PRIMARY SEMIGROUPS
Pierre Antoine Grillet

1. A commutative semigroup S is primary, relative to a commutative ring R
with identity, in case the semigroup algebra R [S] contains a primary ideal that
separates S, in other words, contains no nontrivial difference of two elements of S.
Our main results give various properties of primary semigroups in general, and a
characterization of finite primary semigroups when R is a suitable field such as C.

Our interest in primary semigroups stems from the fact that each finitely gen-
erated commutative semigroup is a subdirect product of finitely many primary
semigroups (when R is Noetherian); this is an easy consequence of primary decom-
positions and the Hilbert basis theorem. It presents primary semigroups as basic
building blocks for an important class of semigroups, and it makes their determina-
tion of some interest, particularly in the finitely generated case. The choice of R is
of secondary importance in this, so long as R yields a wide class of primary semi-
groups, and there are indications that C is as good a choice as any. The author is
primarily interested in the structure of semigroups, rather than in the interplay be-
tween semigroups and rings; maximum generality has not been sought as far as R
is concerned.

2. Our main results on primary semigroups are as follows. First, there are
three kinds of primary semigroups: relative to each R, a primary semigroup is
either a cancellative semigroup, or a nilsemigroup, or what we call a subelementary
semigroup, that is, the union S = N U C of a nilsemigroup N and a cancellative
semigroup C, in which N is an ideal and every element of C is cancellative in the
whole semigroup. In the last case, C is also primary if S is primary.

All nilsemigroups are primary (relative to each R). For a cancellative semi-
group S to be primary, the torsion part of its group of quotients must be locally
cyclic (cyclic, if S is finitely generated); the converse holds if S is finitely gener-
ated and R is a field K of characteristic 0 that contains all roots of unity (for ex-
ample K = C). The case where S is subelementary is more difficult. A subelemen-
tary semigroup is easily completed into an elementary one (one whose cancellative
part is a group), and this does not affect primariness. When R = K as above, and the
primary semigroup S =N U G is elementary (with G a group), then the torsion part
of G is locally cyclic; this is completed by the following necessary condition on the
action of G on S (G acts on S by multiplication in S): under the action of any cy—‘
clic subgroup of G, all the finite nonzero orbits in S must have the same number of
elements. We could not prove the converse holds except when G is cyclic (finite or
infinite). However, this suffices to clean the problem in the finite case.

3. These results require a certain amount of preliminary material. The easier
basic properties of subelementary semigroups and primary semigroups will be found
in Section 1. Section 2 studies prime semigroups, which are defined like primary
semigroups but in terms of prime ideals; this is useful for the main results, because
when R = K as above, a primary cancellative semigroup is necessarily prime (and
conversely). The main results can then be obtained in Section 3.
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4. The notation is generally as in [1], and the reader is referred to [1] and, say,
[7] for all basic concepts. We depart from the notation in [1] by denoting the identity
and zero element of S (if any) by e and z, respectively. This is pretty much a
must, since z # 0 € R[S] and e # 1 € R. The letter K generally denotes a field of
characteristic 0 containing all roots of unity. The letter R denotes a commutative
ring with identity. All semigroups and rings under consideration are commutative;
this should be kept in mind by the reader, since it is usually not recalled in the text.

The results of this paper have been announced in [4].

1. SUBELEMENTARY SEMIGROUPS

1. A commutative semigroup S is subelementary in case S is a disjoint union
S =N U C, where N is a nilsemigroup and an ideal of S, while C is a cancellative
semigroup, and every element of C is cancellative in S; we say that S is elemen-
tary if furthermore C is a group. In the latter case, the terminology is due to I. S.
Ponizovskii [9]. The zero element z of N is also a zero element of S (if ¢ € C,
then zc € N, and the relation x(zc) = zc for all x € N shows that zc is a zero ele-
ment of N, so that zc =z). If C has an identity element e (for example, if S is
elementary), then e is also the identity element of S (because e(ex) = ex, x € N,
ex € N implies ex = x, for all x € N). Infact, if C =G is a group, the condition
that e is an identity element of S is equivalent to the cancellativity in S of every
element of G: for the relation gx = gy implies x =y trivially if x, y € G; it cannot
happen if x € N and y € G; and it implies

x=ex=glgx=glgy=ey=y

if X, y € N. For instance, it is readily seen that a finite commutative semigroup S
is elementary if and only if it has an identity, a zero, and no other idempotent.

A basic property of subelementary semigroups is that they can always be com-
pleted to elementary semigroups. In general, let S be commutative semigroup, and
let C be a subsemigroup of S, every element of which is cancellative in S. We can
then form a semigroup of fractions C-! S, whose elements are all fractions s/a
(s € S, a € C), with s/a =t/b <> bs = at, multiplied according to the rule
(s/a)(t/b) = st/ab; when ¢ € C and s € S, then as = sc/c € C-!'S does not depend on
the choice of ¢, and @: S — C-! S is easily seen to be an injective homomorphism.
In the sequel, it is convenient to identify s and as, which makes S C C-1S and «
an inclusion map. For instance, if S = C is cancellative, then C-1S =S-1§ is the
group of fractions (or group of quotients, or universal group) of S, which we also
denote by G(S). This construction is well known, and it is a particular case of much
more general constructions (see [8], for example).

PROPOSITION 1.1. If S =N U C is subelementary, then C-ls is elementary,
with C-1S=C-1NUG(C) and C-1N = {x/c € C-18; x € N}.

