SUFFICIENT CONDITIONS FOR RANK-ONE COMMUTATORS
AND HYPERINVARIANT SUBSPACES

Hong W. Kim, Carl Pearcy, and Allen L. Shields

Let & be an infinite dimensional complex Banach space, and let #(2°) denote
the algebra of all bounded linear operators on 2. In an earlier paper [5] (see also
[1]), the authors obtained the following extension of the celebrated theorem of V.
Lomonosov [6]:

THEOREM A. Suppose T is an opevator in (X)) and theve exists a nonzero
compact opevator K in L(X') such that the rank of TK - KT is less than or equal to
one, Then T has a nontrivial hypervinvariant subspace.

(Recall that a subspace # of & is a nontrivial hyperinvariant subspace for an
operator T in (&) if (0) # .« # & and T'.# C .« for every operator T' in
Z (@) that commutes with T.)

The main purpose of this note is to obtain some results concerning the size of
the class of operators to which Theorem A applies. In particular, let A(2) denote
the set of all those operators T in £(2°) with the property that there exists a com-
pact operator K such that the rank of TK - KT is equal {o one. The interest in the
class A(Z') derives, of course, from Theorem A. It turns out that A(Z") is quite
large, and in particular, if & is a separable, infinite dimensional Hilbert space ¢,
we are presently unable to exhibit any nonscalar operator in Z{() that does not be-
long to A(s#). Thus it is conceivable that the hyperinvariant subspace problem for
(separable) Hilbert space can be settled affirmatively by showing that
alw) =2(x)\ {1}.

If 2 is, once again, an arbitrary infinite dimensional complex Banach space,
and if f € 2" and ¢ € 2™, we shall write fX) ¢ for the operator of rank one in
Z(&) defined as follows: (f X ¢)(g) = ¢(g)f, g € &. Clearly every operator in Z(&’)
of rank one has the form f(X) ¢ for some choice of nonzero vectors f in 2" and ¢ in
Z*. Furthermore, for any T in £ (&), an easy calculation shows that

TER ¢) - ERPT = (TT®¢) - (R T*¢) .

This fact will be used several times in what follows. Finally, the spectrum of an
operator T in £(2°) will be denoted by o(T).

We begin with the following elementary proposition whose proof we omit.

PROPOSITION 1. An opevator T in (') belongs to M) if and only if
aT + B € M) for all scalars a + 0 and B. Furthevmore, if T € AMX) and if
S € (&) and is quasisimilar to T (that is, if theve exist opevators X and Y in
L(X) with trivial kevnels and cokeynels such that TX =XS, YT = SY), then
S € AX). Finally, if T € M), then T* € A(X*).
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It is presently not clear to the authors whether the converse of the last asser-
tion is true; that is, whether the fact that T* € A(Z2'*) always implies T € A(@X').

The class A(2°) is not closed under the usual algebraic operations. For exam-
ple, it is not a linear manifold since it fails to contain 0. Furthermore, if T} and
T, belong to A(Z'), it does not always follow that T; T, belongs to A(Z'). Indeed,
we shall see later that every nonscalar normal operator on the Hilbert space #
belongs to A(H ), but there are many such T for which T2 = 1, and thus T2 ¢ A(s#).
Nonetheless, A(%’) has some algebraic properties. For example, if T € A(Z") and
U € (%) for some complex Banach space ¥, it is obvious that TP U € AMX D ¥).
The following result is less obvious. (The space 2° continues to be an arbitrary in-
finite dimensional complex Banach space.)

THEOREM 1. If T € (%), if v is a vational function with poles off o(T),
and if v(T) € M), then T € MA).

The proof of the theorem depends upon the following lemma.

LEMMA 1. If T, K, R € 2(&) with K compact, and if p is a polynomial such
that p(T)K - Kp(T) =R, then theve is another compact operator K' such that
TK' - K'T = R.

Proof. If p is a constant, then R = 0 and we may take K' = 0. Suppose next
that p(z) = zk+! (k > 0). Then

k k
Tktlg . gpktl = T(Z) Tk'iKTi> - ( 2 Tk'iKTi)T =TK'-K'T.
i=0 i=0

The general case now follows by addition.
Proof of Theorvem 1. By hypothesis, there is a compact operator K and a rank-
one operator R such that

(1) r(T)K - Kr(T) = R .

