COMPACTIFICATION OF COVERING SPACES OF
COMPACT 3-MANIFOLDS

Jonathan Simon

The problem of determining conditions under which a noncompact 3-manifold M
permits a manifold compactification, that is, an embedding h: M — Q, where Q is
compact and h(int M) = int Q, has recently received considerable attention (see [6],
[2], [15], and references therein). Since h is a homotopy equivalence, M must have
a legal homotopy type: if M contains no 2-sided projective plane, then, by Theorem
2.1 of [14] and Theorem 3.2 of [4], the assumption that

771(1\7[) and image (172(1\71) — Hz(f&; 7))

are finitely generated is sufficient to guarantee that M has the homotopy type of a
compact 3-manifold. Also, Kneser’s theorem [11] and the unresolved Poincaré con-
jecture force us to require that M contain at most finitely many fake 3-cells. But
these conditions are far from sufficient: there exist contractible manifolds M € IR3
that are open [13] or have interior R3 and boundary IR2 [6, p. 230] but have no
manifold compactifications. The obstruction, a sort of homotopic wildness at infin-
ity, is studied in [6], [2], and [15].

This paper considers the question of the existence of a manifold compactifica-
tion primarily in the case where M is a covering space of a compact 3-manifold.
Postulating P2-irreducibility to eliminate problems with 7, , projective planes, and
fake 3-cells, and hoping that the regularities inherent even in irregular covering
spaces prevent wildness of 7, at infinity, we are led to the following conjecture.

If M is a P2-iyrveducible, compact, connected 3-manifold and H is a finitely

genevated subgroup of m,(M), then the covering space M(H) of M corresponding to
H has a manifold compaclification.

In Section 2, we consider the technical problems involved in pasting together
compactifications of manifolds to obtain a compactification of their union. The com-
pactification theorem developed there is the basis for Section 3, in which we consider
the problem of compactifying covering spaces.

In Corollary 3.3, we establish the conjecture on compactifying covering spaces
for the cases where M is a line bundle over a 2-manifold or the product of a 2-
manifold with S!. In addition, we show in Corollary 3.2 that the class of manifolds
for which the conjecture holds is closed under the operations of pasting along disks
or along incompressible annuli, Mdbius bands, and tori. In Theorem 3.7, we expand
the class of well-behaved manifolds by restricting H: if M is a compact, connected,
PZ2-irreducible, sufficiently lavge manifold and the intersection of H with each
finitely generated subgroup of n,(M) is finitely generated, then M(H) has a manifold
compactification. In particular, we indicate in Corollary 3.8 that Theorem 3.7 can
be applied whenever H is abelian or is a subgroup of image (7(dM) — 7;(M)).

Received September 24, 1973. Revision received January 26, 1976.
The author was partially supported by NSF Grant GP-29430.

Michigan Math. J. 23 (1976).

245



246 JONATHAN SIMON

From this, it follows (Corollary 3.9) that if M is compact and P2-irreducible and B
is an incompressible boundary component of M, then B X [0, 1] is a manifold com-

pactification of M(r;(B)); similarly, M(Z) embeds in a solid torus or solid Klein
bottle, and if M is orientable, then M(Z P Z) embeds in S! xSl x [0, 1].

The author wishes to thank T. Price for many valuable conversations regarding
these questions, H. Row for indicating a possible source of confusion in Section 2,
and the referee for making many useful observations, especially the existence of a
serious error in Section 4 of a preliminary version of this paper.

1. PRELIMINARIES

We use the terms manifold and suvface without tacit assumptions as to com-
pactness, connectedness, orientability, or possession of boundary. The terms in-
compressible 2-manifold, sufficiently lavge 3-manifold, and P2-irreducible 3-
manifold have their usual meanings (see [4], or [18] and [5]). In particular, if M
contains a compact, properly embedded, 2-sided, incompressible surface and M is
not a 3-cell, M is called sufficiently lavge. If N is connected and N C M, we de-
note the inclusion-induced homomorphism of 7;(N, x) into 7; (M, x) by
(my(N) — 7;(M)). Lemmas 1.1 to 1.3 are well known facts which we collect here for
future reference.