Proof. We see that z/c is a zero element of C-1S (in particular, it does not
depend on ¢) and that C-1N is a nilsemigroup and an ideal of C-1S. Also,
S=NU C implies C-!8=C-!Nuy C-1C; the right-hand member is a disjoint union,
since the equation x/c¢ = y/d has no solutions when x € N and y, ¢, d € C. Finally,
for each ¢ € C, we see that ¢/c is an identity element of C-18; in particular, it
does not depend on ¢, and thus the identity element of C-1C = G(C) is the same as
that of C-1S. =
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Before we go on with the study of subelementary semigroups, we make one
more observation on the general semigroup C-! S (with S commutative and every
element of the subsemigroup C cancellative in S):

PROPOSITION 1.2. For each commutative ving R with identity,
R[Cc-Is]=c-IRr[s].

Proof. First, C is a multiplicative subsemigroup of the commutative ring R [s],
so that we can construct the localization C-1R[S]. Now take ¢, d € C,

a=2i,e5TsS, b= 2egrit in R[S], and assume da = cb. Then

27 rg(ds) = 27 rifet);

SES te S

since ¢ and d are cancellative in S, a one-to-one correspondence between the finite
sets {s e S;r,# 0} and {t e S; r{ # 0} is obtained from ds = ct; when s and t
correspond to each other in this way, then ri =r and s/c =t/d in C-18S; therefore

27 ry(s/c) = 27 ri{t/d) in R[C-!8].

s€S te S

It follows that a mapping 6: C-!R[S] — R[C-1S] is well-defined by the condition

6(a/c) = 27 r (s/c)  whenever ce C, a = 27 r se R[S].
s€S SES

The mapping 6 is readily seen to be a homomorphism (being R-linear and preserv-
ing multiplication of generators s/c¢). Furthermore, 6(a/c) = 0 clearly implies
a =0 (since all s/c (s € S) are distinct), so that 6 is injective. Finally, let

Z; ri(Si/Ci) € R[C_IS];

i€l

there we may assume that I is finite, r; # 0, and the elements s;/c¢; are pairwise

distinct. Let c € C be the product of all [finitely many] c;; then b = 27; . r;(t; /c),
where the elements t; € S are pairwise distinct (since the t; /c are pairwise dis-

tinct); therefore b = 0(a/c), with a = 27,y r;t; € R[S]. m

2. If S=NU G is an elementary semigroup, the group G acts on the set S by
multiplication. If x € S and g € G, then the equality g-!(gx) = x shows that x & gx.
Conversely, if x oy, so that y = ux and x = vy for some u, v € S [=S1], then

= uvx implies x = (uv)"x for all n, so that, if x # z, then (uv)® # z for all n, that
is,uv ¢ N, uv € G, u € G, and y € Gx; if x = z, then again ,y =z = ez € Gx. Thus
the o -classes of S are precisely the orbits under the action of G on S; for this
reason, they will also be called o#bits in what follows. The quotient semigroup
S/ is the semigroup of orbits of S. We see that G is a single orbit and the re-
maining orbits are nilpotent in S/ ; thus the semigroup of orbits of S is a nilsemi-
group with adjoined identity, and for this reason we shall denote it by ©! in what
follows (with Q a nilsemigroup).
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These definitions can be generalized to any subelementary semigroup S=N U C
as follows. The binary relation Cx N Cy # @ on S is readily seen to be transitive,
and hence it is an equivalence relation on S; the equivalence classes are again called
ovbits. Since Cx N Cy # @ implies Cxs N Cys # @ for all s € S, our equivalence
relation is in fact a congruence; the quotient-semigroup is the semigroup of orbits
of S. These definitions reduce to the above if S is elementary; but in general, we
cannot interpret orbits as s-classes, if only because < is frivial when S lacks an
identity element, whereas C itself is an orbit, by commutativity. Again the semi-
group of orbits is a nilsemigroup with adjoined identity, and we denote it by Ql.

The following result gives an alternate description of the orbits of S.

PROPOSITION 1.3. When S =N U C is subelementary, all the orbits of C-1 S
intevsect S, and these intervsections ave precisely the orbits of S. Thus, S and
C 18 have isomorphic semigroups of ovbits.

Proof. When s/c € C-1'S, we see that s = sc¢/c = (s/c)(c?/c), and hence the
orbit of s/c contains s € S. This also shows that s and s/c always lie in the same
orbit of C-1S. If now s and t lie in the same orbit of S, then ds = ct for some
¢, d € C; since s/c =t/d, it follows that s and t lie in the same orbit of C-!S.
Conversely, if s, t € S lie in the same orbit of C-1 S, then s = (¢/d)t = ct/d for
some ¢, d € C such that ds = ct, and s and t lie in the same orbit of S. The vari-
ous parts of the statement then follow immediately. B

PROPOSITION 1.4. If S=N U C is a finitely genevated subelementary semi-
group, then C is finitely genevated and the ovrbit semigvoup is finite.

Proof. Since N is an ideal, C is generated by the generators of S that lie in C.
Furthermore, the semigroup of orbits of S is a finitely generated nilsemigroup with
adjoined identity, and therefore it is finite. ®

Recall that the nilsemigroup N can always be partially ordered by the rule
a<b-<>ae N'b Weseethat a<b if and only if a € Nb and b # z; hence a <b
implies that the orbits Q, and Qy of a and b satisfy the condition Q, < Qy in Q1.
It follows from Proposition 1.4 that if S is finitely generated, then N has finite
height (a maximal chain of N cannot be longer than the longest maximal chain of ).

3. We conclude this section with the definition of primary semigroups and some
basic properties.

Let R be a commutative ring with identity. An ideal a of the semigroup alge-
bra R[S] is said to separate S in case the conditions s, t € S, s-t € a imply
s =t. Note that a can then contain at most one element of S; if a does contain one
element z of S, then z - zs € a for all s € S, and it follows that z is a zero ele-
ment of S. The semigroup S is called R-primary in case it is separated by a pri-
mary ideal of R[S].

