THE GENUS OF A CLOSED SIMPLY CONNECTED MANIFOLD
Peter Andrews

Let NH be the homotopy category of nilpotent CW-complexes [8]. If X € NH
has finite type (i.e., all its homotopy groups are finitely generated), then define the
genus G(X) of X to be the collection of all objects of finite type Y € NH such that
Yp is homotopy equivalent to X, for all primes p. Here Xp is the p-localization of
X [8, 15]. A homotopy-theoretic property is said to be generic if it is shared by all
or none of the members of a genus.

In [8], Hilton, Mislin, and Roitberg prove that “being a Poincaré duality space”
and “being S-reducible” are both generic properties. This leads them to ask
whether “having the homotopy type of a closed manifold” and “having the homotopy
type of a closed m-manifold” are generic properties. This paper gives a partial
answer to these questions in the simply connected case. The main results are:

THEOREM A. Let M™ pe a closed, simply connected, piecewise linear (topo-
logical) manifold of dimension m > 5, and let X € G(M). Then X is the homotopy
type of a closed, piecewise lineay (topological) manifold.

THEOREM B. Let M™ be a closed, simply connected, smooth (C™) manifold,
with m > 5 and m odd, and let X € G(M). Then X is the homotopy type of a closed
smooth manifold.

THEOREM C. There exists a closed, simply connected, smooth manifold B8
and a homotopy type X € G(B) such that X is not the homotopy type of a closed
smooth manifold.

THEOREM D. Let M™ be a closed, simply connected, smooth n-manifold with
m > 5 and m # (21 - 2), and let X € G(M). Then X is the homotopy type of a closed
smooth w-manifold.

The proofs of Theorems A, B, and D follow roughly the same plan. A space in
the genus of a closed manifold is shown to be a Poincaré duality space whose Spivak
normal fibration can be given the structure of an R™-bundle. This reduces the
theorems to a problem of calculating surgery obstructions. The calculation is quite
easy in the cases of Theorems A and B, and in that part of Theorem D when
m# 2 (mod 4). When m = 2 (mod 4), Brown’s version of the Kervaire invariant is
used to examine the appropriate obstruction.

Section 1 carries out the first part of the program by making minor modifica-
tions in the techniques developed by Peter Kahn [10] and independently by the author
[1] to examine the mixing of homotopy types of manifolds (see [8, Section IL.7] for
definitions). In genus questions, one is looking at a space whose p-localizations all
agree with the p-localizations of a given space. In mixing questions, one is looking
at a space whose localizations agree with those of one space for a given set of
primes, and with those of a second space for the complementary set of primes. The
similarity of the theorems about mixing in [10] and [1], and those about the genus in
this paper, reflects the similarity of these situations. The analysis of the Kervaire
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invariant in Section 4 which is needed to prove Theorem D bears this same similar-
ity to the corresponding work in [1], but is not found in [10].

The author wishes to thank Peter Kahn for making a preprint of his work avail-
able, and John Morgan for several very helpful conversations.

1. SPHERICAL FIBRATIONS AND NORMAL SITUATIONS

The notation of [8] for localizations in homotopy theory and group theory will be
used throughout this paper. If X € NH, then X,, denotes its p-localization (p is a
prime or zero). There are canonical maps X — Xp and X, 2 Xp. I f:X—>Y isa
map in NH, then £ X, Y, will be the map making the diagram

commute up to homotopy.

We will need the following three results, which can be found in [8], [15], and [8],
respectively.

THEOREM 1.1. Let W be a connected finite CW-complex, and let X be a con-
nected nilpotent CW-complex of finite type. Then the set of pointed homotopy
classes [W, X] is the pull-back of the diagrvam of sets

{[w, X,] = [W, Xok: p is a prime} .

THEOREM 1.2. Let X be a homotopy commutative H-space. Then the group-
valued functor [ -, X]® Zy is classified by the space Xp; that is, for any CW-
complex W, [W, X;] =2 [W, X]Q® Z, where Zp = {x € Q: x =a/b with (b, p) = 1}.

THEOREM 1.3. Lel G be a finitely genevated abelian gvoup, and let G, denote

G® Z,, the p-localization of G. Then the canonical map G — Hp (Gp) is injec-
tive.

