A NOTE ON QUATERNIONIC GEOMETRY
D. E. Blair and D. K., Showers

A quaternionic manifold is usually thought of as a 4n-dimensional Riemannian
manifold (M, g) whose structural group can be reduced to

Sp(n) - Sp(1) = Sp(n) X Sp(1)/+1.

The group Sp(n) - Sp(1) can be considered as the real representation of Sp(n) X Sp(1)
acting on a quaternionic vector space by (S, S;)(V) =S, -V -8, [1, 2, 3]. A qua-
ternionic structure on a manifold is equivalent to the existence of a 3-dimensional
vector bundle Q of tensors of type (1, 1) with local bases of almost complex struc-
tures I, J, K such that K =1J = -JI, and of a metric g being hermitian with respect
to each almost complex structure. It is easy to show that Q is an SO(3) bundle.

Picking local almost complex structures I, J, K, with IJ = K = -JI, define
(1) App C = g(IA, B)IC +g(JA, B)JC + g(KA, B)KC

for local vector fields A, B, C. Then A is independent of the choice of I, J, K and
thus is a tensor field of type (1, 3) on M. The corresponding tensor field of type
(0, 4) is denoted by A. Let X be a unit vector field, let Sx be the set of unit vector
fields Y orthogonal to X such that A(X, Y, X, Y) =1, and let [Sx],, be the subspace
of the tangent space at m generated by Sy . Then A and A have the following prop-
erties:
(i) Axy = -Ayx;

(i) AX, Y, Z, W) = A(Z, W, X, Y);

(iii) A%y Z = -AX, Y, X, Y)Z;

(iv) dim[Sx] , > 2;

(V) AXAYZ X W = g(X, X) AYZ W;

(vi) Ayy = AxvAxz .

We will show that a tensor field A satisfying (i) to (iv) above determines a re-
duction of the structural group to Sp(n) - Sp(1), and additionally, if A satisfies (v)
and (vi), A can be recovered by equation (1). Thus A is analogous to a tensor field
J of type (1, 1) such that J2 = -1, whose existence is equivalent to the reduction of
the structural group to U(n).

THEOREM 1. (M, g) is a quaternionic manifold if and only if M admits a global
tensor field A of type (1, 3) satisfying the axioms (i) to (iv).

Proof. We first show that Y € Sx implies that AxvX =Y. Since

A(X, Y, X, Y) = g(AXY X, Y) =1
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and Y is unit, it suffices to show that Ay X is unit. For this we have by (i), (ii),
and (iii),
g(AxyX, AxyX) = -glA%yX, X) = g(X, X) = 1.
Next we linearize (iii); that is, A}2<(Y+Z)V = -AX, Y +7Z, X, Y+ Z)V gives
(2) AXYAXZV + AXZ AXYV = —ZA(X, Y, X, Z)V .

Thus if {Y, 7} is an orthonormal pair in Sy, Axy and Axgz are local almost
complex structures which anticommute, and their composition Axy Axz is the third
local almost complex structure. Moreover, g is hermitian with respect to these
almost complex structures.

Given a unit vector field X, set Y = IX and Z = JX. Then (1) gives I = Axvy,
J=Axz,and K =AxyAxz; but from the axioms (i) to (iv) alone, we cannot obtain a
formula like (1) with the third almost complex structure of the form Axw for some
W € Sx. For example, one could define A as in (1) using only two of the almost
complex structures; then (i) to (iv) still hold, but (vi) does not.

THEOREM 2. Let (M, g) be a quatevrnionic manifold with tensov field A satis-
fyving (i) to (iv). Then A satisfies (v) and (vi) if and only if there exists an ovtho-
normal triple 1Y, Z, W} C Sx such that Axyw = AxyAxy and

(3) AABC = g(AXYA, B) AXYC + g(szA, B) szc + g(Awa, B) AXWC .

Proof. Assume (v) and (vi) hold. Now if {Y, Z} is an orthonormal pair in Sx,
set W= AxyZ. We then claim that W € Sy and Axw = AxyAxz. First of all,

g(AxvZ,X) = -g(AxvX, Z2) = g(Y, 2) =0
and
glAxyZ, AxyZ) = "g(Ag(YZ’ z) =¢g(z,2) =1,

so we must show that A(X, AxyZ, X, AxyZ) = 1. Linearizing (v), we have

(4) AXAYZVW+AVAYZXW = 2g(X, V)Ayz W
for arbitrary vector fields. Thus in the present case, by (4) and (vi),

Axw = AxXAyyZ = “AzAgyx = -Azy = AxyAxz

and
AX, W, X, W) = glAxyAxzX, AxyZ) = glAxzX, Z) = 1,

as desired.