PROPOSITION 1.5. A commutative semigvoup S is R-primary if and only if
theve exists a primary commultative R-algebra that contains a mulliplicative semi-
group isomovphic to S.

Proof. If the primary ideal q of R[S] separates S, then the R-algebra R[S]/q
contains a multiplicative subsemigroup isomorphic to S, and its zero ideal is clearly
primary. Conversely, if the primary R-algebra A contains a subsemigroup T =S,
then the isomorphism S — T extends to a homomorphism ¢: R[S] — A whose kernel
q separates S, since ¢ is injective on S, and is primary by the condition on A. H
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Our interest in primary semigroups stems from the following result.

PROPOSITION 1.6. Let S be a finiltely genevated commuiative semigroup.
Then S is a subdivect product of finitely many R-primary semigroups, whenever R
is a commutative Noethevian ving with identity.

Proof. If S is generated by x;, -+, X,, say, it is a homomorphic image of the
free commutative semigroup F on xj, *--, Xn. Hence R[S] is a homomorphic
image of R[F] 2 R[X;, *-, X,|; if R is Noetherian, the Hilbert basis theorem then

implies that R[S] is Noetherian. [This elementary fact will be used again.] The
zero ideal of R[S] is then the intersection of finitely many primary ideals
a1, ***, 9r. Each qj induces on S a congruence €; defined by the rule

X®;y <> Xx-y €qj; since ﬂ qj =0, we see that n,%”j is the equality on S and
hence S is a subdirect product of the semigroups S/€¢1, -+, S/%. . Now the R-
algebra R[S]/q; is primary, and we see that it contains an isomorphic copy of
S/®j; therefore Proposition 1.5 implies that every S/¢; is R-primary. ®

PROPOSITION 1.7. An R-primary semigroup is eithev cancellative or nil or
subelementary.

Proof. Let q be a primary ideal of R[S] that separates S, and let p be its
radical (a prime ideal of R[S]). Because R[S]\ p is multiplicatively closed, we
see that C =S \ p is a subsemigroup (possibly empty) of S. Because p is an ideal
of R[S], we see that N =8 N p is an ideal (possibly empty) of S. If x,y € S, ¢ € C,
and cx = cy, then c(x - y) € q; since 9 is primary and ¢ ¢ p, this implies that
X - y € ¢ and hence x = y; thus every element of C is cancellative in S. Assume
x € N (in particular, N # ®). Then x € p, so that x0 € q for some n; in particular,
SN q # @ and since q separates S, the intersection S N q consists of just a zero
element z of S. Also, in the considerations above, x® =z (since x® € SN q), and
thus N is a nilsemigroup. The different cases for S in the statement then arise ac-
cording to whether N=@®, C=¢@, or N,C # ¢. B

COROLLARY 1.8. Every finitely genevated commutative semigroup is a sub-
divect product of finitely many cancellative, nil, and subelementary semigvoups. W

In the finite case, this result was obtained by Ponizovskii [9] who also showed
that explicit decompositions of this type are readily available. For finitely generated
commutative semigroups, it is the basis of a further investigation of subdirect de-
compositions (announced in [5]) and for the completion theorem in [6].

2. PRIME SEMIGROUPS

1. Let R be a commutative ring with identity. A commutative semigroup S is
R-prime in case it is separated by a prime ideal of R[S].

It is natural to wonder whether the prime ideal in this definition can be assumed
to be zero (a similar question applies to the definition of primary semigroups).
Evidently, this requires that R is an integral domain; but even then the following
result (together with later results) shows that the answer is no.

PROPOSITION 2.1. Lel R be an integral domain of characteristic 0. For a
commutative semigroup S, these ave equivalent:

(a) R[S] is an integral domain;
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(b) every zervo divisor in R[S] is nilpotent;
(c) S is cancellative and power-cancellative (that is, X =y implies x =y).

Proof. Assume (b) holds. If the equation ac =bec holds in S, then (a - b)e =0
in R[S]; since e¢? # 0 in R[S] for all n, it follows that a = b, so that S is cancella-
tive. Now assume a" = b? holds in S. We may assume n > 1. Then
a™ - b" = (a - b)u = 0 holds in R[S], where

u=atliyan-2yp4+...4pn-1 (u=a+bif n=2).

The coefficient of afn-1)k jpn uk isa positive integer in R (it is the number of times
a product of k elements a” PbP-1 equals a(®-1)k in S); since R has characteristic
0, it follows that uX # 0 for all k, and again a =b. Thus (b) implies (c).

Conversely, assume that (c) holds. If R{S] has zero divisors, these will be
linear combinations of finitely many elements of S, and therefore some subalgebra
R[T] of R[S], where T is a finitely generated subsemigroup of S, will also have
zero divisors. Therefore we may assume from the start that S is finitely gener-
ated. Then G(S) is also finitely generated; since S is power-cancellative, G(S) is
also torsion-free, and hence it is a finitely generated free abelian group, say on
X1, "y X,; if F is the free semigroup on X;, :--, X, then also G(S) =F-1F. It
follows from Proposition 1.2 that the group algebra R[G(S)] arises from the poly-
nomial algebra R[F] by localization, and therefore it is also an integral domain.
Therefore, the same is true of R[S] C R[G(S)]. Thus (c) implies (a); trivially, (a)
implies (b). W

For group algebras, results much more general than the above are available for
the equivalence of (a) and (c) (see [2] for example). Proposition 2.1 is sufficient to
imply that the algebra of a finite cyclic group (with R any integral domain) has zero
divisors, whereas we shall see that such groups are prime semigroups, relative to
C, for example.

