ON RINGS WITH A CERTAIN DIVISIBILITY PROPERTY
Hiroshi Gunji and Donald L. McQuillan

1. INTRODUCTION

Let 0 be the ring of algebraic integers in an algebraic number field k. If is
well known (and easily proved, usually by means of the zeta-function [4]) that if L is
a finite Galois extension of k, then infinitely many prime ideals of 6 split com-
pletely in L. In this paper we consider this property, in another formulation (see
Proposition 8 in Section 3), for arbitrary integral domains (hereafter simply called
rings).

DEFINITION. Let R be a ving whose field of fractions is K. We call R a D-
ving if wheneveyr {(x) and g(x) ave polynomials in R [x] with the property that f(a)
divides g(a) in R for almost all elements a in R, then 1(x) divides g(x) in K[x].

We note first of all that it is unrealistic to demand here that f(x) divide g(x) in
R [x], as the example f(x) = 2 and g(x) = x2 - x in Z [x] shows. For a discussion of
polynomials ¢(x) in K [x] such that ¢(R) C R, see [1], [2], [6], [7] and [8]; for gen-
eralizations, see [3].

We note next that if R is the ring of algebraic integers in an algebraic number
field, then R is a D-ring. An easy proof goes as follows: Suppose that to the con-
trary f(a) divides g(a) in R for almost all elements a in R, but that f(x) does not
divide g(x) in K[x]. Then we can assume that f(x) and g(x) are relatively prime in
K[x] and that f(x) is not constant. Then there exist polynomials u(x) and v(x) in
R[x] and a nonzero element d in R such that u(x)f(x) + v(x) g(x) = d. We conclude
that f(a) divides d for almost all elements a in R. But this is a contradiction,
since there are infinitely many prime ideals p in R such that the congruence
f(x) = 0 (mod p) has a solution in R.

It is clear that a field is not a D-ring, and it is easy to see that a ring that is
not semisimple can not be a D-ring. Indeed, if R is not semisimple, then the poly-
nomial f(x) = 1+ mx, where m is in the Jacobson radical and m # 0, has the prop-
erty that f(a) divides 1 for all elements a in R.

Section 2 is devoted to results on general D-rings. We give several equivalent
formulations of the concept, and from these we deduce that D-rings have some
pleasant “going-up?” properties:

Suppose S is an over-ving of R that is integral over R. If R is a D-ring, then
S is a D-ving. '

Suppose S is an over-ving of R, finitely generated over R. Then S is a D-ving
if either

(i) R is a D-ving or

(ii) S contains an element that is trvanscendental over R.
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We shall show by examples that in the second of these statements we cannot omit the
“finitely generated”, and also that the corresponding “going-down” result does not
hold.

It is clear that the group U of units of R plays a role in all this. Let T be the
torsion subgroup of U, and let C be a complete set of representatives of the cosets
of T in U. We show that R is not a D-ving if and only if for every subving S of R,
the ring S[C] is not a D-ving.

From this we deduce that if the vank of U is finite, then R is a D-ring. (This
result was originally conjectured by C. Sundberg in a private communication. Sund-
berg proved a special case of it by using Theorem 7 in Chapter 7 of [5].)

In this connection we also prove the following. Suppose that ¥ is the prime
field of K. If R is not a D-ving, then K is a purely inseparable extension (pos-
sibly infinite) of W(U); in particular, if the chavacteristic is 0, then K = IF(U).

In Section 3, we treat the special case of Dedekind rings. We mention here two
results:

Let R be a Dedekind ring of characteristic 0. Then R is a D-ring if and only
if whenever L is a finite Galois extension of K, infinitely many primes of R split
completely in L.

Let R be a Dedekind ring of characteristic 0. Suppose the units of R have
finite rank. Then, whenever L is a finite Galois extension of K, there are in-
finitely many primes of R that split completely in L.

The last result generalizes the statement on algebraic number fields given at
the beginning of this section.

2. D-RINGS

Throughout this section, R is a ring and K is its field of fractions. If A and B
are subsets of K and there is a finite set C in K such that A C B U C, we write
A < B. The words “prime ideal of R” will always mean “nonzero prime ideal of R”.
We also fix the following notation and terminology.