Let BSG(k) be the classifying space for oriented S¥-!-fibrations, and let
BSO(k) be the classifying space for oriented k-dimensional vector bundles. Let
BSG and BSO be the classifying spaces for the corresponding stable theories. A
CW-complex will be called a Poincaré duality complex if there is a class
[X] € H,(X; Z) such that [X]N: HYX; Z) — H, _(X; Z) is an isomorphism for all q.
By a theorem of Spivak [14], if X is a simply connected Poincaré duality complex,
then for large k, there is an sk-1_fibration vy, mt E — X, whose Thom space
T(v) =X Uy c¢(E) is reducible. This fibration is unique up to fibre homotopy equiva-
lence. For the most general version of this theorem, see [4].

Now let X € NH be a finite Poincaré duality complex, and suppose Y € G(X).
From [8], we know that Y is a finite Poincaré duality complex. Let vk be the
Spivak fibration for X, with k chosen large enough so that the map

14
X —> BSG(k) —> BSG(k),
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is homotopically trivial. This is possible since the homotopy groups of BSG are all
finite, so BSG is contractible. Here the fibration v is equated with its classifying
map.

We can identify [Y, BSG(k)p] with [Y, BSG(k)p] since BSG(k)p is a p-local
space [8]. Thus by Theorem 1.1, [Y, BSG(k)] can be identified with the pull-back of
the diagram

(1.4) {[Yp, BSG(k)p] — [Yo, BSG(k)ol: p isa prime} .

For each prime p, let f(p): Y, — X, be a homotopy equivalence. If v is the fibra-
tion m: E — X, then let v, be the fibration m,: Ep, — Xp, with fibre S5~1. Since v

is trivial, {f(p)*vp} € Hp ([Yp, BSG(k)p]) can be thought of as an element of the
pull-back of (1.4). Let 6 be the element of Y, BSG(k)] identified with {f(p)*v}
by Theorem 1.1.

PROPOSITION 1.5. 6 is a Spivak fibration for Y.

Proof. If & is any Sk-l-fipration 7: E — B, and £p is the corresponding Slg‘l—
fibration mp: Ep — Bp, then it is easy to see that (T(£))p is homotopy equivalent to
T(£,). By the way 6 was constructed, (T(6)), is homotopy equivalent to (T(v))p,
so that T(8) € G(T(v)). But since v is a Spivak fibration for X, T(v) is reducible
and so we know that T(6) is reducible [8]. Spivak’s theorem then says that 6 is the
desired fibration.

From now on, we will assume that all spaces are simply connected unless other-
wise indicated. Let M™ be a closed smooth manifold and let Y € G(M). Let
7(M) € [M, BSO] be the oriented stable tangent bundle to M, and let v(M) = -7(M)
be the oriented stable normal bundle. If p: BSO — BSG is the canonical map induced
by “deleting the zero-section”, then p (v(M)) is a stable Spivak fibration for M.

PROPOSITION 1.6. If 6 € [Y, BSG] is a stable Spivak fibration for Y, then
theve exists a stable vector bundle & € [Y, BSO] such that p,(£) = 0.

LEMMA 1.7. In the following diagvam of abelian groups, the vows are exact and
the vertical maps are injective:

— > [¥, BSO] —* > [y, BSG] * > [¥, B(G/0)] ——>

(1.8) lﬂ lﬂ _ lﬁ
B 5

— II ([v,, Bso,)) —— II ([y,, BSG,]) —> 11 ([¥,, B(G/0),]) —.
P P p

Heve p, = Hp ((pp)*), L= Hp L, , etc.

Proof. The top row is the standard Puppe sequence. By Theorem 1.2, ¢ is
essentially the product of the p-localization maps for abelian groups, and so the
bottom row is exact because localization is an exact functor on abelian groups. The
injectivity of the vertical maps follows from Theorems 1.2 and 1.3.

Proof of Proposition 1.6. From Proposition 1.5,

20) = {05} = {t@*p (rMDL)} = 5, (i@ D)) .
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Thus G,2(6) =G _p,({f(p)*(v(M),)}) = 0, by exactness. Hence, £0,(6)=0. But ¢
is injective, so 0 ,(6) = 0, which implies, again by exactness, that 6 = p_(£) for
some ¢ € [Y, BSO].