In general, we see that (as for primary semigroups) S is R-prime if and only
if there exists a (commutative) R-algebra A without zero divisors that contains a
multiplicative subsemigroup isomorphic to S (see Proposition 1.5). In particular,
primeness is inherited by subsemigroups. The following is another easy result of
general interest (similar to Proposition 1.7).

PROPOSITION 2.2. A prime semigroup is eithev cancellative ov cancellative
with a zevo adjoined.

Proof. Let p be a prime ideal of R[S] that separates S. First assume that p
contains no element of S. Then ac =bc in S implies (a - b)e = 0 € p, whence
a-bep (since c ¢ p) and a =b: then S is cancellative. Now assume that p does
contain an element of S; we have seen that S then has a zero and that p N S = {z}
If ab=2z in S, then ab € p, whence a € p or b € p, thatis,a=z or b ==z: thus S
is obtained by the adjunction of a zero element to S \ z. Furthermore, the semi-
group S \ z is cancellative, for ac = bc with a, b, ¢ € S\ z (in particular, ¢ ¢ p)
implies, as above, that a =b. &

PROPOSITION 2.3. If S does not have a zevo, then S0 is prime if and only if S
is prime.

Proof. If SO is prime, then so is S C SO, Conversely, if S is prime, then there
is a prime ideal of the contracted semigroup algebra R[S?] = R[S] that separates
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S, hence also separates SO, since S has no zero element. Since
Ro [S°] ¥ R[8°]/ Rz,
this immediately yields a prime ideal of R[S®] that separates S°. m

By Proposition 2.3, we need only consider the case where S is cancellative.
The following result shows that the determination of prime semigroups in this case
is essentially a group problem:

PROPOSITION 2.4. When S is cancellative, then S is prime if and only if G(S)
is prime,

Proof. If G(S) is prime, then so is S C G(S). Conversely, let p be a prime
ideal of R[S] that separates S. We know that G(S) =S-! S, and it follows from
Proposition 1.2 that then R[G(S)] =S-1 R[S]. Let

Sty = {u/sesIR[Sfue p};

it follows immediately that S-lp is a prime ideal of S"! R[S]. Assume

a/b -c/de S-1p, where a, b, ¢, d € S, so that da - bc/bd = u/s for some u € p and
s € S. Then s(da-bc) =bdu € p and s ¢ p (since S # SY), and hence da - be € p;
since p separates S, it follows that da = be; that is, a/b = ¢/d, so that S-1p sepa-
rates G(S). =

2. We now prove somewhat deeper results, which will lead to a characterization
of prime semigroups in the finitely generated case, provided R has sufficiently many
units.

THEOREM 2.5. If S is a cancellative prime semigroup, the tovsion part of
G(S) is locally cyclic.

Proof. If S is prime and cancellative, then G(S) is prime, by Proposition 2.4,
and hence so is every finitely generated subgroup of the torsion part of G(S); there-
fore it suffices to show that a finite abelian group that is not cyclic cannot be a
prime semigroup. By the fundamental theorem on finitely generated abelian groups,
a finite abelian group that is not cyclic necessarily contains a subgroup of the form
Z(p) @ Z(p), where p is prime, and it suffices to show that such a group G cannot
be prime. We achieve this by producing finitely many elements a; # e such that

IT(e - a,) =0 in R[G]: for then each prime ideal p of R[G] contains Il(e - a;),
and hence some e - a;, and thus it fails to separate G.

If p=2, then G = Z(2) @ Z(2) has the multiplication table

e a b c
e|le a b ¢
ala e ¢ b
b|b ¢ e a
c|lc b a e

and we see that (e - a)le-b)le-c)=e-a-b-c+bc+ca+ab-abc=0 in R[G];
therefore G is not prime.
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Now assume p # 2; let C = Z(p), so that G = C @ C, let e be the identity ele-

-1
ment, and let a be a generator of C. Let u = Hf:o ((e, €) - (at, a)); we shall prove
that (e, e)u = (a, e)u, so that the product ((e, €) - (a, e))u is 0 in R[G] and there-
fore G is not prime.

For this we calculate u. Expansion of the product yields 2P terms of the form
(-1)k (@Y , aX) (where k is the number of times we have used the second term
-(at, a) in the differences (e, e) - (a*, a)). There is only one term with k = 0,
namely (e, e), and one term with k = p, namely (-1)P (aP(P-1)/2  3P). these cancel
each other, since p is odd. Hence

p-1
u = E( 27 AaVk(aV,ak)),

k=1 MaVeC

where A is an integer in R.

aV,k

We now observe that u is also equal fo

p-1 p-1
II ((e, e) - (at*1, a)) = II ((e, e) - (ata, a)).
t=0 t=0

Expanding this product exactly as above, we find that

p-1

— k k

u= 2 ( 2 Aav’k(ava , a )>
k=1 avecC

(with the same coefficients). Comparison shows that A Aavak " for all a¥ e C

aV,k -
and all k (0 <k < p). Since p is prime, ak also generates C, and repeated applica-
tions of this equality yield the relation AaV K= AaW K for all av, a%W € C; in other

words, A v ; depends solely on k, that is,

p-1
u = E( 27 Ak(a",ak)).

k=1 YavVeC

[It is then clear that A, = (—l)k% (E) . ] From this we see that (e, e)u = (a, ey,

because each sum Ea A (av, aK¥) has this property. =

VeC

The difficulty in proving converses lies with the construction of prime ideals
that the proof requires. A similar difficulty will be encountered in the next section.
For later results we need only a simple converse where this difficulty is bypassed.
The hypothesis in the next result, that R contains the algebraic closure of @ (for
example, that R is an algebraically closed field of characteristic 0) can be weak-
ened, because R only needs to contain the subfield of Q generated by the roots of
unity.

