BRANCHED COVERINGS AND ORBIT MAPS
Allan L. Edmonds

1. INTRODUCTION

Let f: X — Y be a finite-to-one, closed and open (continuous) map, and consider
the question as to when the induced homomorphism in rational (sheaf-theoretic)
cohomology

(1.1) f*: H¥(Y; @ — H*(X; @) is injective.

Questions of this sort seem to have originated in a dual form with Eilenberg [6] and
Whyburn [11]. See also [2]. If X and Y are connected orientable manifolds, then a
standard Poincaré duality and degree argument shows that (1.1) is true. Also, if £
happens to be the orbit map for a finite group action on X, then (1.1) again holds be-
cause of the existence of a transfer map in this context [1; I1.19].

On the other hand, (1.1) is known to be false in general, since Bredon {2] and
others have constructed finite-to-one, open, piecewise linear maps from compact
contractible polyhedra onto the 2-sphere.

In this paper, X and Y shall always be assumed to be locally connected Haus-
dorff spaces. Additional hypotheses on the map f or on the spaces X and Y are
then considered which guarantee that (1.1) holds. In Section 2, standard geometric
notions of degree and local degree for { are defined and it is shown that if the de-
gree of f is always equal to the sum of the local degrees of f on each point inverse,
then (1.1) holds. The proof involves the construction of transfer homomorphisms.
Such a map f can be viewed as a generalization of Fox’s notion [7] of a branched
covering. In Section 3, the concept of a (topological) normal n-circuit is introduced,
generalizing that of an n-manifold. It is then shown that if X is a normal n-circuit,
then Y is also a normal n-circuit and the degree of f is always equal to the sum of
the local degrees in each point inverse of f. Proofs here are based on work of
Cernavskii [3], [4] and Viisil4 [10]. Finally, in Section 4 the automorphism group of
f consisting of all homeomorphisms g: X — X such that fg = f is calculated when
the branch set of f does not locally separate X. This result is then used to charac-
terize those maps f which can be identified with orbit maps for finite group actions
in the case where X is a simply connected piecewise linear manifold, Y is a poly-
hedron, and f is a piecewise linear map.
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he pointed the way to the appropriate definition of a (topological) normal circuit.
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2. FINITE BRANCHED COVERINGS

Throughout this section, X and Y will denote locally connected, connected,
Hausdorff spaces and f: X — Y will be a finite-to-one, closed and open (continuous)
map. Thus for any y € Y, f-1(y) is a finite set, and if A c X is closed (open), then
f(A) is closed (open) in Y.

If S is a finite set, let #S denote the cardinality of S. Define the degree of f
to be deg(f) = sup {#f"1(y): y € Y}, if the supremum exists; otherwise, set
deg(f) = «. Define the local degree of f at x € X to be

deg(f; x) = infy sup {#£-1f(z) NU: 2z € U}

(where U ranges over the neighborhoods of x in X) if the supremum exists for
some U; otherwise, set deg(f; x) = .

Notice that if x € V C U, then
sup {#f1f(z) N V:iz e V} < sup {#f~1(z) NU:z € U}.

Thus, if deg(f; x) < «, it follows that deg(f; x) = sup {#£f-1£(z) N U: z € U} for all
sufficiently small neighborhoods U of x. Also, if deg(f) < =, then deg(f; x) < ~ for
all x € X.

Define f: X — Y to be a finite branched covering (FBC) if deg(f) < < and for

each y € Y, deg(f) = Exef‘l(y) deg(f; x).

Remark. Among finite-to-one, closed and open maps of locally connected, con-
nected, Hausdorff spaces, finite branched coverings are strictly more general than
the branched coverings of Fox [7; p. 250]. His hypotheses easily imply, via covering
space theory, the additivity of local degree (the argument is essentially that of
Theorem 3.2 below), but exclude from consideration many “folded coverings” which
FBC’s include (e.g., S — D", by (xg, ***, x,) = (Xg, ***, X,_1)). In particular, the
orbit map for any finite group action on a locally connected Hausdorff space is an
FBC.