This then shows that any space in the genus of a closed smooth manifold is a
Poincaré duality complex whose Spivak fibration admits the stronger structure of a
vector bundle. Theorem B then follows from the surgery theorem of Browder-
Novikov [3]. If BSO is replaced by BSPL or BSTOP and we consider piecewise
linear or topological manifolds, then we can get analogous results on strengthening
the Spivak fibration. Theorem A will then follow from the surgery theorem of
Browder-Hirsch [5].

2. POINCARE DUALITY COMPLEXES WITH THREE CELLS

In this section, we will be considering 3-connected spaces which are 8-dimen-
sional Poincaré duality complexes. If X is such a space, then it is easy to see that
H*(X; Z) £ Z [x]/(x3), where x is a 4-dimensional class. Thus X has the same co-
homological structure as quaternionic projective space. Spaces of this type have
been studied by Eells-Kuiper [7], Sasao [13] and Kahn [10].

It is easy to see that X must have the homotopy type of S% U, e8, where
y € m7(S8). It is well known [9, p. 329] that 7,(S8) £ Z ® Z/12Z, where h, the class
of the Hopf map, is a generator of the infinite cyclic summand. Let 7 be the ele-
ment of order 12 in 7;(S8) which satisfies the relation 2h + 7 = [t4, t4 ], where
ly € 7r4(S4) is the class of the identity. Denote by X(a,p) the complex
S* Uanipr €8, where a is an integer and b is an integer mod 12. If X(, ) is to
satisfy Poincaré duality, then ah + b7 must be a map of Hopf invariant +1, so
a=+1.

Suppose f is a map from X, ) to X(. 4q). Then the degree of f is defined as
usual. The 4-skeleta of the spaces in question can be identified with S, and their
4-dimensional homology is isomorphic to Z. The map induced by f on Hy(-; Z) is
then multiplication by some integer m. Call this integer the 4-degree of f.

PROPOSITION 2.1 ([13]). There exists a map £ from X, 1) to X(c,a) of 4-
degree m and degree s if and only if:

(i) am? = sc; and
(ii) am(m - 1)/2 + mb = sd (mod 12).
For the rest of this section, we will restrict ourselves to the cases where the

attaching map y of s4 Uy e is +h+b7. Then in Proposition 2.1, a2 =c? =1, and
the conditions can be written as:

(i) s =acm2; and
(2.2)
(i) m(2ab - 1) = m?(2cd - 1) (mod 24).

Clearly, f is a homotopy equivalence if and only if m = +1. Using this fact and
(2.2), it can be shown that the complexes X(, ) break up into six different homo-
topy types, which will be denoted by I, II, ---, VI. They are listed in Table 2.3.

To decide when (X(;1,p))p is homotopy equivalent to X(z1, d))p , recall that all
the spaces X, , are p-universal for every prime p (see [12]).
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Homotopy Values of (a, b) for which X(, p) )

type belongs to homotopy type (2ab - 1) (mod 24)
I (1, 1) (1, 0) (-1, 11) (-1, 0) +1

I (1, 2) (1, 11) (-1, 10) (-1, 1) +3

v (1’ 4) (1; 9) ("1, 8) ('1: 3) +7
v (1, 5) (17 8) ("'1’ 7) ("1’ 4) +9

VI (1, 6) (1, 0 (-1, 6) (-1, 5) +11

Table 2.3

PROPOSITION 2.4 ([11, Corollary 5.4]). If p is a prime and A and B ave
p-universal complexes, then Ap is homotopy equivalent to Bp if and only if theve is
a map g: A — B which induces isomorphisms on homology with Z/pZ coefficients.

LEMMA 2.5. If f: X(;1 p) > X(+1,d) has 4-degree m, then f induces isomor-
phisms on homology with- Z/pZ coefficients if and only if p and m are relatively
prime,

Proof. The only nonzero homology groups are in dimensions 0, 4, and 8; in
those dimensions, f induces multiplication by 1, m, and +m?2, respectively.

Table 2.6 lists some of the possible 4-degrees of maps between complexes
X(a,b) and X(. q). The table may be verified by (2.2).

Some possible 4-degrees
(a, b) (c, d) .
’ of f: X(a,b) - X(C,d)
(1, 1) (1, 3) 5 29
(1, 3) (1, 4) 11, 35
(1, 1) (1, 6) 11, 35
(1, 2) (1, 8) 5, 29
Table 2.6

PROPOSITION 2.7. Homotopy types 1, I, 1V, and VI belong to G(X(1 1)), and
homotopy types I and V belong to G(X(l’z)). T

Proof. The proof is immediate from Proposition 2.4, using Lemma 2.5 and the
maps of Table 2.6.