COROLLARY 2.6. Assume that R is an inlegral domain conlaining the alge-
braic closure of ®, and that S is finitely genevated. The following ave then equiva-
lent:
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(a) S is R-prime;
(b) S is isomorphic to a multiplicative subsemigroup of C;

(¢) S is isomorphic to either C or CO, where C is a cancellative semigroup
such that the torsion part of G(C) is cyclic.

Proof. 1t follows from Propositions 2.3 and 2.4 that the validity of (a) is not af-
fected by the adjunction or removal of a zero element of S, nor (in the case without
zero) by the replacement of S by G(S); the same is true of (b) and (c). Hence we
may assume from the start that S is a finitely generated abelian group. In this
case, Theorem 2.5 shows that (a) implies (¢). Similarly, (b) implies (c), since the
torsion part of G(S) =S is finite and C is a field. Now assume that (c) holds. Then
S =F @ G, where F is a finitely generated free abelian group and G is cyclic; F is
isomorphic to a multiplicative group of positive rationals, and G to a group of roots
of unity; therefore S is isomorphic to a multiplicative subgroup of the group of units
of R. Since we can here use C instead of R, we see that (c) implies (b). Further-
more, R is an R-algebra without zero divisors; since it contains a copy of S, it fol-
lows that S is R-prime. H

Although this converse of Theorem 2.5 is quite simple, it does show (together
with the theorem) that if a finitely generated semigroup is R-prime for some ring
R, then it is also C-prime. Thus the choice R = C gives us the greatest family of
prime semigroups (so would the choice of any algebraically closed field of charac-
teristic 0).

3. We now complete these results with various technical remarks to be used in
the next section.

First, let R be as in Corollary 2.6, and let G be a finitely generated abelian
group. If G is not R-prime, then by Corollary 2.6 the torsion part T(G) of G is not
cyclic; looking back at the proof of Theorem 2.5, we see that each prime ideal of
R[G] contains a difference e - a; # 0, where a; can be chosen in a subgroup
Z(p) @ Z(p) of G. Thus we have the following result.

COROLLARY 2.7. Let R be as in Corollary 2.6, and let G be a finitely gen-
evated abelian group. If G is not R-prime, then every prime ideal of R[G] contains
a diffevence e - a, wheve e is the identily element of G and a has prime ovder. M

In the rest of this section, we let G be cyclic of order n, with identity element
e and generator a, and we let R = K be a field of characteristic 0 that contains all
nth roots of unity; w denotes a primitive nth root of unity. (We need a field, in what
follows, for considerations of dimension.). The proof of Corollary 2.6 shows that G
is K-prime, and what follows will in particular illustrate the separation of G by
prime ideals. We note that K = Ke € K[G] and hence the ideals of the ring K[G]
are the same as the ideals of the algebra K[G]. Although K[G] is semisimple
(hence isomorphic to K"), it is easier to manipulate it through the homomorphism
K[X] — K[G] that sends X to a.

First we find all the prime ideals of K[G]. Since a™ = e and K[G] has dimen-
sion n, the kernel of K[X] — K[G] is the ideal (X™ - 1) generated by X" - 1. We

- -1
have the relation (X" - 1) = nﬂz(l) (X - ¥ in K[X], and hence 0 = Ezo (a - wke)
in K[G]; furthermore, each (X - wX) has codimension 1 in K[X], so that each

(a - wke) has dimension n - 1 in K[G] and (by maximality, or from K[X]) is a
prime ideal of K[G]. Furthermore, a prime ideal of K[G] must contain the product
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of these ideals (which is 0), and hence it contains one of them; it follows that the
ideals (a - wke) are all the prime ideals of K[G].

An alternate description of (a - wke) can be given in terms of the algebra
homomorphism ¢y: K[G] — K induced by the homomorphism G — K that sends a to
wK. For each u € K[G], Euclidean division in K[X] shows that

u = (a - wke)v + ¢r(u)e

for some v € K[G]; therefore (a - wke) = Ker ¢,.. [This is also clear since
(a - wke) C Ker ¢ and both have dimension n - 1.]

We see that ¢i is injective on G if and only if wk is a primitive nth root of 1;
this implies the following result.

LEMMA 2.8. The prime ideal (a - wke) of K[G] sepavates G if and only if
wk is a primitive nth root of 1; and these ideals ave all the prime ideals of K [G]
that separate G. H

For later use, we need a further lemma.

LEMMA 2.9. For every m > 0, there exists u € K[G] such that
e-a=(e-a™Mu

Proof. We see that ¢, ((e - a)™) = (1 - wK)™ =0 if and only if k = 0; since 0 is
the intersection of all Ker ¢y, it follows that (e - a)™v = 0 if and only if v lies in
the intersection V of all Ker ¢ with 0 <k <n. Since all Ker ¢ have dimension
n - 1 and trivial intersection, we see that V has dimension 1; now the element
vp=et+a+- -+ an-1# 0 satisfies the equation (e - a)m vy = 0; therefore

v = Ehi al is in V (that is, it satisfies the equation (e - a)™ v = 0) if and only if it
is proportional to vg, in other words, if and only if Ag =A; = --- =2, 1.

It follows from this that the elements (e - a)ma, (e - a)ymaZ, -.-, (e - a)man-1
are linearly independent in K[G]. Since they all lie in Ker ¢(, they constitute a
basis of Ker ¢g; therefore e - a € Ker ¢g is a linear combination of

(e - a)ma, (e - a)maz, e (e - av)rnan-l . m

3. PRIMARY SEMIGROUPS

1. We saw (Proposition 1.7) that a primary semigroup is either nil or cancella-
tive or subelementary. The criterion in Proposition 1.5 also implies that every sub-
semigroup of a primary semigroup is primary. We need one more result of general
interest:

PROPOSITION 3.1. Suppose that S=C or S=N U C is cancellative ov sub-
elementary. Then S is primary if and only if c-18 is primary.