Let r(z) = p(z)/q(z), where p and q are polynomials and q has no zeros in o(T).

Hence ¢(T) is invertible. From (1) we have p(T)Kq(T) - a(T)Kp(T) = q(T) Rq(T).

Let R' = q(T)Rq(T), which also has rank one since q(T) is invertible. Then, writ-
ing P and Q for p(T) and q(T), respectively, we have

R'= [P(KQ) - (KQ)P]+ [Q(-KP) - (-KP)Q] .
Applying Lemma 1 to each term in brackets, we obtain
R' = (TK'- K'T) +(TK" - K"T) = T(K' +K") - (K' + K")T,

where K' and K" are compact, and thus the theorem is proved.

The following theorem gives an interesting sufficient condition that an operator
be in A(Z), and consequently have a nontrivial hyperinvariant subspace.

THEOREM 2. Suppose T is an invertible opevator in &£ (4’) and that theve
exist nonzevo vectors fin X and ¢ in X* such that

o0

D ke et kel < e
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Then T € A(X).

o]

Proof. If we define K = Ekzo TE{ &) (T*)-k ¢, then the hypothesis guarantees
that the series converges in the norm topology of Z(2’), and hence that K is a com-
pact operator. Furthermore, a calculation shows that TK - KT = -f X) T*¢. Since
T* is invertible, this latter operator has rank one, as desired.

The hypotheses of Theorem 2 can be relaxed somewhat and still yield the de-
sired conclusion. For example, the series which defines K need only be convergent,
not absolutely convergent. The following results have proofs that are essentially the
same as that of Theorem 2 and hence their proofs are omitted.

COROLLARY 1. Suppose T € #(&°), M is a nonzero subspace of X * invavi-
ant under T*, and TF = T* |« is invertible. If there exist nonzero vectors ¢ in
A and £ in 2 such that

i kel frp ol < e,
k=0

then T € AX).

COROLLARY 2. Suppose S and T ave operators in L (&), ST =1, and theve
exist nonzevo vectors f in 2 and ¢ in 2* such that

2 |lTs]| ¥k o] < 4.
k=0

Then T € A(a).

Theorem 2 can also be combined with Theorem 1 to obtain the following result,
which will be used in the proof of Theorem 3.

COROLLARY 3. If T € £(&), r is a rational function with poles off o(T) such
that r(T) is invertible, and theve exist nonzevo vectors ¢ in * and £ in X such
that

o0

2 [e@*t]] @@ Foll < e,

then T € A(X).

The above results can also be combined to yield another sufficient condition that
an operator have a nontrivial hyperinvariant subspace.

COROLLARY 4. Suppose T € £(2), S is an invertible opevatov in the second
commutant of T (that is, S commutes with every opevator that commutes with 'T),
and there exist nonzevo vectors fin X and ¢ in X* such that

[}

2 [|s*t]) M) o] < e
k=0

Thern T has a nontrivial hypevinvarviant subspace.
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Proof. The commutant of T is contained in the commutant of S, and by Theo-
rems 2 and A, S has a nontrivial hyperinvariant subspace.

We turn now to results relating to the size of A(Z).

PROPOSITION 2. If T is any nonscalayv opevatov in (X)) such that either T
or T* has an eigenvector, then T € A(X).

Proof. Suppose T has an eigenvector f # 0. By Proposition 1, we may assume
that the associated eigenvalue is 0. Choose ¢ in ' * such that T*¢ # 0, and set
K=fX® ¢. Then TK - KT = -f (X) T*¢, which has rank one. The proof is similar if
T* has an eigenvector.

COROLLARY 5. The class M) is noym-dense in ().

The proof of this corollary is an immediate consequence of Proposition 2 and
the following proposition, which is well known, at least when & is a Hilbert space
(see [4], Problem 8, Exercise 2, pp. 921-922). For completeness, we give the proof
in the general case.

