LACUNARY POWER SERIES ON THE UNIT CIRCLE

I-Lok Chang

By the statement that a formal power series

(1)
$$S(\theta) = \sum_{n=1}^{\infty} c_n e^{ik_n \theta}$$

is q-lacunary we shall mean that its exponents k_n satisfy a condition of the form $k_{n+1}/k_n\!>\!q\!>\!1$ (n = 1, 2, \cdots). In a research announcement [2], R.E.A.C. Paley stated that if the series (1) is q-lacunary, and if in addition $\left|\mathbf{c}_n\right|\to 0$ and

 $\sum |c_n| = \infty$, then for each finite complex number w the series converges to w at every point of a set that is dense in $[0, 2\pi]$.

A complete proof of Paley's theorem was later given by M. Weiss [3]. Subsequently, J.-P. Kahane, M. Weiss, and G. Weiss [1, pp. 1-16] showed that the plane-covering property of $S(\theta)$ is only one aspect of a much stronger property of the sequence $\{S_n\}$ of partial sums of (1). They proved that if the series (1) is q-lacu-

nary, and if in addition $c_n \to 0$ and $\sum |c_n| = \infty$, then corresponding to every closed connected subset C of the extended complex plane there exists an everywhere dense set E in $[0, 2\pi]$ such that for each θ in E the set C is the set of limit points of $\{S_n(\theta)\}$.

This theorem fails if we omit the hypothesis that $c_{\rm n} \to 0.$ Indeed, let

$$E(\infty, S) = \{\theta \in [0, 2\pi] : \lim_{n \to \infty} |S_n(\theta)| = \infty\}.$$

If for each index n we take $c_n = n!$, then (even without the hypothesis of lacunarity) the series (1) obviously has the property that $E(\infty, S) = [0, 2\pi]$. It is not known in general whether the set $E(\infty, S)$ remains dense in $[0, 2\pi]$ if $c_n \neq 0$. Simple arguments show that it is a dense set if we assume in addition that q > 3. In this note we prove the following result.

THEOREM. To each q>1 there corresponds a positive constant A_q such that for each q-lacunary series (1) satisfying the two conditions

$$\lim_{n\to\infty}\sup|c_n|>0$$

and

(2)
$$\lim \inf_{N \to \infty} \left(\sum_{n=1}^{N} |c_n| / \max_{1 < n < N} |c_n| \right) > A_q,$$

Received March 12, 1975. Revision received February 23, 1976. This paper is based on the author's dissertation, written at Cornell University.

Michigan Math. J. 23 (1976).

the set $E(\infty, S)$ is everywhere dense in $[0, 2\pi]$.

Our proof of the theorem depends on the following lemma, which guarantees the existence of points θ in $[0, 2\pi]$ where $S_N(\theta)$ has the same order of magnitude as $\sum_{1}^{N} |c_n|$. Except for differences in notation, the lemma is Corollary (2.1) on page 6 of [1].

LEMMA. To every q>1 there correspond positive constants B_q and C_q $(C_q>1)$ with the following property. If (1) is a q-lacunary power series and w is a complex number of modulus $C_q \sum_{n=1}^N \left|c_n\right|$, then each interval of length B_q/n_1 on the real line contains a point ξ such that

$$\left|S_N(\xi)-w\right|\,\leq\,\sqrt{C_q^2-1}\,\sum_{n=1}^N\,\left|c_n\right|\,.$$

Proof of the Theorem. Let B_q and C_q be the constants of the lemma. We show that if x is a point in $[0, 2\pi]$, then for any $n_0 \ge 1$, there is a real number θ_0 such that

$$|x - \theta_0| \le \frac{B_q}{2k_{n_0}(1 - 1/q)}$$
,

and

$$\lim_{N\to\infty} \left| \sum_{n=n_0}^{N} c_n e^{ik_n \theta_0} \right| = \infty.$$

Without loss of generality we may assume that $n_0 = 1$. In two steps we verify the theorem:

Step I. Let α and β be positive real numbers satisfying

$$\frac{B_{q}}{2C_{q}}\alpha + \frac{\sqrt{C_{q}^{2}-1}}{C_{q}} = 1 - \beta$$

and

$$C_q \beta < 1$$
.

Express the series $S(\theta)$ as

$$S(\theta) = B_1(\theta) + B_2(\theta) + \dots + B_i(\theta) + \dots,$$

where

$$B_{1}(\theta) = c_{1}e^{ik_{1}\theta} = c_{1}e^{ik_{m_{1}}\theta}, \quad B_{2}(\theta) = \sum_{n=2}^{m_{2}} c_{n}e^{ik_{n}\theta}, \dots,$$

$$B_{i}(\theta) = \sum_{n=m_{i-1}+1}^{m_{i}} c_{n} e^{ik_{n}\theta}, \cdots.$$

Choose the integers $m_1,\,m_2,\,\cdots$ by the conditions m_1 = 1, and m_i (i ≥ 2) is the smallest integer such that $m_i>m_{i-1}$ and

(3)
$$k_1 |c_1| + \cdots + k_{m_{i-1}} |c_{m_{i-1}}| \le \alpha k_{m_{i-1}} \sum_{n=m_{i-1}+1}^{m_i} |c_n|.$$

Let

$$\sigma_1 = |c_1|, \quad \sigma_i = \sum_{n=m_{i-1}+1}^{m_i} |c_n| \quad (i = 2, 3, \cdots)$$

and

$$M_i = \max_{1 < n < m_i} |c_n|$$
 (i = 1, 2, ...).