If R is a ring with unit, & is a sheaf of (left} R-modules on a space Z, and ¢
is a family of supports in Z, then Hg(Z; #) denotes the sheaf-theoretic cohomology
of Z with supports in ¢ and coefficients in #. As far as possible, sheaf-theoretic
notation will follow that established by Bredon in [1].

The following is the main result of this section.

THEOREM 2.1. Let R be a ving with unit, let & be a constant sheaf of left
R-modules, let ¢ be a family of supports on Y, and let f: X — Y be a finite
branched covering., Then theve is a lvansfey homomovphism

7 HF L& ) — H;l';(Y; B)
¢

such that Tf* = deg(f) 1.

COROLLARY 2.2. If f: X — Y is an FBC, then t*: H;;(Y; Q — H:_l¢(X; Q) is
injective.

COROLLARY 2.3. If f: X — Y is an FBC wheve X and Y have the homotopy
type of finite CW complexes, then f.: H (X; Q) — H, (Y; Q) is suvjective in ralional
singular homology.
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Some preliminary facts are needed for the proof of Theorem 2.1. Except when
explicitly stated to the contrary, f: X — Y is any finite-to-one, closed and open map.

LEMMA 2.4. If V C Y is open and connected and U is a component of £~1(V)
in X, then U is open and { l U: U — V is a finite-to-one, closed and open, surjective
map.

Proof. Since X is locally connected and f-1(V) is open in X, it follows that U
is open in X. That f l U is finite-to-one and open is obvious. To see that
f|U: U—V is also closed, let A C U be closed in U. Then

A=ANU=AnfYv),

where A is the closure of A in X. It follows that £f(A) = f(A) N V, so that f(A) is
closed in V. Since f(U) is closed and open in V, f(U) = V.

Notation. If V C Y is connected, then U/V signifies that U is a component of
f-1(V). Similarly, if y € Y then x/y signifies that x € f-1(y).

LEMMA 2.5. Let y € Y and £-Yy) = {xl, X2, ', xk}. Then theve exist arbi-
trarvily small connected open neighbovhoods V of y in Y such that

£-4v) = uy |l uz || - || Uk,

the disjoint union of connected open neighbovhoods of X, X,, ***, Xy, vespectively,
and such that deg(f; x;) = deg(f | Uy), for i=1, 2, ---, k.

Proof. Let W, Wy, -+, Wi be arbitrarily small disjoint open neighborhoods
of X, X5, -, X}, respectively, such that deg(f; x;) = sup {#f-1f(z) N W;: 2z € W;}

for each i. Let V be the component of the open set Y - f(X - U W; / which con-
tains y. Clearly by choosing the W;’s arbitrarily small, V also can be made arbi-
trarily small. Let U; be the component of £-1(V) containing x;, i=1, 2, ---, k. It

follows from Lemma 2.4 that £-1(V) = U, || U, || - || Uy, because t-1(v) ¢ U w;,
so that the Uj;’s are pairwise disjoint and map onto V. Finally, since U; C W; for
each i, deg(f; x;) = sup {#£-1f(2) N U;: z € U;} =deg(f | Uy).

If y € Y and V is an open neighborhood of y, V is said to be good for f at y if
V is connected, £-1(y) = {x;, x,, **+, X, },

) = up Juz [l - Ul Ui,

where each Uj is a connected neighborhood of x;, and deg(f; x;) = deg(f | U;),
i=1,2 -, k.

Define an element y € Y to be a principal value for f if #f-1(y) = deg(f).

LEMMA 2.6. If deg(f) < «, then the set of principal values for f is a nonempty

open set in Y;if f: X =Y is an FBC, then the set of principal values for £ is also
dense in Y.

Proof. Let y € Y be a principal value and let V be an open neighborhood of y
which is good for f at y. Then V consists entirely of principal values. For it fol-
lows immediately that for any z € V, #£-1(z) > #f-1(y) = deg(f), so that
#£-1(z) = deg(f).