(a) I f=1(x) is a polynomial in R[x], we denote by S(f) the set of prime ideals
p of R with the property that the congruence f(x) = 0 (mod p) has a solution in R.
In particular, if ¢ is an element of R, then S(c) is precisely the set of prime ideals
of R that contain c.

(b) An over-ring S of R will be called almost finitely generated over R if
S € S; and S; is a ring that is finitely generated over R (as a ring).

PROPOSITION 1. Let R be a ving, and let K be the field of fractions of R.
The following statements about R ave equivalent:

(i) R is a D-ving.

(ii) There exists no nonconstant polynomial f in R([x] such that £f(R) < Uy .
(iii) If f is a nonconstant polynomial in R [x], then S(f) is not empty.
(iv) If £ is a nonconstant polynomial in R([x], then S(f) is infinite.

(v) If T is a nonconstant polynomial in R [x] and c is a nonzero element of R,
then S(f) - S(c) is infinite.
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(vi) If £ and c ave as in (v) then S(f) - S(c) is not empty.
(vii) Each subring T of K that is almost finitely genevated over R is a D-ving.

Proof. The proof is cyclic: (i) implies (ii) because if there exists a noncon-
stant polynomial f(x) in R[x] such that f(R) < Ur, then f(a) divides 1 in R for al-
most all a in R, but f(x) does not divide 1 in K[x]. This contradicts (i). Assume
now that (ii) holds but that there exists a nonconstant f(x) in R[x] such that S(f) is
empty. Then f(R) C Ug, which contradicts (ii). We show that (iv) follows from (iii).
Let f(x) be nonconstant in R [x], and suppose that S(f) is finite, say
S(f) = {P1 s P2, 00, Pr}. There are two cases. Suppose first that £(0) = 0, so that
f(a) € aR for all a in R. Then S(f) consists of all prime ideals of R, and there-
fore our assumption that S(f) is finite means in particular that R is not semisimple.
If m is a nonzero element of the Jacobson radical, then ¥(x) = 1 + mx has the prop-
erty that Y(R) C Ug, that is, S(¥) = @. This contradicts (iii). Suppose then that

£(0) = ag # 0. Take a nonzero element ¢ in p;- b, -+ ., and define g(x) in R[x]
by the relation agg(x) = f(agex). Then S(g) € S(f), g(0) = 1, and every other coeffi-
cient of g(x) isin cR C p,-p, -+ p,.. This forces S(g) to be empty, which contra-

dicts (iii).

We show that (iv) implies (v). Let ¢ be a nonzero element of R, and let f(x) be
a nonconstant polynomial of R[x]. Suppose first that £(0) = 0. Then S(f) consists of
all prime ideals of R, and thus if {v) does not hold, we can assume that c belongs to
all but a finite number of prime ideals of R, say p;,p,, ***, b,.. Take a nonzero
element b in py;-pp-----p,.. Then be is not zero and belongs to all prime ideals of
R. In particular, bc is in the Jacobson radical of R, and if g(x) = 1 + bex, then
S(g) = @, which contradicts (iv). Suppose then that f(0) = a, # 0. Define g(x) in R[x]
by the relation agg(x) = f(agcx). Then g(0) = 1, all other coefficients of g(x) are
divisible by c, and S(g) < S(f). But S(g) is infinite, by (iv), and the result follows at
once.

Now (v) implies (vi) and (vii) implies (i) trivially. It remains to show that (vi)
implies (vii). Let T be a subring of K that is almost finitely generated over R.
Then T C R[1/v] for some v in R. Now R[1/v] is not a field (in other words, it is
not K), since by {vi) there exists a prime ideal y of R suchthat v ¢ p and therefore
pR[1/v] is a nontrivial ideal in R[1/v]. Thus T is not a field (that is, T is not K).
Now suppose that £(x) and g(x) are in T [x] and that f(a) divides g(a) for almost all
elements a of T. We show that f(x) divides g(x) in K[x]. Now we can assume that
f(x) and g(x) are relatively prime in K[x]. Then we must show that f(x) is a con-
stant. Suppose to the contrary that deg f(x) > 0. Now we can also suppose that f(x)
and g(x) belong to R[x], and therefore we can find polynomials u(x) and w(x) in
R [x] anda nonzero element ¢ in R such that u(x)f(x) + w(x)g(x) = c. Then f(a)
divides c for almost all a of T. By (vi), we can find a prime ideal p of R and an
element a of R such that f(a) € p and cv ¢ p. But since c¢/f(a) is in T and there-
fore in R{1/v], we can write c = f(a)b/vN, where b € R and N > 0. Thus
cvN = f(a) b. Reducing this equation modulo p, we get a contradiction. The proof is
complete.