For $i \geq 2$, the choice of m_i is such that

$$\sigma_{i} - |c_{m_{i}}| \le (k_{1} |c_{1}| + \cdots + k_{m_{i-1}} |c_{m_{i-1}}|) / (\alpha k_{m_{i-1}}).$$

This implies

$$\begin{split} \sigma_{i} &\leq \left| c_{m_{i}} \right| + M_{i} (k_{1} / k_{m_{i-1}} + \dots + 1) / \alpha \\ &\leq M_{i} + M_{i} (1 + 1/q + 1/q^{2} + \dots) / \alpha \\ &= \left(1 + \frac{1}{\alpha (1 - 1/q)} \right) M_{i}. \end{split}$$

Thus we have

(4)
$$\sigma_{i} \leq \left(1 + \frac{1}{\alpha(1-1/q)}\right) M_{i} \quad (i = 1, 2, \cdots).$$

In particular, (4) shows that the σ_i are bounded if the c_n are bounded.

Now we define inductively a sequence $\{\theta_1 = x, \theta_2, \theta_3, \dots\}$ such that

$$\left|\theta_{i+1} - \theta_{i}\right| \leq \frac{B_{q}}{2k_{m_{i}}}$$

and

$$\left|S_{m_{i}}(\theta_{i})\right| \geq C_{q} \beta (\sigma_{1} + \cdots + \sigma_{i}).$$

Let $\theta_1 = x$. Clearly $|S_{m_1}(\theta_1)| = |c_1| \ge C_q \beta |c_1|$, since $C_q \beta < 1$. Having chosen θ_i , let $\phi_i = \arg(S_{m_i}(\theta_i))$ and let $w_i = C_q \sigma_{i+1} e^{i\phi_i}$. By the lemma, there exists a point θ_{i+1} in the interval $I = \left(\theta_i - \frac{B_q}{2k_{m_i}}, \theta_i + \frac{B_q}{2k_{m_i}}\right)$ such that

$$|B_{i+1}(\theta_{i+1}) - w_i| \le \sqrt{C_q^2 - 1} \sigma_{i+1}$$
.

Express $|S_{m_{i+1}}(\theta_{i+1})|$ as

$$\left| \mathbf{S_{m_{i+1}}}(\theta_{i+1}) \right| \; = \; \left| \left(\mathbf{S_{m_i}}(\theta_i) + \mathbf{w_i} \right) + \left(\mathbf{S_{m_i}}(\theta_{i+1}) - \mathbf{S_{m_i}}(\theta_i) \right) + \left(\mathbf{B_{i+1}}(\theta_{i+1}) - \mathbf{w_i} \right) \right| \; .$$

Incorporating the inductive hypothesis, we have

$$\left|S_{\mathrm{m_i}}(\theta_{\mathrm{i}}) + w_{\mathrm{i}}\right| = \left|S_{\mathrm{m_i}}(\theta_{\mathrm{i}})\right| + \left|w_{\mathrm{i}}\right| \geq C_{\mathrm{q}} \beta(\sigma_1 + \cdots + \sigma_{\mathrm{i}}) + C_{\mathrm{q}} \sigma_{\mathrm{i+1}}.$$

Observe that for any real numbers a and b,

(5)
$$\left| e^{ia} - e^{ib} \right| = \left| e^{i(a-b)/2} - e^{-i(a-b)/2} \right| = \left| 2i \sin\left(\frac{a-b}{2}\right) \right| \le |a-b|$$
.

Using (5), together with (3) and the definition of θ_{i+1} , we have

$$\left|S_{m_i}(\theta_{i+1}) - S_{m_i}(\theta_i)\right| \leq \left|\theta_{i+1} - \theta_i\right| \sum_{n=1}^{m_i} k_n \left|c_n\right| \leq \frac{\alpha B_q}{2} \sigma_{i+1} .$$

Thus

$$\begin{split} \left| S_{m_{i+1}}(\theta_{i+1}) \right| &\geq C_{q} \beta(\sigma_{1} + \dots + \sigma_{i}) + C_{q} \sigma_{i+1} - \left\{ \frac{\alpha B_{q}}{2C_{q}} + \frac{\sqrt{C_{q}^{2} - 1}}{C_{q}} \right\} C_{q} \sigma_{i+1} \\ &= C_{q} \beta(\sigma_{1} + \dots + \sigma_{i+1}), \end{split}$$

completing the induction.

The sequence $\{\theta_i\}$ is a Cauchy sequence. For if i < j, then

$$|\theta_i - \theta_j| \le |\theta_i - \theta_{i+1}| + \dots + |\theta_{j-1} - \theta_j| \le \frac{B_q}{2} \sum_{r=i}^{j-1} \frac{1}{k_{m_r}} \le \frac{B_q}{2k_{m_i}(1-1/q)},$$

which tends to zero as $i \to \infty$. Since the sequence $\left\{\theta_i\right\}$ is then convergent, we define

$$\theta_0 = \lim_{i \to \infty} \theta_i$$
.