Now suppose that f: X — Y is an FBC and let y € Y. Suppose that V is an open
neighborhood of y which is good for f at y. It suffices to show that V contains
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principal values. Let zy € V be a point such that #£-1(z,) = sup {#f-1(z): z € V}.
Then deg(f; x) = 1 for all x/zy. For let W be a neighborhood of Zo in V which is
good for f at zg, so that if £-1(zq) = {xl, Xo, xk} then

f-{w) = U; ]| U, || -] Uk, where x; € U; and U;/W.

Then for any z € W, #f 1(z) > k; hence, by maximality, #f-1(z) = k. Therefore
deg(f | Uy =1 for all i, and so deg(f; x;) = 1 for all i. Then

deg(f) = 22 deg(f; x) = #1-1(z,),
x/zg
and z, is a principal value.

LEMMA 2.7. Let £: X =Y bean FBC, let y € Y, and let V be a neighbovhood
of y in Y which is good fov £ at y. Then for any principal value z € V of £ and for
any U/V, deg(f|U) = #f-4z) N U.

Pyoof. For such a z € V, clearly deg(f | U) > #f-1(z) N U. Now,

deg(f) = 20 deg(f; x) = 2o deg(f | U)
x/y a/v

> 27 #1°4z) nU = #171(z) = deglf).
u/v
Therefore, deg(f | U) = #f~1(z) N U for each U/V.

PROPOSITION 2.8. Let f: X =Y be an ¥BC, let V CY be open and connected,
and let U/V. Then{|U:U —V is an FBC.

Proof. First consider the case where V is good for f at y € V. It must be

shown that for any z € V, deg(f | U) = EXEf_l(Z)nU deg(f; x).

Let P be a neighborhood of z in V which is good for f at z. Then
f_l(z) = {ql: qz; Ty qm} and f-l(P) = Q].U.QZ_“_ “._U_Qm’

where qj€ Q;, Q;/P, and deg(f | Q;) = deg(f; q;) for j=1,2, -, m. Let p € P be
a principal value for f. Then, using Lemma 2.7 twice, we find that

#t-lp)NU = 22 #£1p) N Q
QjCIU

deg(t | U)

I

27 deg(f| Q) = 20 deg(f; qj).
QjCU QjCU

This completes the proof of the special case.

Now consider the general case. Once again we must show that

deg(f | U) = 27 deg(f; x),
xef-1{y)nu
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holds for all y € V. Let W= {y € V: deg(f | U) = Exef‘l(y)ﬁ

show that W is nonempty, open, and closed in the connected set V, so that W=V,
completing the proof.

To see that W # ¢, let S = {y € V: deg(f | U) = #f"1(y) n U} and
T = {y € V: deg(f) = #f-(y)}. Then by Lemma 2.6, S is a nonempty open set
while T is a dense open set in V. Thus, SNT # 4. Let y € S N T. Then
deg(f; x) = 1 for all x € f-1(y). Thus

y deg(t; x)}. We shall

deg(f |U) = #t1(y) nU = 27 deglf; x),
X€f"1(y)ﬂU
and y € W.

To see that W is open, let y € WC V and let Q be a neighborhood of y in V
which is good for f at y. It suffices to show Q C W. Let

1y) = {x,, %, ,x,} and 1@ =P ||P, || ]lP,,

where x; € P;, P;/Q, and deg(f | P;) = deg(f; x;) for each i. By the first case con-
sidered fIPj: Pj — Q isan FBC. Let z € Q. Then, since y € W and f{ | P; is an
FBC,

deg(f |U) = 27 deg(s; x5 = 2 deglf; X3 = 27 deg(f] P)
x; € U P; CU P,CU

= 2 2 deg(f; x) = 27 deg(f; x).
PyCU xe~1(z)NP; xef~1(z)NU

Thus z € W, as desired.