Examining the proof, we get the following reformulation:

PROPOSITION 2. The preceding proposition remains tvue if we veplace "prime
ideal'’ everywheve by "maximal ideal’.

We give some easy consequences.

COROLLARY 1. R is not a D-ving if and only if there exists a nonconsiant
polynomial £(x) in R[x] that is irveducible in X [x] and such that £{(R) < Ug.



292 HIROSHI GUNJI and DONALD L. McQUILLAN

Proof. If such a polynomial exists then R is not a D-ring, by Proposition 1.
Conversely, if R is not a D-ring, there exists a nonconstant polynomial £(x) in R [Xx]
such that f(R) < Ur. If f(x) is irreducible in K[x], we have finished. If f(x) is re-
ducible in K[x], then there exist a nonzero element d in R and a polynomial g(x) in
R [x], irreducible in K[x], such that g(x) divides df(x) in R[x]. Therefore g(a)
divides d in R for almost all elements a in R. If d is a unit in R, the proof is
complete. Otherwise, let ag = g(0) and define h(x) = a61 g(agdx). Then h(a) divides
d for almost all a, h(x) is in R[x], h(x) is irreducible in K[x], and h(x) = 1 + d¢(x),
where ¢(x) is in R[x]. Then 1 = h(a) + d¢(a), so that h(a) divides 1 for almost all
a; that is, h(R) < Ug.

COROLLARY 2. Let R be a ving that is not a field. Then R is not a D-ving if
and only if theve exists a nonconstant polynomial 1(x) in R[x] such that f(R) C Ur.

Proof. If f(R) C Ug, then certainly R is not a D-ring, by Proposition 1. Con-
versely, suppose R is a D-ring. Then, by Proposition 1, there exists a nonconstant
polynomial f(x) in R[x] such that S(f) = @. Then f(R) C Ug. I f(R) ¢ Ug, then
f(a) is not a unit for some a in R, and therefore f(a) € p for some prime ideal p,
since R is not a field. This means that S(f) # @, which is a contradiction.

COROLLARY 3. Suppose R CS C K, where S is a ving, and suppose dS C R
for some nonzevo element d in R. Then R is a D-ving if and only if S is a D-ring.

Proof. S C R[1/d], and thus, if R is a D-ring, so is S, by Proposition 1. Con-
versely, suppose S is a D-ring. If R is not a D-ring, then f(R) < Ugr, where f(x)
is a nonconstant polynomial in R[x]. Write g(x) = f(dx). Then g(x) is in S[x] and
g(8) = £(dS) C f(R) < Ug C Ug. This is a contradiction.

The next corollary is a “going-up” result for non-D-rings. It will be shown
later by an example that the stated condition on prime ideals can not be left out.

COROLLARY 4. Let S be a subving of K that is almost finitely generated over
R. Suppose that prime ideals of R ave maximal. Then, if R is not a D-ring,
netther is S.

Proof., If we assume S is a D-ring, we get a contradiction as follows. Since
S C R[1/v] for some v in R, we see that S[1/v] =R[1/v]. Since S is a D-ring, so
is S[1/v], by Proposition 1; that is, R[1/v] is a D-ring. Therefore we may assume
from the beginning that S = R[1/v]. Now let f(x) be a nonconstant polynomial in
R[x]. We verify statement (iii) of Proposition 1 to get the required contradiction.
Consider f(x) in S[x]. By Proposition 1, there exist a prime ideal p; of S and an
element a in S such that f(a) = 0 (mod p;). Let p = p; N R. It is clear that p is
not (0) and thus p is a maximal ideal by our assumption. Now v is not in p, and
therefore uv = 1 (mod p) for some u in R. If a =b/vN, define a; =buN. Then a;
isin R and a; = a (mod p;). It follows that f(a;) = 0 (mod p;), and hence
f(a;) = 0 (mod p). This completes the proof.