The same argument shows

(6)
$$|\theta_i - \theta_0| \leq \frac{B_q}{2k_{m_i}(1 - 1/q)}$$
 (i = 1, 2, ...).

In particular,

$$|x - \theta_0| \le \frac{B_q}{2k_1(1 - 1/q)}$$
.

Step II. We assert that

$$\lim_{n\to\infty} |S_n(\theta_0)| = \infty.$$

If r is such that $m_{i} < r \le m_{i+1}$, then

$$\left| S_{\mathbf{r}}(\theta_{0}) \right| = \left| S_{\mathbf{m_{i}}}(\theta_{i}) + (S_{\mathbf{m_{i}}}(\theta_{0}) - S_{\mathbf{m_{i}}}(\theta_{i})) + \sum_{n=\mathbf{m_{i}}+1}^{\mathbf{r}} c_{n} e^{ik_{n}\theta_{0}} \right|.$$

From Step I,

$$|S_{m_i}(\theta_i)| \geq C_q \beta(\sigma_1 + \cdots + \sigma_i)$$
.

Applying (5), together with (3) and (6), we have

$$|S_{m_i}(\theta_0) - S_{m_i}(\theta_i)| \le |\theta_i - \theta_0| \sum_{n=1}^{m_i} k_n |c_n| \le \frac{\alpha B_q}{2(1-1/q)} \sigma_{i+1}.$$

Thus

$$\begin{aligned} \left| \mathbf{S}_{\mathbf{r}}(\theta_0) \right| &\geq \mathbf{C}_{\mathbf{q}} \beta(\sigma_1 + \dots + \sigma_{\mathbf{i}}) - \left(1 + \frac{\alpha \mathbf{B}_{\mathbf{q}}}{2(1 - 1/\mathbf{q})} \right) \sigma_{\mathbf{i}+1} \\ &= \mathbf{C}_{\mathbf{q}} \beta(\sigma_1 + \dots + \sigma_{\mathbf{i}+1}) - \left(1 + \frac{\alpha \mathbf{B}_{\mathbf{q}}}{2(1 - 1/\mathbf{q})} + \mathbf{C}_{\mathbf{q}} \beta \right) \sigma_{\mathbf{i}+1} . \end{aligned}$$

If the c_n are bounded, then $\left|S_r(\theta_0)\right|$ tends to infinity with $C_q \beta(\sigma_1 + \cdots + \sigma_{i+1})$, since $\sigma_{i+1} = O(1)$, by (4), and since $\lim\sup \left|c_n\right| > 0$.

Otherwise, from (4) and (7), we have

$$\begin{split} \frac{\left|S_{r}(\theta_{0})\right|}{M_{i+1}} &\geq C_{q} \beta \left(\frac{\sigma_{1} + \dots + \sigma_{i+1}}{M_{i+1}}\right) - \left(1 + \frac{\alpha B_{q}}{2(1 - 1/q)} + C_{q} \beta\right) \frac{\sigma_{i+1}}{M_{i+1}} \\ &\geq C_{q} \beta \left(\frac{\sigma_{1} + \dots + \sigma_{i+1}}{M_{i+1}}\right) - \left(1 + \frac{\alpha B_{q}}{2(1 - 1/q)} + C_{q} \beta\right) \left(1 + \frac{1}{\alpha(1 - 1/q)}\right). \end{split}$$

The last expression of (8) is bounded below by $\varepsilon > 0$ if

$$(9) \quad \frac{\sigma_1 + \cdots + \sigma_{i+1}}{M_{i+1}} \ge \left\{ \epsilon + \left(1 + \frac{\alpha B_q}{2(1-1/q)} + C_q \beta \right) \left(1 + \frac{1}{\alpha(1-1/q)} \right) \right\} / C_q \beta .$$

We now define Aq by the formula

$$A_{q} = \left(1 + \frac{\alpha B_{q}}{2(1 - 1/q)} + C_{q} \beta\right) \left(1 + \frac{1}{\alpha(1 - 1/q)}\right) / C_{q} \beta$$

Then condition (2) of the theorem implies that there is a positive ϵ such that (9) holds for all sufficiently large i. In this case, $|S_r(\theta_0)| \ge \epsilon M_{i+1}$ and hence $\lim_{r\to\infty} |S_r(\theta_0)| = \infty$. This completes the proof of the theorem.

REFERENCES

- 1. J.-P. Kahane, M. Weiss, and G. Weiss, *On lacunary power series*. Ark. Mat. 5 (1963-65), 1-26. MR 32 #7716.
- 2. R. E. A. C. Paley, On lacunary power series. Proc. Nat. Acad. Sci. U.S.A. 19 (1933), 271-272.
- 3. M. Weiss, Concerning a theorem of Paley on lacunary power series. Acta Math. 102 (1959), 225-238. MR 22 #8109.

American University Washington, D.C. 20016