends to measures other than the standard area measure
on the annulus. However, the best result we know in this direction, which cannot be
obtained so directly, seems to be Birkhoff’s topological version which replaces “area-
preserving” by the condition: there is no open neighborhood U of one of the bound-
aries of the annulus such that U is contained in h(U) as a nondense subset. Birk-
hoff’s proof follows similar lines to what we have presented here, but the construc-
tion of the “approximate flow lines” C and C' for h, connecting the inside and out-
side of the annulus and having indices +1/2 and -1/2, is much more delicate.

Using a slight extension of the argument described, one can obtain a quite pre-
cise lower bound on the number of components of the set of periodic points of period
exactly n of h: A — A, generalizing the Poincaré-Birkhoff theorem. This bound is
asymptotic to a constant times the Euler function ¢(n). Details will appear in a
paper by the second author.
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