Finally, to see that W is closed, let y € W and let Q@ be a neighborhood of y in
Y which is good for f at y. Let

l(y) = {xl, Xy, xm} and £°1Q) = PIJ_LPZJ_L°--J_[Pm,

where x; € P;, P,/Q, and deg(f | P,) = deg(f; x;) for each i. Choose z e Q NW C V.
Then

deg(f | U) = 27 deg(f; x) (since z € W)
x Ef_l (z)NU

27 2 deg(f; x)

PjCUxef'l(z)ﬂPJ-

27 deg(t | P;) (since by the first case f|P; is an FBC)

Pj CcCuU
= 22 deglf x;) = 20 deg(f; x) .
PjcU xef L (y)nu
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Thus y € W and W is closed.

Proof of Theovem 2.1. Let A ={*# be the induced sheaf on X (necessarily a
constant sheaf X X B where # =Y X B), and let f.« denote the direct image sheaf
associated with the presheaf f (V) = #Z(f-1V). Here, as usual, we identify a sheaf
with its associated presheaf of sections.

Because & is a constant sheaf on Y, for any connected open set V CY, #(V)
can be canonically identified with B. In particular, if V' C V are both connected,
the restriction homomorphism (V) — #(V'") is identified with the identity B — B.
A similar observation applies to  on X.

Since f is finite-to-one and closed, the Vietoris-Begle theorem [1; II.11.1] im-
plies that the natural homomorphism f*: H:;(Y; fod) — H’f"_1¢(X; ) is an isomor-
phism. Thus, to define a transfer map 7: H’f"_ld)(X; A) — H:;;(Y; ) such that
7f* = deg(f) 1, where f*: H:;(Y; B) — H’;_l(l)
ogy, it suffices to find a sheaf homomorphism ¢: f.# — & such that if
h: # — ff*%# = f is the natural homomorphism, then oh = deg(f) 1. For 7 can
then be defined to be the composition

(X; ) is the induced map on cohomol-

-1, g% . *(xr. Xy,
0 i) HE, (0 o) — B L) — HY(YE; ),
since f* is precisely the composition

ho o« H¥Y- — HX*(V- — ¥ .
f'h,: H¢(Y, R) H¢(Y, foat) Hf-1¢(x’ A).

One defines o0: f.# — A on fibers as follows. Note that ,%Y = B while
(£t )y =Du/y oy =Dy B. Thenif ¢ € (f)y, one can write ¢ =Dy y cx ,
cy € B. Define o : (fﬂ)y—e Ay by cy(®xlycx) = Ex/y deg(f; x)c, . Clearly
this defines a function o: f« — & which, on fibers, is a homomorphism. More-
over, on fibers, the natural homomorphism h: # — f.# is the diagonal map
hy: B = ®y/yB. Thus, for c € By,

oh(c) = 0 F ¢ = 27 deg(f; x)c = deg(f)c .
x/y x/y

Therefore the crux of the proof is to show that ¢ is continuous. This will be ac-
complished by showing that ¢ is induced by a homomorphism of the associated pre-
sheaves of sections of the respective sheaves # and f.« .

For any open set V C Y, define a homomorphism ¢ v: f# (V) - £#(V). Now if
\"% =-U-aeA Va, where each Vy is connected, then each Vg is open, since Y is lo-

cally connected and we have £ (V) = Il o £ (Vy) and #8(v) = I, o 28(V,).
Therefore, we may assume that V is connected. Then

f (V) = #(E-1V) = @ ~(U) = @ By,
u/v u/v

where By = B, since & and .« are constant sheaves. Also, #(V) = B. Thus if
c € 2 (V), one can write ¢ =@y, ycy, cy € B. Define
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oylc) = 27 deglf|U)ey in B =a(V).
u/v

Each oy is clearly a homomorphism, being a linear combination of projections.
Also, if the family {OV} for all open V C Y can be shown to be compatible (and so
to define a presheaf homomorphism), it is evident that ¢ is induced by {GV} and
S0 is continuous.