COROLLARY 5. A polynomial ving in any number of indeteyminates over an
arvbitrary ving is a D-ving.

Proof. This is clear from (ii) of Proposition 1.
We next prove the “going-up” results mentioned in the introduction.

PROPOSITION 3. Let S be an over-ving of R that is integral over R. If R is
a D-ring, then S is a D-ring.

Proof. Suppose first that S is finitely generated as a ring over R. Then S is

finitely generated as a module over R, say S = Z\’i Rw;. If S is not a D-ring, then
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by Proposition 1 there exists a nonconstant polynomial f(x) in S[x] such that
f(S) <Ug. Let L be the field of fractions of S, and write F(x) = NL/Kf(x) € K[x].

Then 1/F(x) maps almost all elements of R into NL/K(US) CNL/K (Ei Rwi) .
It follows that 1/F(x) maps almost all elements of R into a finitely generated R-

module, 27, Ru; say, in K. Pick a nonzero element d in R such that duj is in R
for each j and F,(x) = dF(x) is in R[x]. Then F;(a) divides d? for almost all ele-
ments a in R. This contradicts the fact that R is a D-ring.

If S is not finitely generated over R, we proceed as follows. We take a noncon-
stant polynomial f(x) in S[x] and verify statement (iii) of Proposition 1. Write

f(x) = E?:O a; x1, and set S| =Rlagp, a;, +-, a,). Now f(x) isin S; [x] and S; is a
D-ring, by the first part of the proof. Therefore, by Proposition 2, there exist a
maximal ideal p; in S; and an element a in S; 'such that f(a) = 0 (mod p;). Now
there exists a maximal ideal p of S over p; . Therefore f(a) = 0 (mod p;), and the
proof is complete.

COROLLARY 1. Lel R be a ving consisting of algebraic integers. Then R is
a D-ring.

Proof. 1t is easy to see, from statement (ii) of Proposition 1, for instance, that
Z is a D-ring. The result follows at once.

COROLLARY 2. Let S be an over-ving of R that is finitely genevated over R.
Then S is a D-ving if R is a D-ving. The same conclusion holds for S even if R
is not a D-ving, provided that some element of S is tvanscendental over R.

Proof. 1In either case, we can assume R is a D-ring and S is algebraic over R
(use Corollary 5 of Proposition 1). Say

ar 2 an

v’ v’ v

S =R

H

where each a; is integral over R and v is in R. Then

R[al,az,..-,an]CSCR T’T’ ,_{7_ ,

and thus S is a D-ring, by Propositions 1 and 3.

We now give two examples that deal with the case when S is not finitely gener-
ated over R. The third example below is related to Corollary 4 of Proposition 1. If
shows that the condition on prime ideals can not be omitted from that statement.

Example 1. Let V be the set of rational primes consisting of 2 and all odd
primes p suchthat p= 1 (mod 4). Let W consist of all p-1 (p € V). Then
S =Z [W] is not a D-ring. Indeed, we show that if f(x) = x2 + 1, £(S) C Ug (the set
of units of S). Let @ =a/b bein S, where a, b € Z and (a, b) =1. Then
f(a) = (a® +1%)/b2, and it is clear that the only primes that can divide a? + b2 are
primes p € V. Thus f(@) € Ug and S is a non-D-ring.