LEMMA 1.1. If M is a connected, P2-irreducible 3-manifold then m,(M) = 0.
Proof. [3, Section 1].

LEMMA 1.2. Let M be a compact, P2-irrveducible 3-manifold satisfying one
oy move of the following conditions:

(1) oM # @,
(ii) M is nonorientable,
(iii) H; (M; Z) is infinite,
(iv) 71 (M) is a nontrivial amalgamated free product.
Then M is sufficiently large.
Proof. [5, Theorem 3] and [17, Satz 1.2].

LEMMA 1.3. If M is a compact, P2-irreducible, sufficiently lavge 3-manifold,
then each covering space of M is P2-irreducible.

Proof. [5, Theorem 3], [18, Theorem 8.1], and [3, Sections 1 and 6].

2. A GENERAL COMPACTIFICATION THEOREM

This section is, in part, a generalization of the proof of Theorem 8.1 of [18].

Let M be a connected 3-manifold such that (M) is finitely generated. If M
can be expressed as the union of submanifolds M; such that each M; has a manifold
compactification Q(Mi) and the M; intersect nicely, we can try to construct a mani-
fold compactification of M using the Q(M;) as building blocks. We accomplish this
in Theorem 2.5.
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The main difficulty we encounter is illustrated by the following example: let
lVIl and IVIZ be 3-cells; let A; be a point in 81\7[1 and let A, be a closed disk in
oM, ; let M; = M; - A; (i =1, 2) and let M be the manifold obtained by pasting M,
and M, together along their homeomorphic boundaries. Although M is homeo-
morphic to an open 3-cell, we cannot naively paste together the compactifications f/[i
of M; (i =1, 2) to form a compactification of M, since the closures of 9M; in 1(/[1
and oM in 1912 are not homeomorphic. In Lemma 2.4, we show how to change the
embedding of M; in 1\711 so that the closure of 9M; in I\7I1 is a closed disk. We can
then paste together the manifolds IVIi along the closures of 9M; to obtain a compact
manifold Q. In this example, Q is a compactification of M regardless of our choice
of attaching homeomorphism. In general, however, we must be able to find an at-
taching map for the compact manifolds that is compatible with the given attaching
homeomorphism of the noncompact manifolds. Lemmas 2.2, 2.3, and condition (iii)
of 2.4 guarantee this ability.

Definition. Let F be a 2-manifold and let G be a compact 2-manifold in the
interior of F. If the pair (int F - int G, 3G) is homeomorphic to

(0G x [0, 1), aG x {0}),

then we call G a compact core of F.

PROPOSITION 2.1. A 2-manifold ¥ has a compact core if and only if ¥ has
finitely many components and the fundamental gvoup of each component of F is fi-
nitely genevated. Also, if Gy and G, ave compact coves of F, then theve exists a
self-homeomorphism g of ¥ such that g(G,) = G, and g is the identity outside of
some compact set.

Definition. Let H be a compact 2-manifold. Let F be a 2-manifold contained
in H satisfying the following conditions:

(i) int F = int H,
(ii) for each component J of 9H, either J N 3F = @ or J N 9F is dense in J.
Then we say F is standardly embedded in H.

The following lemma, which indicates the importance of the above property, will
be used in the proof of Theorem 2.5.

LEMMA 2.2. Let F be a standardly embedded submanifold of a compact 2-
manifold H. If 1: F — ¥ i{s a homeomorphism, then theve exists a homeomovrphism
g: ¥ — F such that g is homotopic to f and g extends to a homeomorphism of H
onto H.