Proof. If C-1S is primary, then sois S C C-1S. Conversely, let q be a pri-
mary ideal of R[S] that separates S. Let
Clq ={u/ceCctR[Sfueql;

we see that C-lq is an ideal of C-1 R[S]= R[C-!S]. Note that u/c = v/d and u € q
implies v € q; for cv = du € q, whereas c" € C never lies in ¢, since otherwise C,
which is separated by q, would have a zero element. It then follows immediately
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that C-14 is primary. If now s/c - t/d € C-lq, where s, t € S, then as above
ds - tc € q, whence ds =tc and s/c =t/d; thus C-!q separates c-!s. m [This is
quite similar to Proposition 2.4 and its proof.]

2. We now study separately the three possible kinds of primary semigroups.
First:

PROPOSITION 3.2. A nilsemigroup is primary (velative to each R).

Proof. If S is a nilsemigroup, with zero element z, consider the ideal Rz of
R[S], which evidently separates S. Every u € R[S] has a power in Rz: if

k.
u = EiEI Aisi, where I is finite, then s;' =z for some k;, and we see that

uk € Rz whenever k > 27 k;. Hence Rz is (trivially) primary. M

For the cancellative case, our main result below uses the lemmas at the end of
Section 2. and thus we must let R be a field. More precisely:

THEOREM 3.3. Let K be a field of characteristic 0 containing all roots of
unity. A finitely genevated cancellative semigroup S is K-primary if and only if it
is K-prime.

Proof. 1t follows from Propositions 2.4 and 3.1 that we may assume from the
start that S is a finitely generated abelian group G. If G is prime, it is evidently
primary; therefore, we assume that G is K-primary but not K-prime, we let q be a
primary ideal of K[G] that separates G, and we let p be its prime radical. Since G
is not prime, it follows from Corollary 2.7 (and the remarks preceding Corollary
2.6) that p contains a difference e - a, where e is the identity element of G and
a € G has finite order. Therefore (e - a)™ € ¢ for some m > 0. Applying Lemma
2.9 to the subgroup H of G generated by a, we obtain the relation e - a = (e - a)™u
for some u € K[H] C K[G]. This implies e - a € q, and thus contradicts the hypoth-
esis that q separates G. W

COROLLARY 3.4. Let K be as in Theovem 3.3, and let S be cancellative. If S
is K-primary, then the torsion pavt of G(S) is locally cyclic.

Proof. By Proposition 3.1, G(S) is also K-primary. So is every finitely gener-
ated subgroup of the torsion part of G(S), which by Proposition 3.3 must then be K-
prime and therefore cyclic. B

3. We now turn to the last case, where S is subelementary. In view of Proposi-
tions 3.1 and 1.1, we may in fact let S =N UG be elementary (with G a group). If
K is as in Theorem 3.3 and S is finitely generated, then G is finitely generated (by
Proposition 1.4), and it follows from Corollary 3.4 that the torsion part of G must
be cyclic if S is K-primary. The following result gives another condition on S.

LEMMA 3.5. Let K be as in Theovem 3.3, and let S =N U G be an elementary
K-primary semigroup. Assume ¢ € G satisfies ¢cx =x for some x € N\ z. Then
eithey ¢ =e or c has infinite ovder; fuvthermove, if c®*y =y # z and y € N, then
cy =y.

Proof. Let q be a primary ideal of K[S] that separates S. Then cx =x # z
implies (c - e)x € q; since x # z is not in q, we see that (c - e)™ € q for some
m > 0. If c has finite order (c # e), then we can apply Lemma 2.9 (fo the subgroup
of G generated by ¢) to conclude that ¢ - e € q, a contradiction; hence either ¢ = e
or c¢ has infinite order. [We shall see that the latter may happen. ]
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Further, assume c"y =y, where n> 0 and y € N \ z. We may also assume
that ¢ # e and that n is the least positive integer such that ¢y =y. If H is the
subgroup of G generated by c, then Hy = {y, cy, -+, cn~l y}, and these elements
are all distinct. Let V be the subspace of K[S] generated by Hy. We turn V into a
K[Z(n)]-module, as follows. Let ¢ and a denote the identity element and a genera-
tor of Z(n). Multiplication by ¢ (in K[S]) induces an automorphism of V, of order
n; hence there exists a homomorphism ¢: Z(n) — Endyk (V) such that ¢(a)v = cv for
all v € V. This in turn extends to an algebra homomorphism K[Z(n)] — Endk (V),
which makes V a K[Z(n)]-module; clearly, the module action is given by
a - v =cv, hence

n-1 n-1
(Z} Aiai>-v=2?\iciv for all ve V.

i:O ]'_:O

[It is easy to see that V is free on {y}, as a K[Z(n)]-module.]

We remember that (¢ - €)™ € q for some m > 0. By Lemma 2.9, we also have
the relation a - ¢ = (@ - ¢)™v for some v € K[Z(n)]. It follows that

cy-y=(a-g)-y=vli@e-efM-y=v-(c-eMy.