Therefore the proof of Theorem 2.1 is reduced to showing that if V' C V are
open sets in Y, then the diagram

Oy
fd (V) —> B(V)

S

f (V') —> B(V')

(in which vertical homomorphisms are restrictions) is commutative. As in the
definition of oy, it may be assumed that V and V' are both connected.

Let ¢ € f (V) =@,y +#(U) and write ¢ =@y, y ¢y, cy € #(U) = B. Then

I

roy(c) = r UE/V deg(f | U) ey UE/DV deg(f | U) cyg,

since r: #(V) — #(V') is naturally identified with the identity 1: B — B.

On the other hand, I‘(C) = I'(@CU) = ®U/V @UI/VI ryu (Cu), where
u'cu
ryyr: Z(U) — «#(U') is restriction, again identified with the identity 1: B — B.
Therefore, by Proposition 2.8,

Oy r(c) = Uvr( @ @ rUU'(cU)) = UVI( @ @ Cu)
u/v uy/v! u/v uy/ve
U'Ccu U'cU

1

2 2 deglt|Uley= U [ L deglt| U Yoy = 2 deglf | Uley
u/v ut/v u/v\uyv u/v
uicu U'cu

as desired.

Remark. Since the transfer map in Theorem 2.1 was constructed using a pre-
sheaf homomorphism, it is evident that the analogue of Theorem 2.1 also holds for
general locally connected Hausdorff spaces and cohomology defined via the Cech
construction.

3. NORMAL CIRCUITS

Throughout this section, f: X — Y denotes a finite-to-one, closed and open map
between connected, locally connected Hausdorff spaces. Additional conditions are
given which guarantee that f be a finite branched covering. In particular, a large
class of spaces X is defined for which f must necessarily be an FBC.
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Let B¢ denote the branch set of £, the closed set of points of X at which f fails
to be a local homeomorphism.

LEMMA 3.1. If deg(f) < =, then int fB; = &.
Proof. Suppose int fB; # @. Choose y € int fB; such that

#£-1(y) = sup {#£f-1z): z € int B¢} .

Clearly, such a y exists and #f-1(y) < deg(f). Choose an open neighborhood V of y
inside int {B; which is good for f at y. Then for each U/V in X, f | U:U—Visa
homeomorphism, being a one-to-one closed surjection. But this implies that

fB; NV = @, a contradiction.

Recall that a subspace A of X separates X if X - A is not connected, and A
locally sepavates X at x € A if for arbitrarily small connected neighborhoods V of
x in X, VN A separates V. If int A= @ and V N A separates V, then it is easily
seen that A locally separates X at some point of V N A,

THEOREM 3.2. If deg(f) <« and fB; neithev separvates nov locally separates
Y, then f: X — Y is an FBC.

Proof. The restriction f£ [X -f-1fBs: X - £-1fB; — Y - fB; is a finite-to-one,
closed, local homeomorphism and hence a covering map, with connected base
Y - fB;. Since the set of principal values for f is open and int fB; = @, deg(f) is
the number of sheets in this covering. Let y € Y, and let V be a neighborhood of y
which is good for f at y.

If U/V, then deg(f | U) is similarly the degree of the covering
U-E 1B, NU) - V-1B;NV.

Let z € V - fB; N V. Then

deg(f) = #£-1z) = 2 #t°Uz2) NU = 2 deglt | U) = 2 deg(f; x),
u/v u/v x/y

since V is good for f at y.

If X is any space of (covering) dimension n, let
EX = {x € X: x has no neighborhood homeomorphic to R}

denote the “intrinsic (n - 1)-skeleton” of X. Clearly, EX is closed in X. A space
X is called a normal n-circuit if X is a connected, locally connected, Hausdorff
space of dimension n such that int EX = @ and EX does not locally separate X at
any point (equivalently, X - EX is dense in X and “locally connected in X”). Then
X - EX is a connected topological n-manifold. Note that any connected open sub-
space of a normal n-circuit is again a normal n-circuit.