Proof. Let G be a compact core of F and let C;, ---, C,, be the components of
H - int G. The manifold f(G) is a compact core of F and of H. Let Dy, -, D, be
the components of H - int f(G), ordered so that f(FNC;) =FND; (i=1, ---, n). We
define a homeomorphism h: H — H as follows. On the set G, let h =f. On each
component C; that contains points of ¢F, let h be the unique extension of the re-
striction f|F N C; to a homeomorphism of C; onto D;. This extension exists be-
cause F is standardly embedded in H. Finally, we define h on each component C;
that is disjoint from 9F by letting h be any extension of the restriction f|9G N C;
to a homeomorphism of C; onto D;. Since int F = int H, each such extension maps
F N C; onto Fn D;. Thus the restriction h|F, which we denote by g, is a homeo-
morphism of F onto F. Furthermore, since g|G = f[G, g is homotopic to f{.
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In order to take advantage of the above lemma, we need to be able to produce
standard embeddings.

LEMMA 2.3. If F is a 2-manifold with a compact cove, then ¥ can be stand-
ardly embedded in a compact manifold.

Proof. Since F has a compact core, F can be embedded in a compact manifold
H so that int F = int H. We shall, if necessary, alter this embedding so as to satisfy
condition (ii). Let 4 be the decomposition of H whose nondegenerate elements are
those components of 0H - 9F that are arcs. Let p be the projection map of H onto
the decomposition space H/J . We then have that H/J is a compact 2-manifold
(homeomorphic to H) and p|F is a standard embedding of F in H/7 .

Definition. Let M be a 3-manifold and let F be a 2-manifold contained in oM.
Let U(F) be a subset of M with the following properties:
(i) F < u(¥),
(ii) U(F) is open in M,
(iii) there is a homeomorphism of the pair (F x [0, 1), F x {0}) onto (U(F), F)
that maps 9F X [0, 1) into 8M,
(iv) for 0 <t <1, F x [0, t] is a closed subset of M.
Then we call U(F) a proper collar neighborhood of F.

LEMMA 2.4. (Improving a compactification.) Let h: N — Q be a manifold
compactification of a 3-manifold N. Suppose ¥ C oN is a 2-manifold such that F
has a compact core and a proper collar neighbovhood U(F). Then theve exists a new
manifold compactification h': N — Q such that each of the following conditions is
satisfied:

(i) the maps h and h' ave identical on N - U(F),
(ii) the closuve of h'(F) in Q is a 2-manifold (which we denote by H),
(iii) the manifold h'(F) is standardly embedded in H.

Definition. If a compactification h' satisfies conditions (ii) and (iii) above, we
say h' is well-behaved with respect to F.

Proof of Lemma 2.4. We shall obtain h' by composing h with a suitable em-
bedding k of N into N.

By Lemma 2.3, since F has a compact core, there exists a standard embedding
of F in a compact manifold ¥. By definition of proper collar neighborhood, we may

identify U(F) with the subspace F x [0, 1) of F X [0, 1). Let G be a compact core
of F, and define k to be the identity map on the set

Fx[1/2,1) UGX[0,1) UN-U(F).

This guarantees that condition (i) will be satisfied.

On the set (F - int G) X [0, 1/2], we shall define k to be the composition
k =k;! ok ok, ok, where ki, kz, and k3 are defined in Steps 1 to 3 below.

Each component A of F - int G is an annulus. Let B be the closed annulus in
R2 C R3 bounded by the circles of radius 1 and 2 centered at the origin. We iden-
tify A with B so that 8G N A is the inner circle. We further identify A % {0, 1/2]

v

in F x [0, 1] with B x [0, 1/2] in R2 xIR! =IR3. Let p = (0, 0, 2), and let C be the
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right circular cone whose vertex is p and whose base is the disk in the plane
= -1/2 with center (0, 0, -1/2) and radius slightly less than 2.

Step 1. Let ki be the homeomorphism of A X {0, 1/2] onto A X [-1/2, 1/2] de-
fined by the rule (s, t) — (s, 2t - 1/2).

Step 2. Let X be the set A X [-1/2, 1/2] - int C, and let k, be the homeomor-
phism of A X [-1/2, 1/2] onto X obtained by radial, level-preserving dilation.