PROPOSITION 3. The opervators in X (X)) with nonempty point spectvum ave
dense in L(X).

Proof. Let T be an arbitrary operator in £(2°). Since the approximate point
spectrum of T contains 90(T), and is therefore nonempty, there exist a complex
number A and a sequence {f,} of unit vectors in & such that |[(T - ), | — 0.
Choose a sequence {¢,} of linear functionals in #* of norm 1 such that ¢n(fn) = 1,
and for each n, let .« be the null space of ¢,. If g is any vector in &, then for
each n, there exists a vector hy g in #, suchthat g =¢n(g)fn +hn,g. In particu-
lar, if g =1, then h, y =0. We now define a sequence {T,} of linear transforma-

n

tions on & by
T,g = ¢n(g) Af, + Thn,g (g €ex).

Then |(T - T)g| = |¢n(@] [(T-Ntall, g 2, sothat [T - Ty| <[(T -2)1n].
This proves that the T, are all bounded and at the same time that HT - Talf — 0.
Since T f, =Af,, for each n by construction, the proof is complete.

THEOREM 3. If T € @(a) and o(T) is disconnected, then T € AX).

Prooj. By hypothesis, ¢(T) can be written as o(T) =0; U o, where o; and
o, are nonempty disjoint closed subsets of o(T), and hence there exist disjoint open
sets %, and %; inthe complex plane such that o; © #,, i =1, 2. Let { be the
analytic function defined on the open set %, U %, such that f=1/2 on %] and f=2
on %,, and let = be a compact neighborhood of ¢(T) such that = C %; U %,. Then
by Runge’s theorem (cf. [10, p. 288]), there exists a sequence {r,} of rational func-
tions (with prescribed poles off %) that converges to f uniformly on Z. It follows
easily that

lra™ - (D] = Jro(m* - £D*] 0.

Since o (f(T)) = o (f(T)*) = f(o(T)) = {1/2, 2}, the Riesz functional calculus tells us
that ' [2*] splits into the direct sum of two nontrivial subspaces 2'; and

Z,(%, and ¥,), each hyperinvariant for f(T)[f(T)*] (and therefore for T[T*]) such
that

1l

{1/2}, o@D |2, = {2},
{172}, o@(T*|#,) = 1{2}.

o (£(T) l )

o (£(T)*

%,)
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Using the upper semicontinuity of the spectrum, we conclude that there exists a
positive integer j such that

U(rj(T) |2)) c {z: |z - 1/2] <1/4},
o(rj(T)* | %)) < {z: |z - 1/2| <1/4},
o(r;(T)* | ¥3) c {z: |z - 2] <1/2} .

In particular, r:(T)* is invertible, the spectral radius of r;(T) | @ is less than 3/4,
and the spectraI] radius of (rj(T)"‘)'1 |€'/2 is less than 2/3." Hence, if one chooses
any unit vectors f in 2’ and ¢ in ¢ ,, then

2 ryeyee] fomHre] <+,
k=0

and by Corollary 3, T belongs to A(Z).

We now turn our attention to the case that &' is a separable infinite dimensional
Hilbert space &, and we remark first that it is easy to see that all of the above re-
sults are valid in this context, where T* is interpreted as the Hilbert-space adjoint
of an operator T in Z(s). (The reason this is not completely automatic is that
there is a minor difference between the Banach-space adjoint of an operator on Hil-
bert space and the Hilbert-space adjoint of that operator.)

That several much-studied classes of operators on & are contained in A(s¢)
is a consequence of the following result.

THEOREM 4. Let T € %(#), and suppose that H can be decomposed as an
ovthogonal divect sum H = M 1D -+ @D My, (n> 1), of nonzevo subspaces in such a
way that the matvix (Tij) Jor T covrvesponding to this decomposition is in uppev tvi-
angular form and satisfies o(T ) N o(T_}=@. Then T € A(x).

Proof. Let R: ., — i) be any operator of rank one, and consider the opera-
tor equation T ;X - XT,, =R, where X: .#, — -#, . It follows from [9] that there
exists a compact operator X: .#, — ., satisfying this equation. An easy calcula-
tion shows that the commutator (Ty;) (X;;) - (X;;) (Tyj), where X, = X and X;;=0
for all other pairs (i, j), is the matrix (R;;) where R;, =R and R;; = 0 for all

other pairs (i, j). Since the matrix (Rij) clearly has rank one, the theorem is
proved.