However, the left action of v amounts to multiplication by a linear combination of
powers of c¢; because q is an ideal, it follows that ¢y - y € q. Therefore cy =y. M

This completes the condition on G given by Proposition 3.4 with a condition on
the action of G on N (note that Proposition 3.2 yields no condition on N itself).
This condition is simplest to express when G is cyclic. Let a be a generator of G.
If G is finite, then ax = x # z never happens; similarly, a® X = X # z never happens
unless a™ = e; it follows that for each x # z the orbit of x consists of
X, ax, ---, a"~! x and these are all distinct; hence every orbit of S (other than {z})
has n elements. An elementary semigroup with this property was called equisected
in [4], but we now prefer to call it Zomogeneous. If G is infinite (G = Z), and if
X # z has finite orbit, then the order of its orbit is the least n > 0 with a®x = x; if
y # z also has a finite orbit of order m, then (a®)™y =y # z, and the second part of
the lemma implies (if we take ¢ = a®) that a”y =y and therefore m < n. By sym-
metry, n < m. Thus, all the finite nonzero orbits of S have the same order. This
does not make S homogeneous, since S also contains at least one infinite orbit
(namely, G); we say that S is quasi-homogeneous if all its finite nonzero orbits
have the same order. If G is finite, there is no infinite orbit, and hence quasi-
homogeneity is then equivalent to homogeneity.

These homogeneity conditions are interesting because they yield the only suffi-
cient condition we know for primariness:

THEOREM 3.6. Let K be a field of chavactevistic 0, containing all voots of
unity, and let S =N U G be an elementary semigvoup in which the group G is cyclic.
Then S is K-primary if and only if it is quasi-homogeneous.

Proof. That this condition is necessary has just been shown (and essentially it
follows from Lemma 3.5). The difficult part is the converse. We prove it by dis-
tinguishing several cases.

The most trivial case is when G is trivial. Here, Kz is an ideal of K|S}, and it
clearly separates S. The proof of Proposition 3.2 shows that the radical of Kz is
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K [N] € K[S]; clearly, K[N] is a maximal ideal of K[S], and this implies that Kz is
primary (a proof of this elementary fact can be found in [3], for example).

In the next cases, a denotes a generator of G. We now consider the case when
G = Z is infinite and there is no finite orbit except z. Then the elements ax
(n € Z) are all distinct if x # z. Again we consider the ideal Kz of K[S], which
separates S, and whose radical K[N] is a prime ideal of K[S] (but not maximal).
To show that Kz is primary, assume that u, v € K[S] are such that uv € Kz,
u ¢ K[N], v ¢ Kz. Then v € K[N] and

u = Az + Ekixi+2 hjaj, V=uz+E Uk Xk
iel jEZ kel

where all x;, x; € N\ z, I, L are finite, and the set {j: Ay # 0} is finite. Since

v ¢ Kz and u ¢ K[N], we see that L # @ and A;# 0 for some j. Next we select a
maximal element x, of {xk; k € L} (under the partial order x <y <>x € Nly on
N). Finally, we may assume that the elements x, are all distinct and that py, # 0
for all k € L.

It cannot happen that axg = uxy with u € N (otherwise, xg = (a Pu)xy < Xy).
Therefore, in the expansion of uv the only terms with a?x; come from the terms in
al of u and the terms in Xk of v. Furthermore, a"x, = ajxk implies x;, = a™Xxj
for some m ( =n - j). For each m € Z, let v, denote the coefficient of a™x( in
v; we see that vg # 0 and the set {m; Vin # 0} is finite. Since by hypothesis the
elements a™x| (m € Z) are all distinct, it follows from this argument that the co-

efficient of a”x, in uv is 27 A:v__. . However, uv € Kz, which then implies
0 ]¥m

jtm=n
2j+m=n Ajvm = 0 for all n. At the same time, there exist a greatest jo with
Ajg * 0 and a greatest m( with Vmg # 0, and when n = j, + my, we find

E Kj Vm:hj() I/mo

the theorem is proved in this case.

j+m=n # 0. This contradiction shows that Kz is primary, and

In the remaining cases, the difficulty is in showing not that the ideal we pick is
primary, but that it separates S. We interrupt the proof of the theorem to prove a
lemma to be used in all those cases.

LEMMA 3.7. Let q be the ideal of K[S] genervated by qy € K[G] and z. Then
q Sepavates S if and only if

(i) the principal ideal (qg) of K[G] separates G;
(ii) if x e N\ z, x' € Gx, and X' - X = EyEGx AyQoy, then x = x';

(iii) when x € N\ z, x = EyG Gx AyQoy never happens.

Proof, All three conditions are clearly necessary. For the converse, we note
that K[S] = K[N] ® K[G] (as K-modules) and for every u € K[S] we write
=u'+u", where u' € K[N] and u" € K[G]. Assume s -t € q, where s, t € S, so
that s -t =2z +qgu for some A € K and u € K[S].

If s,t € G, then s-t=(s-t)"=qyu", and it follows from (i) that s =t.

If s € G and t € N, then as above we see that s = (s - t)" = gqgu"; by (i), this
implies that s is a zero element of G, so that G is trivial; but this case has been
eliminated; thus it cannot happen that s € G and t € N.
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This leaves the case where s,t € N. Here s -t =2az +qgu’', so that we may

assume that u = u' € K[N], in which case u = 2J; .y \;X;, where x; € N and I is

finite. Let V be the subspace of K[N] generated by Gs U Gt, and let W be the sub-
space generated by all the other orbits in N, so that K[N]=V® W. If x; € Gs U Gt,
then qop x; is a linear combination of elements of Gx; and hence qgx; € V; similarly,

x; ¢ Gs U Gt implies qgx; € W. Also, s -t e V.

If in addition s, t # z, then z € W, and

s -t =hz+qou=( 2 Aiqoxi)+(7tz+ 2 Aiqoxi)

x; €Gs U Gt x; € Gs U Gt
implies, by the result above, that

s-t= Z} hiqoxl.
x; €Gs UGt

If we assume Gs # Gt, then Gs N Gt = ¢, and we can use a similar argument on the
subspaces of V generated by Gs and Gt to deduce from

s-t= 2 }\iqoxi)+( 27 ’\quXi)

x; € Gs x; €Gt

that s = EXi € Gs M Qo X; (and similarly for t), which by (iii) is impossible. There-

fore Gs =Gt, sothat t € Gs and s -t = Exi € Gs \i 4o X; , which by (ii) implies
=t.