Step 3. Let k3 be the embedding of X into X N {0 <z <1/2} defined as fol-
lows: for each straight line L emanating from p, map L N X linearly onto
LNXN{0<z<1/2} or LN X N{0<z<1/2} as appropriate.

Since F X [0, 1/2] is closed in N, k is an embedding of N into N. Since
k(int N) =int N, h': N — Q is a manifold compactification. The closure of k(F) in
F, denoted by H, is compact. Therefore the closure of h'(F) in 9Q is equal to h{H)
and is a compact 2-manifold. Finally, we recall that our original embedding of F in

F was standard and note that this property was preserved by each of the homeomor-
phisms used to obtain h'.
Our final lemma is a slight strengthening of Lemma 2.4.

LEMMA 2.4.1. Let h: N — Q be a manifold compactification of a 3-manifold N.
Suppose {Fy, Fp, -+ } is a collection of paivwise disjoint 2-manifolds in 9N such
that each F; has a compact core and a proper collar neighbovhood U;i. Assume in

o]
addition that Ui: 1 F; is locally connected. Then theve exists a manifold compacti-
Jication h': N — Q that is well-behaved with respect to each F;.

oo
Proof. Since each Fj is closed in N and Uizl F; is locally connected, we can
shrink the neighborhoods U; one at a time to obtain pairwise disjoint proper collar

neighborhoods Ui' of the manifolds F;. We then apply Lemma 2.4 repeatedly to gen-

erate a sequence of embeddings h;, hp, :-- of N into Q such that for each i > 1, h
agrees with h; _; on N - U; and h; is well-behaved with respect to F;. The se-
quence (h;) converges to the desired embedding h'.

COMPACTIFICATION THEOREM 2.5. Lef M be a connected 3-manifold such
that ﬂ'l(M) is finitely genevated, and assume that M can be expressed as the union
of submanifolds M; satisfying the following conditions:

(i) each M; is a connected 3-manifold possessing a manifold compactification
hi: Mj — Q4

(ii) all but pevhaps finitely many M; arve P? -ivreducible,
(iii) for each pair i, j (i # j), M; N M; is a 2-manifold contained in 9M;,

(iv) for each pair i, j (i # j), M; N M; has a compact cove and has a proper
collay neighborhood in M;,

(v) for each pairv i, j (i # j), M; N M; is incompressible in M;,

(vi) for each i and each component F of M; N U j# i Mj, theve exists j such
that ¥ is a component of M; N M;,

(vii) for each i, M; N U j# i MJ- is locally connected.

Then M has a manifold compactification.
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Proof. For each Mj we may, by Lemma 2.4 or 2.4.1, assume hj: Mj — Q; is
well-behaved with respect to each intersection M; N M; (i # j). We may also
assume that in each M;j, the proper collar neighborhoods of the various surfaces
M; N M; (i # j) have pairwise disjoint closures.

n
We shall first show that any finite union U ;=1 M; has a manifold compactifica-

tion that is well-behaved with respect to each surface U 111: 1 M;/) N M j (j > n).
For the case n=2, let F=M; N M, and let F; (i =1, 2) be the closure of hy(F) in
Q;. Since h; is well-behaved with respect to F, there exists, by Lemma 2.2, an at-
taching homeomorphism g: F; — F, whose restriction g = g|h(F) to h(F) is
homotopic to hzhil . Since F has proper collar neighborhoods in M; and M;,, the
fact that g is homotopic to h,hi! implies that the manifold h{(M;) Uhp(M),) is

g
homeomorphic to M; U M,. Thus the union Q; U Q; is a manifold compactification

g
of M; U M, and our embedding h; V hy: M; U M;,; —» Q; U Q;, is well-behaved with

respect to each intersection (M; U M) N M; (j # 1, 2), Now let N = U?zll M; and
suppose that h: N — Q is a manifold compactification that is well-behaved with re-
spect to each surface N N M; (j > n). By conditions (iii), (iv), (vi), and invariance of
domain, the sets F;=M, N M; (i=1, .-, n - 1) are separated sets, and so the set
F = M, N N, which is equal to dM, N 9N, is a 2-manifold (with a compact core).
Furthermore, we can shrink the proper collar neighborhoods of the F; to obtain
proper collar neighborhoods of F in M, and in N. We then proceed exactly as in
the case n = 2 to compactify N U M,,.