The introduction of normal circuits is justified by Theorem 3.5 below, in which
it is shown that the finite-to-one, closed and open image of a normal circuit is again
a normal circuit. This result is an appropriate generalization of Whyburn’s theo-
rem [12; pp. 194 ff.] that the light open image of a compact 2-manifold is again a 2-
manifold, since the obvious analogue for n-manifolds, n > 2, of the latter assertion,
is, of course, false. Examples of normal circuits include manifolds, manifolds with
boundary, polyhedral homology manifolds, joins of compact manifolds (more
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generally of normal circuits), complex algebraic varieties, and end point compacti-
fications of connected manifolds.

LEMMA 3.3. A finite union of closed nonlocally separating sets with empty
interior in X must be nonlocally separating.

Proof. An obvious inductive argument shows that it suffices to consider a union
A=A, U A, of closed nonlocally separating sets with empty interior. Suppose A
does in fact locally separate X at x. Then there is a neighborhood V of x such that
V - V N A is not connected, while U=V - VN A, is connected. Now

V-VNA=U-UNA,,

so U N A, separates U. Since UN A, is closed and has empty interior in U,
U N A, must therefore locally separate U, which it clearly does not.

LEMMA 3.4. Suppose deg(f) < . If A CX is a closed subspace such that
int A = @ and such that A does not locally sepavate X at any point, then f(A) does
not locally sepavate Y at any point.

Proof. First consider the special case when f-1f(A) = A, If x € A and V isa
connected neighborhood of f(x) in Y such that V - (f(A) N V) =V, _|_l_ V,, where V;
and V, are disjoint nonempty open sets, let U be the component of f‘liv) contain-
ing x. Then U-(ANU)=U- (E-15(A) nU) =f-4v)) nU || £-1(v,) N U. Thus, A
must locally separate X at x, a contradiction.

The general case is now reduced to the special case. Suppose that f(A) locally
separates Y at some point and let C C f(A) be the set of all points at which f(A) lo-

cally separates Y. Then the closure C locally separates Y at each point of C. For
if ¢ € C and V is a connected neighborhood of ¢ in Y such that

V-{fa)nv) =v, || v,,
the disjoint union of nonempty open sets, let W; = int(V; - C 0 V;). Then

V-vNnC=w ||l w,,
since int f(A) = @. (Compare [10; 2.1].) Thus, replacing A by £-1(C) N A if neces-
sary, we may assume that £(A) = C.

Now choose y € C C f(A) so that #f-1(y) = sup{#£-1(2z): z € C}. Then also
#£-1(y) = sup {#£f-1(z): z € C=£(A)}. Let £-1(y) = {x;, x,, -, X, }, and choose a
small neighborhood V of y which is good for f at y and such that f(A) N V sepa-
rates V. Then £-1(V) =U; || U, ]| -+ || Uy, where each U; is connected and open
and x; € U;, i =1, 2, ---, k. Consider the restrictions f | U;: U; — V, each of
which is a finite-to-one, closed and open map of finite degree. By the maximality of
#£-1(y), £|£-1£(A) N U; is one-to-one for each i = 1, 2, -+, k.

Since (f|U) 1A N U) =£t-18(A N U,) NU,; c £-1£(A) N U, it follows that
f]£-1£(A N Uy N U; is also one-to-one. Therefore, (f | Uy)"1f(A N U) =A N U;.
Hence, by the special case, f(A N U;) does not locally separate V. Then, by Lemma

3.3, f(A) NV = Ui f(A N U;) does not locally separate V. This is a contradiction
since int f(A) = @ and f(A) separates V, so that in fact f(A) must also locally sepa-
rate V.

The following result will be derived from a theorem of Cernavskif [3], [4].
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THEOREM 3.5. If X is a normal n-civcuit, then deg(f) < o, fB; does not lo-
cally separvate Y, and Y is a normal n-civcuit.