If s and t are not both different from z, then either both are equal to z, which
implies s =t, or, say, s # z and t = z. In this case we argue as above, but with V
generated by Gs and W generated by all other orbits in N (so that z € W): from
the relation

s-t= Z) Aiqoxi)’l‘(AZ’l‘ Z} Alqoxl)

x; € Gs X3 ¢ Gs

we conclude that s = EXi € Gs M UgX;, which by (ii) is impossible. ®

We now resume the proof of the theorem, and we consider the third case in this
proof, namely that G is cyclic of order n > 1. By the hypothesis on S, every non-
zero orbit Gx has precisely n elements, namely x, ax, ---, a®~1 x, which must all
be distinct. In this case, we let qg = (a - we)™, where m > 0 and w is a primitive
nth root of 1 in K, and we let ¢ be the principal ideal (qg) of K[S]. Since
(1 - w)™z =qyz, we see that z € q and hence our lemma can be applied to q. [In
this case we could let m = 1, but the added generality will be useful in the next
cases.|

From Section 2 we recall that a - we generates a maximal ideal of K[G]. The
radical of ¢ contains K[N] (since z € q) and a - we, and hence it is a maximal
ideal of K[S]. Therefore q is primary. To show that ¢ separates S, we verify
conditions (i), (ii), (iii) of the lemma. That (i) holds follows from Lemma 2.8, since
in K[G] we have the relation (qy) C (a - we). To prove (ii) and (iii), let x € N and
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X # z. Since x, ax, -+, al-lx are linearly independent in K([S], we see that
u € K[G], ux =0 implies u = 0. Now assume x' = aKx € Gx is such that

n-1 . .
X' - x= 2150 Mfa - we)Malx, with A; € K; then

n-1
(ak-e)x ={ 20 aia- we)mai)x;

i=0

n-1 ]
by the argument above, ak - e = 2-1:0 A (a - we)Mal (since both are in K[G]); by

(i), ak = e; hence x' = x, which proves (ii). Similarly, assume

n-1

x = 2 As(a - we)Malx;
i=0

-1 .

again, this implies e = Z?:o Ai(a - we)™al; by (i), e must be a zero element of G;
this forces G to be trivial, a contradiction that proves (iii). Thus the theorem is
true in this case also.

There remain the cases where G = Z and there are finite nonzero orbits. By
the hypothesis on S, these all have the same number n of elements. The fourth case
is when n > 1. Here we again let q be the principal ideal (qqy) of K([S], with
dg = (a - we)™; but now we require m > 1. Again we see that z € q and that q is
primary. Condition (i) of Lemma 3.7 is proved as follows. Every nonzero element
u of K[G] £ K[Z] can be uniquely written in the form u = akf(a), where k € Z and
f € K[X] is a polynomial with nonzero constant coefficient; k is the least power of a
that appears in u. If we assume that a¥ - as = qyu for some u € K[G], with, say,

r > s, then as(ar-s - e) = ak(a - we)™ f(a), which implies s =k and
XT-% - 1=(X- w)™f(X) in K[X]. The latter equality is impossible, since K has
characteristic 0 and hence no Xt - 1 has multiple roots in K. Therefore (i) holds.

Let x € N and x # z. In case the orbit of x is infinite, the elements akx
(k € Z) are pairwise distinct, and as above we see that u € K[G] and ux = 0 im-
plies u = 0. The proof of (ii) and (iii) is then the same as in the third case (we use
(i)). Now assume that the orbit of x is finite; then it consists of x, ax, ---, a?"lx,
and these are all distinct. We make the subspace V of K[S] generated by Gx into
a K[Z(n)]-module, exactly as in the proof of Lemma 2.9, with @ - v = av for all
v € V (where « is the generator of Z(n)). Again we see that v € K[Z(n)] and
v -x =0 implies UV = 0. Because the principal ideal ((@ - we)™) C (o - we) of
K [Z(n)] separates Z(n), by Lemma 2.8, we can again prove (ii) and (iii) exactly as
in the third case, replacing a by a and e by &, and using the module action, when-
ever necessary.

The fifth and last case to consider for the theorem is the case where G = Z and
the finite orbits in N all have only one element. In this case, we let ¢ be generated
by qg = (a - €)™ (where m > 1) and z; we must include z, since this time qgz = 0.
The verification that q is primary and that (i) holds is carried out as in the fourth
case; the same is true of (ii) and (iii) in case x has infinite orbit. If now x € N\ z
has finite orbit, then (ii) is trivial. For (iii), we note that when x has trivial orbit,

aXx = x = ex and hence qgpx = 0; hence x = Eyé Gx My d0Y; that is, x = Aqpx is clearly
impossible. H
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4. Unfortunately, the author has found no way to extend this theorem to the case
where, say, G is finitely generated. It is clear that the previous proof is articulated
around the possible actions of G on each orbit, and these are not so easily dealt with
if G is not cyclic.

As it stands, Theorem 3.6 still gives a complete characterization of finite pri-
mary semigroups:
COROLLARY 3.8. Let K be a field of characteristic 0 containing all nth voots

of unity, and let S be a finite semigroup. Then S is K-primary if and only if it is
either a nilsemigroup ov a cyclic group ov a homogeneous elementary semigvoup

with cyclic group of units.

Proof. A finite cancellative (subelementary) semigroup must be a group (be
elementary), and hence the direct part follows from Proposition 1.7, Corollary 3.4,
and Lemma 3.5 (and the remarks preceding Theorem 3.6). The converse follows
from Proposition 3.2 and Theorems 3.3 and 3.6. ®
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