Since m (M) is finitely generated and almost all the M; are P2-irreducible, we

can find a finite collection {M, -+-, M} such that U i=1 M;, which we denote by
N, is connected, (7 (N) — 7;(M)) is surjective, and each M;j (j > n) is P2-irreduci-
ble. Let h: N — Q be a manifold compactification. We shall show that Q is a mani-
fold compactification of M, by pushing M - N into a collar neighborhood of fr(N).
We do the pushing on one Mj at a time, beginning with one that meets N, and pro-
ceeding inductively.

Let j be the smallest index (j > n) for which M;N N # (. Since
(71 (N) — m;(M)) is surjective and M; is connected, M;N N is a connected surface,

which we denote by F. Since (7 (N) — 7,(M)) is surjective and M;N Uk #j My is
incompressible in M, (7;(F) — 7;(M;)) is a surjective isomorphism. Since M;j is
P2-irreducible and F is incompressible, 7,(M;) =0 (Lemma 1.1) and F Z P2 ‘or
S2; thus we also have m,(F) = 0. Therefore the inclusion map F — M;j is a homotopy
equivalence. Let F be the closure of hj(F) in Q;. Then the inclusion F — Q; is a
homotopy equivalence, and by Theorem 3.4 of [1], the pair (Q;, F) must then be
homeomorphic to (F x [0, 1], F x {0}).

Since Q; is just F % [0, 1] and the closures of F in Qj and Q are homeomor-

phic, there exists an embedding of N U M; into Q that agrees with h outside a col-
lar neighborhood of F in N. Proceeding inductively, we can define a sequence of

manifolds (-#,) and embeddings hy: 4, — Q such that Uk Al =M and (hy) con-
verges to a manifold compactification h: M — Q.
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3. APPLICATIONS TO COVERING SPACES

In this section, compact manifolds and submanifolds are polyhedral.

Definition. If a 3-manifold M has the property that for each finitely generated

subgroup of 7;(M), the covering space M(H) of M corresponding to H has a mani-
fold compactification, then we shall say M has almost-compact coverings.

We can restate our original conjecture as follows: Ewvery compact, connected,
P%-irreducible 3-manifold has almost-compact coverings.

Remavk. A similar conjecture is presented in [16].

In this section, we apply our compactification theorem to covering spaces. The
following theorem is the main tool for this section.

THEOREM 3.1. Let M be a compact, conneclted 3-manifold, and let H be a
finitely genevated subgroup of w1(M). Suppose that M is the union of connected sub-
manifolds M, and M, satisfying the following conditions:

(i) My and M, are compact and P2-irreducible,

(ii) M; N M, =9aM; NaM; is a 2-manifold that is incompressible in each of
M;, M,

(iii) for each component F of My N My, the intersection of n|(F) with each
conjugate of H in w,(M) is finitely generated,

(iv) for each M (j =1, 2), the covering space of M; corvesponding to a fi-
nitely generated subgafoup of the form nl(M ) Ng-1Hg (g € m1(M)) has a manifold
compactification,

Then the covering space M(H) has a manifold compactification.

Remavks. A proof of Theorem 3.1 is given at the end of this section. It should
be noted that condition (iv) is certainly satisfied if each M; has almost-compact
coverings. Condition (iii) is weaker than the assumption that H meets each finitely
generated subgroup of 7;(M) in a finitely generated group; it follows from conditions
(i) and (ii), Lemma 1.3, and Theorem 4.4 of [8], that we could replace condition (iii)
with the assumption that for each g € 7;(M), at least one of the groups
gHg-1 N 7;(M;) or gHg-! N 7,(M,) is finitely generated.