Example 2. Let V be a set of rational primes p such that EpEV 1/p con-
verges, or more generally, such that V has Dirichlet density zero. Let W be the
set of all p-! (p € V). Then S =7Z[W] is a D-ring. If not, then there exists a non-
constant polynomial f(x) in S[x] such that £f(S) < Us. By Corollary 1 of Proposi-
tion 1, we can take f(x) to be irreducible in Q[x]. Now £(Z) < dUg for some
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rational integer d, and thus if the equation f(x) = 0 (mod p) has a solution in Z, then
p|d or p e V. It follows that if @ is a root of f(x), then the primes of Z that are
covered in Q(@) by a prime ideal of degree 1 are precisely the primes in V, with at
most finitely many exceptions. Let L be the Galois closure of Q(a) over Q. Let

N =[L:@Q]. Now, if S is the set of primes of Z that split completely in L, then

S CV USp, where So is a finite set, and it is well-known that S has Dirichlet den-
sity 1/N. This is impossible, since V has Dirichlet density zero.

Example 3. We give an example of a ring R and an element v in R (v # 0)
such that R is a non-D-ring and R[1/v] is a D-ring.

Let k be an algebraically closed field, and let z and x be two indeterminates
over k. In the polynomial ring k[z, x] let A be the multiplicative set consisting of
polynomials f(z, x) with the property that f(0, x) is a nonzero constant in k. It is
clear that A is saturated, in other words, that if f and g belong to k [z, x] and f-g
is in A, then both f and g are in A.

Set R = A-lk[z, x]. We show that R is a non-D-ring but R[1/z] is a D-ring.

Now the maximal ideals of k|[z, x] are the ideals of the form

Mg g = (z - a,x-p),

where a, B € k. Note that our multiplicative set A is simply k([z, x] - UBek Mg g
so that the ideals Mp gR are maximal ideals in R. Conversely, every maximal
ideal of R has this form. Indeed, let M be a maximal ideal of R, and set

p =M N k{z, x]. Then (p, z) is a proper ideal in k[z, x], for otherwise we have a
relation of the form 1 = p(z, x) + z - g(z, x), where p(z, x) € p and g(z, x) € k[z, x].
Hence p(0, x) = 1, so that p(z, x) € A. This is impossible, since p(z, x) is also in
M. Thus (p, z) belongs to a maximal Mo g and thus M C My gR; that is,

M= MO,B R. But then the Jacobson radical of R, which is ﬂBek MO,B R, contains
z. Therefore R is a non-D-ring, by Corollary 1 of Proposition 1.

We show now that R[1/z] is a D-ring. First we show that the units of R[1/z]

consist of all elements of the form %E—z—’%-zr , where u(z, x) and v(z, x) are in A,

and r is an integer. A typical element of R{1/z] looks like ;Lé—% z™, where

n <0, f(z, x) € k[z, x], and g(z, x) € A. After factoring out a z% from f(z, x), we
can assume that f(0, x) # 0 and n € Z. If this element is a unit, then

f b m
g g1

for some elements f;, g; and n; that satisfy conditions like those of f, g, and n,

+.
respectively. Then f-flzn "o gg; . Evaluating at z = 0, we see that n +n; = 0.

Therefore f-f; =g-g; € A, and thus f, f; € A, since A is saturated. Our statement
on units is now clear.

Suppose now that R{1/z] is not a D-ring. Then some polynomial F(Y) in
R[1/z][Y] maps R[1/z] to the units of R[1/z]. Multiplying through by a unit of the
form u(z, x)-zN, where u(z, x) € A, we can assume that F(Y) € k[z, x, Y|. Write

n m;
F(Y) = Flz, x,Y) = 2\ 2 ainJ)xl.
i=0 \ j=0
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Here a;; = a;5(z) € k[z], and for each i we can assume that a;., # 0. Now choose N

so big that for each i and for each j > 0, the function aj;(z) z NJ has a pole at z =0

and for each i the pole of greatest order is achieved when j = m;. Let p be the

N.
]

largest of the degrees of the poles of all the ajj z at z = 0. Then for at least one

-Nm:
i we know that zP aimi(z) z liga polynomial in z that does not vanish at z = 0.

Now choose M > 0 so that the integers {Mm; + i}?:o are all distinct. Consider
F(z, x, xMz-N)_ which by assumption is a unit in R[1/z] and so has the form

u(z, x)
v(z, x)

M

7z N)

zT, where u, v € A and r € Z. Then the function G(z, x) = zP F(z, x, x
also has this form %zr . By our choices of M, N, and p, we know that G(0, x) is a

polynomial in x of positive degree. Evaluating %-zr at z = 0, we get an immediate
contradiction.