PROPOSITION 2.8. G(X(; 1) # G(X(1,2)-

Proof. Suppose X is a complex from homotopy type II and Y is a complex
from homotopy type I, III, IV, or VI such that X3 is homotopy equivalent to Y3.
Then by (2.4) and (2.5), there is a map g: X — Y of 4-degree m, where (m, 3) = 1.
By (2.2) and (2.3), this means that

+3 = +km2 (mod 24), where k=1,5,7, or 11.

This is impossible since 3 does not divide m. Thus X and Y cannot belong to the
same genus. ‘

PROPOSITION 2.9 ([7], [13]). The homotopy types 1, IV, and V can be repre-
sented by a smooth manifold, and the homotopy types W, I, and VI cannot.
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To prove this proposition, one notes that all the homotopy types may be repre-
sented by the Thom spaces of orthogonal S3-bundles over S* and hence by closed
piecewise linear manifolds. An analysis of the Pontrjagin classes of these bundles
and manifolds yields the result.

Now let B8 be a smooth manifold in homotopy type I, and let Y be a complex
in homotopy type III or VI. By (2.7), Y € G(B); but by (2.9), Y cannot have the
homotopy type of a smooth manifold. This proves Theorem C. More examples of
this form can be obtained by further use of (2.7) and (2.9). A similar program can
be carried out with complexes of the form S8 U el®

3. m-MANIFOLDS

Let M™ be a closed smooth 7-manifold, and let Y € G(M). Choose k > m
large enough so that the normal bundle of M in S™tk ig trivial. Then by the argu-
ments of Section 1, the Spivak fibration 6 for Y (of fibre dimension k - 1) will be
fibre homotopy trivial. Thus the trivial bundle ek over Y will be fibre homotopy
equivalent to 6. This equivalence can be used to produce a normal situation

b
VN—>8

o |

N—>Y,

where N is a closed smooth manifold, vy is the normal bundle of N in s™tk and
f is a degree-one map [3].

The Browder-Novikov theorem then implies that Y has the homotopy type of a
m-manifold if m is odd and m > 5. If m = 0 (mod 4) and m > 5, then the obstruc-
tion to making f into a homotopy equivalence is (( Z(g), Y]> - I(Y))/ 8, where
Z(g) is the inverse Hirzebruch polynomial in the Pontrjagin classes of ¢ and I(Y)
is the classical index or signature of Y. Since Y, is homotopy equivalent to M,
then Y, is homotopy equivalent to My. Thus Y and M have isomorphic rational
cohomology algebras and I(Y) = I(M). I(M) = 0 by the Hirzebruch formula, since M

is a m-manifold and < Z(g), [Y]> =0, so the obstruction vanishes.

As observed in [8], these facts prove Theorem D when m # 2 (mod 4). The re-
maining cases of Theorem D will be dealt with in the next section.

4. THE KERVAIRE INVARIANT AND TRIVIAL FIBRATIONS

In this section, all homology and cohomology will be with Z/2Z coefficients un-
less otherwise indicated. K,, will denote an Eilenberg-MacLane space K(Z/2Z, n).
Let 2/(n) denote the spectrum {Wy(n)}, where Wy(n) is the total space of the fibra-
tion over Ky with fibre K ;¢ and k-invariant x(Sqn*l)t . Here

1y e HUKy) = 2/2Z.

A 9 (n)-oriented Poincaré duality complex of dimension m will be a quadruple
X, ¢ a, W) where:

(i) X is a Poincaré duality complex of dimension m;
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(ii) &k is a Spivak fibration for X;

(iii) @ € 7,4 (T(£)) satisfies H(a) N Ug = [X], where H is the Hurewicz ho-
momorphism and Ug € HX(T(£); Z) is the Thom class of &;

(iv) W: T(£) — W (n) is a map such that W*: HX(W,(n)) — HX(T(£)) is an iso-
morphism.