Proof. That Y is a locally connected, connected Hausdorff space of dimension
n follows easily.

First consider the special case where X is actually an n-manifold. In the pres-
ent context, the result of Cernavskil can be stated as follows: deg(f) < « and the set
of principal values of f is open and dense in Y.

Let A C {B; be the closure of the set of points at which iB; locally separates Y,
and proceed by induction on sup {#f-1(z): z € A} < deg(f).

Suppose that A # ¢ and that #1°1(z) =1 for all z € A. Let z € A, and let V be
an open neighborhood of z such that V N fB; separates V. Then VN A also sepa-
rates V. For if V- (VN By =W, || W5, set V; = int(W; - A) for i =1, 2. Then
V-VNA=V) || V,, since int fBf = @ Let U=£"1(V) and U; = £~1(v,), i = 1, 2.
Form Z = U; Up V, and define g: U —»Z tobe 1|U; U f|U,. Then g is a finite-
to-one, closed and open surjection, and U is a manifold. By the result of éernavskﬁ',
g must be one-to-one and hence a homeomorphism. But then {B; NV = @, contra-
dicting the original choice of z € ANV,

Now suppose that A # ¢ and that #£-1(z) > 1 for some z € A. Choose z € A
so that #f-1(z) is maximal. Let V be a small neighborhood of z which is good for
f at z. Then for each U/V, £ | U: U — V is a finite-to-one, closed and open surjec-
tion, where U is an n-manifold by Lemma 2.4. By the maximality of #f-1(z),
#f-1(y) N U =1 for all y € A N V. By the previous case, fB¢|y does not locally

separate V; hence, the finite union of closed subsets of V, Uy, v By =B; NV,
also does not locally separate V. But this is a contradiction, since by assumption,

fB; locally separates Y at a point of V. Thus A = ¥, and fB; does not locally sepa-
rate X if X is a manifold.

Now suppose that X is a normal n-circuit. By Lemma 3.4, f(EX) does not lo-
cally separate Y. By the case where the domain is a manifold,

C = {(B; N (X - £~1 {(EX)))

does not locally separate Y - f(EX). Therefore, C U f(EX) does not locally separate
Y, since f(EX) is closed in Y. But clearly fB; C C U f(EX), so that fB; cannot lo-
cally separate Y either.

To see that Y is a normal n-circuit, observe that also EY C fB; U f(EX), so
that EY does not locally separate or separate Y.

Finally, deg(f) = deg(f | X - 1 fBy) < =
COROLLARY 3.6. Let X be a normal n-civcuit. Then f is a finite branched
covering.

Proof. This follows immediately from Lemma 3.1 and Theorem 3.5.

4. AUTOMORPHISM GROUPS

Let X and Y be locally path-connected, connected Hausdorff spaces and let
f: X —Y be a finite-to-one, closed and open map of finite degree. Define Aut(f), the
automovphism group of f, to be the group of all homeomorphisms g: X — X such
that fg =f{.
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THEOREM 4.1. Suppose that £-1 fB; does not locally separvate X. Then

wheve G =m(Y - B¢, *) and H = fgm (X - -1 iB;, %), and NG(H) is the novmalizer
of H in G.

Proof. By Lemma 3.1, int £-! By = @. By covering space theory,
Aut(f | X - £-11B;) ~ N(H)/H.
Therefore, it suffices to show that each
g: X - 1B, — X - £71B;

in Aut(f | X - £-1fB;) extends (necessarily uniquely) to a homeomorphism g': X — X.
For then such a g' clearly lies in Aut(f).

To this end, let g € Aut(f | X - £~} fB,), let x € f-1{B, and let V be a neighbor-
hood of f(x) which is good for f at f(x). Let U/V be such that x € U. Then
U - £-1fB; N U is connected, which implies that g(U - £-1fB; N U) = U' - -1 {B; N U’
for some U'/V. Define g(x) to be x', where f-1£(x) N U' = {x'}. Doing this for
each x € £-1 fB; defines a function g': X — X.