COROLLARY 3.2. Let M be a 3-manifold and suppose that M is the union of
connected submanifolds My and M, satisfying the following conditions:

(i) M, and M, arve compact and PZ2-irvveducible,
(ii) M; N M, =9aM, N oM, is a 2-manifold that is incompressible in each of
M;, Mp,
(iii) each component of M1 N M, is a disk, annulus, Mobius band, ov tovus,
(iv) each M; (i = 1, 2) has almost-compact coverings.
Ther M has almost-compact coverings.

Proof. Let H be a finitely generated subgroup of 71(M). Conditions (i) to (iv)

of Theorem 3.1 are clearly satisfied, and therefore M(H) has a manifold compacti-
fication.

COROLLARY 3.3. If M is homeomovphic to T x [0, 1], T xS, or a twisted

line bundle over T, wheve T is a connected 2- -manifold, then M has almost-compact
coverings.
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Proof. If M is a line bundle over T, then each covering M(H) is a line bun-
dle over the corresponding covering space T(H). If MZT x 8! and T has a
compact core, we first construct explicitly the coverings of S¢x 8!, P2 xs!,
D2 x S!, and S! x [0, 1] X S!; we can reduce the general problem to these special
cases by cutting T along a nonseparating spanning arc or 2-sided simple closed
curve, inducting on the rank of #;(T), and invoking Corollary 3.2. The final case
we consider is where 7;(T) is infinitely generated and M =T x S!. Let H be a fi-
nitely generated subgroup of m;{M). The group n;(M) is the direct sum Z @ ¥,
where # is a free group with a countably infinite basis {a, a,, -~ }. Since H is
finitely generated, there is a finite set a;, ---, a,,, such that

H E Z@<al: “tty am> E WI(M)-

The covering space N of M corresponding to the subgroup Z D <a1 y "t am> is
the product of Sl with a (noncompact) surface having a compact core. Since N has
almost-compact coverings and M(H) is a covering of N, we conclude that M(H) has
a manifold compactification.

COROLLARY 3.4. A cube-with-handles has almost-compact coverings.

Definitions. Let T be a solid torus in S3 and let K be a knot in T. If T is un-
knotted, we call K a forus krof. If T is knotted in the shape of a knot L, we call K
a cable about L. If K; and K, are knots that lie on opposite sides of a 2-sphere
S c 83 suchthat K; N S=K, NS is an arc @, then we call the knot K; U K; - int «
the composition of Ky and K, .

COROLLARY 3.5. If M is the closed complement of a regular neighborhood of
a torus knot in S3, then M has almost-compact coverings.

Proof. Apply Corollary 3.2, with M; and M, solid tori and M; N M, an annu-
lus.

COROLLARY 3.6. The class of knots K for which a cube with a X-knotted hole
has almost-compact coverings is closed under the knot opevations of composition
and cabling.

Proof. Apply Corollary 3.2, with M; a cube with a knotted hole having almost-
compact coverings, M; N M, an annulus, and M, a solid torus (cabling) or a cube
with a knotted hole having almost-compact coverings (composition).

Remark. The usefulness of Theorem 3.1 would be greatly enhanced if we could
deduce condition (iii) from the hypothesis that H is finitely generated; however,
counterexamples exist in a cube with a trefoil-knotted hole ([10], p. 254) and in
(surface) x S! ([8, Theorem 8.9], which depends on [7]). In view of these examples
and Corollaries 3.3 and 3.5, it is possible for a particular manifold M to have some
decompositions M = M; U M, that are “bad” and others that are “good”.

THEOREM 3.7. Let M be a compact, connected, P2-ivveducible, sufficiently
large (see Lemma 1.2) 3-manifold, and let H be a finitely genevated subgvoup of
711 (M). Assume that the intersection of H with each finitely genevated subgroup of
7, (M) is finitely genevated. Then M(H) has a manifold compactification.