COROLLARY 6. Suppose T € () and theve exist nonzevo ovthogonal sub-
spaces A and A4 of H such that Tl C M, T* N C N, and
o(T |ott) N a((T* ]| #)*) = &

Then T € A().

Proof. If o is decomposed as H = M D (H O (M D W) @D A, then the
matrix (Tij) for T relative to this decomposition satisfies the conditions of Theo-
rem 4.

Operators T in #(o¢) that satisfy a somewhat weaker hypothesis than that of
Corollary 6 are known to have nontrivial hyperinvariant subspaces (cf. [3]).

Recall that an operator T in %' (2¢) is said to be n-normal (for some positive
integer n) if T is unitarily equivalent to an n X n operator matrix (Tij)
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(i, j =1, ---, n) acting on the direct sum of n copies of & such that the Tij,
1 <1i, j < n, are mutually commuting normal operators.

COROLLARY 7. All nonscalar normal opevators and all nonscalar n-novmal
operators (n 2> 2) in L(H) belong to A(xr).

Proof. That every nonscalar normal operator in Z(s) belongs to A(s) is an
easy consequence of the spectral theorem and either Theorem 2 or Corollary 6; one
simply uses the fact that T possesses orthogonal nonzero spectral subspaces corre-
sponding to disjoint subsets of ¢(T). That every nonscalar n-normal operator in
Z(o#) (n> 2) belongs to A() is an easy consequence of the well known fact [2]
that every such operator is unitarily equivalent to an operator matrix (Nj;)

(i, j =1, .-+, n) acting on the direct sum of n copies of & that is in upper triangu-
lar form and satisfies the additional condition that the Njj, 1 <1, j <n, are mutually
commuting normal operators. Indeed, if 0(Nj;) is a single point, then the result
follows from Proposition 2. If ¢(N;;) is not a singleton, then it is easy to find spec-
tral subspaces .#; and -#, of N;; and N,,, respectively, such that

Or(Nll "’”l) N c’(Nnn ’ U”n) = ¢ ’

and the result then follows from Corollary 6.

The foregoing results make it clear that the class A(#) is really quite large,
and it seems likely to the authors that the possibility of showing that an operator in
Z (o) has a nontrivial hyperinvariant subspace by showing that it belongs to A(¢)
will lead to the discovery of new classes of operators with nontrivial hyperinvariant
subspaces. (That an operator can belong to A(#’) and have hyperinvariant sub-
spaces for nontrivial reasons is clear from the above results; due to an unfortunate
choice of phraseology, this was not made clear in [5].) We close this note by prov-
ing two additional propositions and by setting forth what seem to be some interesting
problems. The following proposition shows that a question we asked at the conclu-
sion of [5] has a negative answer. (We gratefully acknowledge a note from Mr. Mihai
Pimjner of the University of Bucharest who independently made the same observa-
tion.

PROPOSITION 4. Let & be an avbiltvary infinite dimensional complex Banach
space, let T € (&), and let n be a positive integey. If no polynomial of degree
less than ov equal to n annihilates T, then theve is a compact opevator K in L(X)
of rank n+ 1 such that TK - KT has vank at most 2.

Proof. Since neither the hypothesis nor the conclusion is affected if a scalar is
subtracted from T, we may assume that T is invertible. By a theorem of Kaplansky
(see [8], Theorem 4.8 and its proof), it follows that there exists a vector f in &’
such that the set

{t, Tf, ---, TP f}
is linearly independent. Also, since T* cannot be annihilated by any polynomial of
degree less than or equal to n (for, otherwise, T** would be, and hence, restricting

to the image of 2' in #**, T would be), there exists a vector ¢ in 2* such that
the set

{9, T*9, ==, (T*)" ¢}
is linearly independent. Hence the operator

K=0®e¢) +(TE® (T*) 1 ¢) + - + (TR£ X (T*) " ¢)
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has rank n+ 1. But TK - KT = (T £ ® (T*) 2 ¢) - £® T*¢, so the proposition is
proved.