The preceding example shows that a result like Corollary 2 of Proposition 3
does not carry over, as it stands, to non-D-rings. Nevertheless, there is a natural
generalization. We need some notation. For each positive integer n, let U, denote

the set of polynomials f(x,, x,, -, x,) in R[x;, x5, '+, X,] with the property that
f(a;, ay, *=+, a,) is aunitin R for all a;, ay, -+, a, in R. Then U, is a satu-
rated multiplicative subset of R[x;, X2, -, X,] that contains the units U of R.

LEMMA 1. Let n be a positive integev. Let R be a ving that is not a field.
Then U, =U if and only if R is a D-ring.

Proof. If n =1, the result follows from Corollary 2 of Proposition 1. Suppose
that n > 1. Now, if R is not a D-ring, then U; # U, and therefore Un # U. Suppose
then that R is a D-ring. If U, # U, we get a contradiction as follows. Take
f(x;, x5, **+, X,) in U, and suppose x, actually appears in f(x1, X, ***, X,). Since
R is by assumption not finite, we can choose a;, aj, -, ap-.1 in R so that
f(ay, a2, ***, an-1, Xn) = ¢(Xy) is a nonconstant polynomial in R[x,]. But then
¢#(R) C Ug, and we have contradicted the assumption that R is a D-ring.

Now let o, a2, -+, @, belong to an over-ring of R. We assume that
flay, az, -+, ay) # 0 for all f(x;, x2, >+, Xn) in U,. We write A,(a) for the
multiplicatively closed subset of R[a;, @2, -+, @y] consisting of all
flay, oy, -+, ay), where f(x1, x2, ***, Xp) is in U,. We consider the ring
An(a)_lR[al’ G2, **, an]-

PROPOSITION 4. Let R be a ving that is not a field. Then R is a D-ving if

and only if A(a¢)"1R[a;, ay, -+, @] is a D-ring.
Proof. If R is a D-ring, then U, = U, by the lemma, and therefore A, (a) = U.
Thus A, (a)-! R[a,, a,, -+, @ ]=R[a;, @,, -+, @], and this is a D-ring, by

Corollary 2 of Proposition 3. If R is not a D-ring, let f(x) be a nonconstant poly-
nomial of degree m in R[x] such that f(R) C U. We show that f(x) also maps

An(a)-1R[aq, @y, -+, ay] to the units of this ring. Let a/b belong to
A(a)-lR[ay, ap, -+, a,], where a =g(ay, a2, ***, ay) and b = hioy, az, -, o),
and where g(x;, x,, **-, x,) is in R[x|, X,, -, x,] and h(x,, x,, *--, X,) is in
U,. It is enough to show that F(a, b) = b™ f(a/b) belongs to A (a), in other words,
that F(g(x,, x2, -+, Xy), h(xy, X2, -+, X)) belongs to U,,. This amounts to show-
ing that

g(a]_’ 3.2, Ty an))

LS .se = oo m
F(g(al’ a2» ’ an)’ h(al » 325 ’ an)) h(al » 825 ’ an) f ( h(al y A2, 7, an)
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is in U for all a;, a, *--, a, in R. But this is clear from the definition of h and f.
The proof is complete.

We now turn our attention to the role played by the units of R. Let T be the
torsion subgroup of the group U of units of R. Let C be a complete set of repre-
sentatives of the cosets of T in U.

PROPOSITION 5. R is not a D-ving if and only if for every subring S of R, the
ring S[C] is not a D-ring.

Proof. If for every subring S of R, the ring S[C] is not a D-ring, then
R = R[C] is clearly not a D-ring. Conversely, suppose R is not a D-ring. By
Proposition 1, there is a nonconstant polynomial f(x) in R [x] such that f(R) < U.

Let f(x) = E?:o a;x!, and write S} =S[ag, a1, -*-, ap]- Then f(x) is in S| [U][x],
the group U is the group of units of S; [U], and of course £(S;[U]) < U. Thus,

S; [U] =s[U][ag, a;, *-, an] is not a D-ring, by Proposition 1. Therefore S[U] is
not a D-ring, by Corollary 2 of Proposition 3. But S[U]=S[C][T] is integral over
S[C], and therefore S[C] is not a D-ring, by Proposition 3.