If m = 2n, a quadratic form on H™(X) will be a map ¢: HX) — Z/4Z satisfy-
ing

plu+v) = ¢(u)+¢>(v)+j(<u Uv, [X])) ,

where j: Z/27Z — Z./4Z is multiplication by 2. From the work of Brown [6], we
can associate to any 2n-dimensional % (n) -oriented Poincaré duality complex

(X, & a, W) a quadratic form ¢(X, & o, W) on H*(X). Brown also defines an in-
variant ¢ which maps nonsingular quadratic forms of this kind into Z/8Z. Follow-
ing [6]’ let K(X: & o, W) denote 0(¢(X’ ‘g} «, W)) € Z/BZ°

Let X be a Poincaré duality complex of dimension m, and let the total Wu

class V(X) = 2J; 5 o v;(X) be defined by { Sq(u), [X]) = {V(X) Uy, [X]) for all

u € H¥X). It can be shown [3] that v;(X) = 0 when 2i > m. Furthermore, if & isa
Spivak fibration for X and m = 2n, then [3] v, (X) U Ug = x(San)Ug. Thus
x(Sqn“)U;:: = 0, and so there exists at least one % (n)-orientation for £ in this case.

The effect on the quadratic form ¢(X, &, a, W) of a change in the homotopy class
@ or in the orientation W is studied in [6]. The results needed here are summa-
rized in the next three propositions, whose proofs may be found in [6].

If W, W': T(§) —» Wy(n) are 9 (n)-orientations, then they differ by a map from
T(£) into K, ,;; that is, by a class d(W, W') ¢ HATK(T(£)) = H*(X).

PROPOSITION 4.1 ([6]). If ¢ = ¢(X, &, o, W) and ¢' = ¢(X, &, a, W'), then
o(u) = ¢'(u) +j({u U dW, W), [X] )).

Let (X, & a, W) and (X', &', a', W') be 2n-dimensional 9#(n)-oriented Poin-
caré duality complexes. Let

be a map of fibre spaces. Let ¢ = ¢(X, & a, W) and ¢' = ¢(X', &', o', W').

PROPOSITION 4.2 ([6]). If W=T(g)*W' and T(g) & = o', then ¢(f*u) = ¢'(u)
for all u e HMX").

Let (X, ¢ @, W) and (X, &, a', W) be 2n-dimensional 9/ (n)-oriented Poincaré
duality complexes. By the uniqueness part of Spivak’s theorem, there is a fibre
homotopy equivalence g: £ — £ such that T(g),o = a'. Then by Proposition 4.2,
o(X, & a, T(g)*W) = ¢(X, & a', W). Thus, to compare ¢(X, & a, W) and \
o(X, & a', W), it suffices to compute d(W, T(g)*W).

PROPOSITION 4.3 ([6]). There ave classes z; € H2'-1(X) such that

AW, T(@)™W) = 22 v i () Uz
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If these formulae are applied when £ is fibre homotopy trivial, then it can be
shown that, to a certain extent, K(X, &, @, W) is independent of @ and W in this
case.

PROPOSITION 4.4. Let X, m: X x 8K~ — X, be the trivial S¥-!-fibration
over a Poincaré duality complex of dimension 2n. Then theve is a canonical 9/ (n)-
ovientation Wx: T(e) — Wi n) which is natural with respect to maps of the base
Space.

Proof. There is a map of fibre spaces

¢
X x gkl —— * xgk-!

l l

X > *

It sk denotes the Sk-l-fibration over a point, then it is well known that T(s ) is
homotopy equivalent to S¥ and T(eX) is homotopy equivalent to Ek(X+) where =
denotes suspension and X' is X with a disjoint base point. Let w: sk — Wi(n) be a
map representing the nonzero homotopy class in dimension k. Then Wy = T(&)*W is
the desired orientation.

Let X be a 2n-dimensional Poincaré duality complex whose Spivak fibration gk
is fibre homotopy trivial. A % (n)-orientation W for £ is said to be induced by a
trivialization if there exists a fibre homotopy equivalence p: £ — ¢k such that
W = T(p)*Wx.

LEMMA 4.5. Let (X, ¢, a, W) and (X, &, o, W') be (4L + 2)-dimensional
% (24 + 1)-oviented Poincaré duality complexes with & fibve homotopy tvivial. Sup-
pose further that (22 + 1) # (2) - 1) for any j and that both W and W' ave induced
by trivializations. Then K(X, &, a, W) = K(X, &, o, W').