The following result is due to Sheldon Axler. It shows that an operator on Hil-
bert space may be in A(J), but the sufficient condition of Corollary 3 may fail to
be satisfied. He uses the unilateral shift operator T which may be represented as
multiplication by z on the Hardy space H2. Hence if r(z) is a rational function with
no poles on the closed unit disc, then r(T) may be represented as multiplication by
r(z).

PROPOSITION 5 (S. Axler). Let T denote the unilateral shift operator on HZ.
Let r(z) be any vational function such that r(T) is invertible. Let f, g € H2 be
arbitrary nonzevo vectors. Then

27 r(mke] [(e(T)*) kgl = +e.
k=0

Remark. T € A(s¢) by Proposition 2.

Proof., If h is any vector, then
| (T)*) kg| > |[((x(T)*) kg, r(z)Xn)|/[|r@)*n] = |(g, b)|/|r@)kn] .
Hence
2 k] @O el > 2 |g W] [r@*t]/[rE@<n].
If (g, f) # 0, choose h =f to complete the proof. Otherwise, let f 1 denote the outer
factor of f, choose n such that (g, znfl) # 0, and let h = znf;.
We conclude by stating some problems.

Problem 1. Is every nonzero compact operator in Z(o¢) also in A(s¢)?

Problem 2. Proposition 1 shows that the property of belonging to A(s#) is pre-
served by quasisimilarity transforms. Is every operator that is a quasiaffine trans-
form of an operator in A(s#’) also in A(s¢)?

Problem 3. Is every operator in Z(o¢) of the form N + R, where N is normal
and R has rank 1, in A(<#)? It is not even known whether every such operator has
a proper invariant subspace.

Problem 4. Is every bilateral weighted shift in Z(o¢) also in A(#)? (See [11],
Section 10, p. 109 and Section 12, p. 119 for information on the existence of hyper-
invariant subspaces for bilateral weighted shift operators.)

Problem 5. Is every nonscalar Toeplitz operator in Z(s¢) also in A(o¢)?
Clearly every analytic Toeplitz operator belongs to A(#’) by virtue of Proposition 2.
We note that even for Toeplitz operators with continuous symbol, the question of the
existence of nontrivial hyperinvariant subspaces is open in general.

Problem 6. Is every nonscalar subnormal operator in Z () also in A(s#)?
Problem 7. Suppose (Nij)?,j:l is a nonscalar operator matrix such that the Nj;

are mutually commuting normal operators on & with Ei,j ||Nij||2 < o, (It follows
from this that (Nyj) € (¢ @& o D -+-).) Is (Ny3) in M @ H D -++)?
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Problem 8. Suppose (Njj)i.j=1 is a nonscalar operator matrix that belongs to
2(# Do D ---) and has the property that the N;;, 1 <1i, j < «, are mutually
commuting normal operators on & such that Nj; = 0 whenever i>j. Is (Njj) in

MA@ H D)2

In both Problem 7 and in Problem 8 it is not known whether (Nij) must have
nontrivial hyperinvariant subspaces. (If dim o > 1, then (Nj;) does have reducing
subspaces.)

Problem 9. Let T be any nonscalar operator in £ (<¢) with the property that
there exists an invariant subspace # # (0) for T such that T IJ[ is normal. Is
every such operator in A(s#)? Whether every such operator has a nontrivial hyper-
invariant subspace is not known at present. Clearly an affirmative answer to Prob-
lem 9 implies an affirmative answer to Problem 8.

Problem 10. If T € (o) and 4 is an invariant subspace for T such that
o (T |#) is disconnected, is T in A(s#)? L. Fialkow has asked whether such oper-
ators have nontrivial hyperinvariant subspaces. An affirmative answer to Problem
10 clearly implies an affirmative answer to Problem 9.

Perhaps the most important question from the standpoint of determining the size
and utility of the class A(s¢) is the following.

Problem 11. Does there exist a nonscalar operator T in Z(s) that does not
belong to A(o¢)?
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