Pyoof. By [117, Section 1.6] or [5, Theorem 3], since M is sufficiently large and
P2-jrreducible, there exists a sequence of submanifolds N;, -+, N, of M such that
N; = M, each component of N,, is a 3-cell, and each N;j (i > 2) is obtained from
N;_; by cutting N;_; open along a properly embedded, connected, incompressible

1
surface F;_;; such a sequence of submanifolds is called a kierarchy for M of
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length n. For each compact, connected, P2-irreducible manifold N possessing a
hierarchy, let A{N) denote the length of a shortest hierarchy for N. We shall es-
tablish our theorem by induction on the number A(M).

If A(M) =1, then M is a 3-cell and there is nothing to prove. If A(M) = 2, then
M is a solid torus or solid Klein bottle; in either case, we can explicitly construct
and compactify the coverings of M. We now consider the general case.

We wish to express M as a union of submanifolds M; and M, satisfying condi-
tions (i) to (iv) of Theorem 3.1. Our choices of M; and M, are made as follows:
let N, -+-, Ny(m) be a hierarchy for M of minimal length; if N, is disconnected,
let M; and M, be the two components of N,; if N, is connected, let M; be N, and
let M, be the product neighborhood F; X [0, 1] that we remove from M to create
N,.

Now M =M; U M, where M; and M, are compact, P2-irreducible manifolds,
A(M,;) <A(M), and either A(M;) <A(M) or M, is the product of a surface with an in-
terval. Also, M; N M, consists of one or two copies of the incompressible surface
F;. Thus M; and M, satisfy conditions (i) and (ii) of Theorem 3.1. For each com-
ponent F of M; N M;, the intersection of 7;(F) with a conjugate of H is isomorphic
to the intersection of H with a (finitely generated) conjugate of 7;(F). By assump-
tion, such a group is finitely generated, so that M; and M, satisfy condition (iii).

We now wish to verify condition (iv). Let H; be a finitely generated subgroup of
m(M;) (j=1or 2) of the form

H; = 71(M;) 0 g-1Hg  for some g € 71(M);

we need to show that M; (H ) has a manifold compactification. If Mj is the product
of a surface with an 1nterval then by Corollary 3.3, Mj has almost-compact cover-
ings. If MJ is not such a product, then ?\(M ) < )\(M) Thus, by induction, to con-

clude that M(HJ) has a manifold compactlﬁcatlon, it suffices for us to show that the
intersection of Hj with any finitely generated subgroup K of 7 I(M ) is finitely gen-
erated. But

KNH; =KNm(M)NglHg =KNglHg = gKg-l NH;

by assumption on H, gKg-! N H is finitely generated.

COROLLARY 3.8. Let M be a compact, connected, P2-irreducible, sufficiently
large 3-manifold, and let H be a finitely genevated subgvoup of n{(M) satisfying
etther one of the following conditions:

(i) H is abelian,
or
(ii) H C image (7, GM) — 7,(M)).
Then M(H) has a manifold compactification.

Proof. For (i), every subgroup of H is finitely generated. For (ii), by Theorem
8.10 of [8], the intersection of H with each finitely generated subgroup of m (M) is
finitely generated. In either case, the result then follows from Theorem 3.7.

Remark. A new proof of Theorem 8.10 of [8] is given in [9].

COROLLARY 3.9. Let M be a compact, connected, P2%-irreducible 3-manifold,
and let B be an incompressible component of dM. Then B X [0, 1] is a manifold
compactification of M(m,(B)).
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Proof, Since oM # ¢, M is sufficiently large Therefore, by Corollary 3.8,
M(’ITI(B)) has a manifold compactification Q(M). Also M(wl(B)) has a boundary com-
ponent B homeomorphic to B, such that the inclusion map of B into M(ﬂl(B)) is a
homotopy equivalence. By Theorem 3.4 of [1], Q(M) is homeomorphic to B X fo, 1].

Before proving Theorem 3.1, we need to establish several lemmas.