Proof. Let p, p': £k — gk be trivializations such that T(p)*Wx = W and
T(p')*Wx = W'. Then p'p-! is a fibre homotopy equivalence of £k, and Proposition
4.3 implies that

1, -1y% = . .
d(Wy, T(p'p~1)*Wy) %} PTRIN ETE

But since ¢ is fibre homotopy trivial, v;(X) =0 for all i # 0; and since
(2¢ + 1) # (2) - 1), this case never occurs. Thus d(Wy, T(p'p-1)*Wy) = 0. Hence,
by Proposition 4.2,

K(Xs ‘E’ a, T(p)*WX) K(X’ ‘f: T(p)*a: WX)

K(X, ¢ T(p),, Tlp'p~1)*Wy) = KX, £, a, T(p')*Wy).

Now recall the following result of Browder, which also deals with orientations
coming from trivializations.

THEOREM 4.6 ([2]). Let M*K*2 pe g smooth closed manifold with trivial
normal bundle vl. Let B € my,.9(T(v)) be the class of the Thom collapse, and
let W be any ¢ (2k + 1)-ovientation for v induced by a trivialization of v. Then if
(4k +2) # (23 - 2), KM, v, B, W) =0
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If (X, £, @, W) is a 2n-dimensional %/ (n)-oriented Poincaré duality complex,
then it is relatively easy to “2-localize” Brown’s program to produce a quadratic
form ¢(X,, £,, @, W,) on HYX,). X, is the 2-localization of X, £, is the S%‘l—
fibration obtained by 2-localizing £ as in Section 1, @, € w1 (T(£5)) is the 2-
localization of a, and W,: T(£;,) — Wy(n) is the 2-localization of W. The last
statement makes sense because Wy(n) is already a 2-local space in the sense of
[8], so (Wi(n)), is homotopy equivalent to Wy(n). It can also be shown that
K(X,, &, a,, W,) =K(X, &, @, W). Essentially, the point is that Brown’s program
depends only on mod 2 information and can be carried out for spaces which have the
same “2-type” as a 2/(n)-oriented Poincaré duality space. Details of this may be
found in [1].

Suppose that

(4.7) l l

is a normal situation; that is, Y is a (4k + 2)-dimensional Poincaré duality com-
plex, £¢ is a vector bundle over Y, N4k*2 jig a smooth manifold, and vy is the
normal bundle of N in S4kt2+L  Tet B € my o, o(T(vy)) be the class of the Thom
collapse, and let W be any 9 (2k + 1)-orientation for £.

LEMMA 4.8 ([6]). If k> 0, then the obstruction to making (4.1) cobovdant to
a homotopy equivalence is

C(f) b) = K(N, VN, B, T(b)*W) - K(Y; g, T(b)*ﬁ, W) .

Now we can complete the proof of Theorem D. Let M4k+2 pe a smooth closed
m-manifold, (4k +2) # (2J - 2), k > 0. Suppose Y € G(M). From the considerations
of Section 3, we can produce a normal situation

b

VN > €
l £ l
N—>Y.
The obstruction to making f into a homotopy equivalence is
clf, b) = K(N, vy, B, T(b)*Wy) - K(Y, €, T(b),8, Wy).

By Theorem 4.6, K(N, vy, 8, T(b)*Wy) =0, so c(f, b) = -K(Y, ¢, T(b),8, Wy). Also,
by Proposition 4.2,

K(Y, ¢, T(b)*ﬁ, Wy) = K(Y,, €5, (T(b)*B)Z , (Wy)2)
= KM, , €,, T(f(2)) (T®).B),, (Wr)2) ,

where £(2): Y, — M, is a homotopy equivalence. Since M is a w-manifold, there is
a normal situation
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b
LN

b

id
M— M .

Let o € 174k+2+£(T(vM)) be the class of the Thom collapse. Then, by Proposition
4.3,

KM, vy, @, T(b)*Wy) = KM, g, T(b), @, Wy) = KMy, &2, (T(b), )z, (Wnm)2)
= K(MZ; 82 ’ T(f(z))*(T(b)*B)Z ’ (WM)Z) = "‘C(f, b) .
But by Theorem 4.6, K(M, vy, @, T(b)*Wy) =0. Thus c(f, b) = 0, and the proof of

Theorem D is complete.

Notice that the assumption (4k + 2) # (2J - 2) is used in two different ways. It
is used to apply Brown’s formula (4.3), and it is used to apply Browder’s theorem
(4.6).
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