Clearly, g' is well-defined, one-to-one, and onto. Continuity at x € f-! fB; fol-
lows since sets of the form U' provide a neighborhood basis at x' and g-! U' = U.
Finally, (g')"! is clearly just (g~!)', and so must also be continuous, so that g' isa
homeomorphism.

The map f: X — Y is called an o7bif map if there is a finite group 7 acting on
X, covering the identity on Y such that the induced map of the orbit space X/m — Y
is a homeomorphism.

COROLLARY 4.2. If £-1 fBf does not locally separate X, then I is an orbit
map if and only if the covering X - £-1{Bf — Y - {By is vegular (that is,
fam (X - £-1B¢, *) is normal in n{(Y - £Bg, ¥)).

Proof. Clearly, {f is an orbit map if and only if f [X - -1 fB¢ is, by the argu-
ment of Theorem 4.1. But f ] X -f-1 fB; is an orbit map if and only if it is regular,
by standard covering space results [9].

Corollary 4.2 can often be applied, for example, when X and Y are both n-
manifolds. For according to Viisili [10; 5.4], dim(Bs) < n - 2 in this case. Then
by a result of Church and Hemmingsen [5; 2.1],

dim(Bs) = dim(fBg) = dim(f-1fBg) < n- 2.

Thus, f-! fBs cannot locally separate X. This observation generalizes almost im-
mediately to the case where X and Y are normal n-circuits with dim(EX) < n - 2
and dim(EY) < n - 2. Further details are omitted.

As an application of these notions, consider the case where X is a connected,
simply connected, piecewise linear (PL) n-manifold, Y is a connected polyhedron,
and f: X — Y is a PL finite-to-one, closed and open map.

THEOREM 4.3. (a) If dim B; < n - 3, then f is an orbit map.

(b) If dim B¢ < n - 2, then { is an orbit map if and only if for each y € Y the
Sfunction deg(f; X) is constant on £-1(y).
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Proof. (a) Since dim Bf < n - 3, it follows that dim f-1fB; <n - 3 also. By
general position, 7;(X - £-1fB;) = 0. Hence, f is an orbit map.

(b) Clearly, the condition on deg(f; x) is necessary for f to be an orbit map.
To prove sufficiency, we may assume that n > 2. It is easy to see that f-1 fB; is a
subpolyhedron of X of dimension at most n - 2. We can assume that X and Y are
triangulated so that f is simplicial and so that £-! fBs is a subcomplex of X. Ac-
cording to Corollary 4.2, it suffices to show that fsn(X - £-1 fB;, *) is normal in
71(Y - B¢, *).

Let @ be a loop in X - £-1fB; based at *. It must be shown that every lift of
the loop fa in Y - fB; back to X - £~1{B; is again a loop.

By general position in the PL. n-manifold X, « is homotopic to a sum of loops
of the form D(o, X), the boundary of the dual cell [8; p. 29] to an (n - 2)-simplex o
of £-11B, suitably connected to * by a path. Now f(D(¢, X)) = D(fo, Y), since f is
open, and

£-1(D(fo, Y)) = D(oy, X) || D(o,, X) || - || Dloy, X),

where 01, 0,, ***, 0} are the (n - 2)-simplices of f-1{(o).

Since Y is a normal n-circuit and f is a covering map away from the (n - 2)-
skeleton, it is not hard to see that b(fc, Y) is also a circle.

Now f4[D(o, X)] = d[D(fo, Y)], where d is the degree of D(v, X) — D(fo, Y).
By hypothesis, each restriction D(o;, X) — D(fo, Y) also has degree d. Thus each
lift of d[D(fo, Y)] must be a loop. Hence, each lift of f& must also be a loop.

Remark. A similar argument also applies when X is a normal n-circuit and Y
is a simply connected PL n-manifold.
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