LEMMA 3.10. Let G=A >1k? B be a free product of groups A and B with amal-

gamated subgroup F. If G and F ave finitely genevated, then A and B ave finitely
generated.

Proof. This follows from pp. 205-206 of [12].

LEMMA 3.11. Let A be a grvoup with finitely genevated isomovphic subgroups
Fy and F,, and suppose h: Fy — ¥, is an isomorphism. If the group

Ax(t)/{tft-1 = n{):f e Fy}

is finitely genevated, then A is finitely genevated.
Proof. This is a special case of [10, Lemma 3].

LEMMA 3.12. Let N be a connected submanifold of a connected 3-manifold M
such that 7,(M) is finitely generated. Suppose that each component ¥ of fr(N) has
the following properties:

(i) F is a 2-manifold in 9N,
(ii) F is incompressible in M,
(iii) ,(F) is finitely generated,
(iv) F is bicollared in M.
Then m(N) is finitely genevated.

Proof. Let {F } be the family of components of fr(N) and let {N } be the

family of closed complementary domains of N in M. Since 1r1(M) is fm1te1y gen—
erated, there exists a finite collection N;, ---, N,, such that NUN; U --- U N,
connected and the inclusion-induced homomorphism

i T (NUN; U= UN)) — (3

is surjective. Since the surfaces F; are incompressible in 1\71, the homomorphism
i, must be an isomorphism; in particular, #;(N UN; U --- UN,) is finitely gener-
ated.

Let N'=NUN; U -+ UNp_j. We shall show that n;(N") is finitely generated
and conclude, by induction on n, that 7;(N) is finitely generated. Since 7;(N' U N,)
is finitely generated, N' N N, has finitely many components F;, ---, F . If m =1,
then Lemma 3.10 applies. If m > 2, let N" be the manifold obtained by cutting
N' UN_ open along F_ . Since the surfaces F: have product neighborhoods, we can
view N' U N, as the umon of N" and F,, X [0, 1], joined along the surfaces
F,,X10} and F.,x {1}. From Lemma 3. 11, we see that 7(N") must be finitely
generated We now cut N" open along F,,_; and repeat the above argument; after
(m - 1) applications of Lemma 3.11 and one application of Lemma 3.10, we see that
m;(N'} is finitely generated.
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Proof of Theovem 3.1. Let p: M(H) — M be the covering map and let {N;} be
the set of components of p-1(M;) and p-1(M;). We shall show that the manifolds N;

satisfy conditions (i) to (vii) of Theorem 2.5 to conclude that M(H) has a manifold
compactification.

Condition (i). Each N; is the covering space of M; (j = 1 or 2) corresponding
to a subgroup of m;(M;) of the form 71(M;) N g-1 Hg (g € m;(M)). Since each com-
ponent F of Mj; N M, has the property that the intersection of 7,(F) with each con-
jugate of H in 7;(M) is finitely generated, the components of p-!(F) have finitely
generated fundamental groups. Thus, by Lemma 3.12, ﬂl(Ni) is finitely generated.
Hypothesis (iv) of Theorem 3.1 then guarantees that N; has a manifold compactifica-
tion.

Condition (ii). Since M; and M, are PZ-irreducible, it follows from Lemma
1.3 that each N; is P2-irreducible.

Conditions (iii) and (vii). These follow from the fact that p is a local homeo-
morphism.

Condition (iv). Since 711(1\7[(1'1)) is finitely generated, each intersection N; N Ny
(i # k) has at most a finite number of components. As noted above, the fundamental
group of each such component is finitely generated. By lifting a bicollar neighbor-
hood of M; N M,, we obtain the desired proper collar neighborhoods.

Condition (v). Since Mj N M3 is incompressible, each component of
p-1(M; N M,) is incompressible.

Condition (vi). Each component F of N; N U j# iNj is a component of

'I(Ml N M,). For whichever j # i we have Fn Nj # @, F is a component of
N; N N
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