It is also easy to check that W is orthogonal to Y and Z, so that
dim[Sx] > 3. Infact, dim[SX]m = 3, as can be easily seen in various ways; we
shall show that Axy =0 for V orthogonal to X, Y, Z, and W. By equation (2),
Axv anticommutes with each of Axv, Axz, Axw; but Axw = AxyAxz, so
Ay commutes with Axw. Therefore, AxwAxv =0, but Axw is nonsingular, so
Axvy = 0. Moreover, if V is a unit vector field orthogonal to X, Y, Z, and W, it is
straightforward to check that {AXYV, AxzV, AxwV} is an orthonormal triple
in Sv.
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Finally, we prove the formula (3). It suffices to give the proof for A and B be-
longing to an orthonormal basis. In view of the preceding paragraph, if B ¢ Sp,
both sides of (3) vanish. Also, if B € S, then

B = g(AXYA, B) AXYA + g(szA, B) szA + g(Awa, B) Awa.
Putting this into A, gX and using (v), we obtain
AprpX = g(AxvA, B)Y +g(Axz A, B)Z + g(Axw A, BYW .

Using (v) again, we have

ApC = Axp,pxC

g(Axv A, B)AxyC +g(Axz A, B)AxzC +glAxwA, B)AxwC,

I

completing the proof.

Note that A is not unique on M. For example, let 4, J, and A denote the
following matrices, respectively:

b4

OO =
-0 00

0
0
-1
0

OO ~=O
-0 0O
OR OO
t
OO MO
OO O M-

0
-1
0
0

On M = R®, we can define triples of almost complex structures {I, J, K} and
{r', J', K'} by the following matrices:

=(g 5) 3:(3 2) x=(7 %)

e (79) (8w (F9)

Now define A and A' as in equation (1) using {I, J, K} and {I', J', K'}, respec-
tively. Now it is easy to choose vectors X and Y such that Ayy # Axvy.

Finally, we note the conditions under which different triples {X, Y, 7} give the
same local quaternionic structure. For a triple {X, Y, Z}, denote the pair (or bi-
vector) XAY by 1, XAZ by 2, and YAZ by 3.

PROPOSITION. Let {X, Y, Z} and {X', Y', Z'} be orderved ovthonormal .
triples with Y, Z € Sx and Y', Z' € Sx1. Then Axvy = Axiy', Axz = Axi1z1, and
Axw = Axiywr, where W =AxyZ and W' = Axiy' 2", if and only if Ali, j') = 0;;5.

Proof. The result is almost immediate from equation (3); the only work is in-

volved with the terms involving the W’s. We give two of the computations here, the
other three being similar:

glAxwX', Y') = g(AxAXYZX', Y') = "g(AZAXYxX': Y') = A(3, 1Y);
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Il

g(AxwX', w') g(AxAXY ZX', AX'Y' 7Z') = —g(AZYX', AXIYI Z')

= —g(A \Z,Y) = A3, 3") .
g(XAX'Y‘Z ’ ) ___( )

For example, if X' is a unit vector field orthogonal to X, Y, Z, and W,
{X', Ay yX', Ay, X'} is a triple related to {X, Y, Z} as in the proposition.

Remarks. In [5], M. Obata announced the following theorem.
THEOREM. Let (M, g) be a complete, connected, simply connected Riemannian
manifold, Then M admits a nontrivial solution f of
(VVw)(Z, X, Y) + k(2w(Z) g(X, Y) + w(X) g(Y, Z) + w(Y)g(X, Z)) = 0,
wheve w = df and Kk is a positive constant, if and only if M is globally isometvic to

a Euclidean sphere of radius k-1/2,

Here V denotes the Riemannian connection of g and

TYL)X, Y, 2) = (VxVy)(@) - (Vg y)E).

The important thing to note is that the vector field grad f is an infinitesimal projec-
tive transformation on the sphere (see e.g. [5]).

The corresponding result for quaternionic projective space was obtained by
Maeda [4].

THEOREM. Let (M, g) be a complete, connected quatevnionic Kihlev manifold
of dimension 4n > 8. Then M admits a nontrivial solution f of

(Vv 6)(zZ, X, Y) +k(26(Z) gX, ¥) + 6(X) (¥, Z) + 6(Y) g(X, Z)
- 0(A,yX) - 0(A,y YY) = 0,

wheve 6 =df and Kk is a positive constant, if and only if M is globally isomelric to
a quaternionic projective space with metvic induced from the metric of constant
curvature k on the (4n + 3)-spheve by the Hopf fibvation w: S**3 — PH™,

A solution to this equation on PH"™ may be found by choosing a projectable solu-
tion to the equation of Obata on S4n*3 and projecting it to PH™; it can be shown that
such a solution exists and that its projection satisfies the equation of Maeda (see [4]
for details).
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