The next corollary follows at once.

COROLLARY 1. R is a D-ving if theve is a subving S of R such that S[C] is a
D-»ing.

PROPOSITION 6. Let R be a ving that is not a field. If the group U of units of
R has finite vank, then R is a D-ving.

Proof. If the rank of U is r, we can choose the representatives C of cosets of
T in U so that they constitute a free subgroup of U on r generators c;, ¢z, ***, C,.
Let IP be the prime ring of R. Then IP[C]=TIP[c,, ¢, ***, €y, €71, c51, ==+, 1]
is finitely generated over IP. If IP = Z, then IP[C] is a D-ring, by Corollary 2 of
Proposition 3, and thus R is a D-ring, by the preceding corollary. If IP is the
Galois field IF,, with p elements, there are two possibilities, namely r > 0 and
r =0. If r > 0, then each ¢; must be transcendental over IF,, and the same reason-
ing as before still works. Suppose then that r = 0, and that R is not a D-ring. We
get a contradiction as follows. Let f(x) be a nonconstant polynomial in R [x] such
that f(R) c U=T. If T is a finite group, it follows from this inclusion that R is
also finite. But then R is a field, which contradicts our assumption. Suppose T is

m
infinite. Let m = deg f(x) and f(x) = Eizo a;x1. Choose m + 1 distinct elements
ag, @y, ***, @, in T. Say f(a;) =B; (in T). We can solve these m + 1 equations
for the coefficients ag, a;, *+-, a, to conclude that each a; belongs to the field
IFp[T]. But then, if @ is any element of R, we see that f(a) € T and therefore « is
algebraic over IF,[T]. But then again we conclude that R is a field, and we have a
contradiction.

Remark. Let R be a ring that is not a field. Let IP be the prime ring of R.
We can choose a set J of elements of R that are algebraically independent over IP
and maximal, in other words, such that R is algebraic over P[4 ]. Let IP; be the
integral closure of IP[ /] in R. Then, applying our results, we deduce that IP; is a
D-ring with the same field of fractions as R, and R is a D-ring if IP| [C] is finitely
generated as a ring over IP; (the proof of this follows the lines of Proposition 6).
The following question is therefore of interest: If R is a ring with field of fractions
K and S is a ring such that R € S C K, under what conditions is S a D-ring? This
question is answered in Section 3, for the special case when R is a Dedekind ring.

PROPOSITION 7. Let R be a ving that is not a field. Denote by 1P the prime
rving of R, by K the field of fractions of R, and by IF the prime field of K. Let p
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(p > 0) be the characteristic of R. Suppose R is not a D-ving. Then theve exist a

nonnegative integer m and an element ¢ in 1P [U] such that cRP" c IP[U]. In par-
ticular,K is a puvely insepavable extension of IF(U).

Proof, By Corollary 1 of Proposition 1, there exists a nonconstant polynomial
f(x) in R[x] such that f(x) is irreducible in K[x] and f(R) C U. Suppose first that
f(x) is separable. Now IP[U] is infinite — indeed, U is infinite, since otherwise the
inclusion f(R) C U would force R to be finite and R would then be a field. We can
therefore choose a in IP[U] so that f'(a) # 0. Then f(x) = f(x + @) still maps R

n .
into U, and if f;(x) = Eizo a;x!, then a; # 0. Now let u be a unit such that u™ # u.
Then

f(ux) - u"f(x) = ao(]_ - u?) + al(u U x 4 e

is a polynomial in R[x] that maps R into IP[U] and is nonconstant. We can repeat
this argument to arrive at a nonconstant polynomial by +b; x in R [x] that maps R
into IP[U]. Then b; x maps R into IP[U], and we have finished. If the original f(x)

t .
is inseparable, then f(x) = g(xP ), where g(y) is separable. If g(y) = 21:0 a;yl,

then we can repeat the last part of the argument to get a polynomial b; xP™ that
maps R into IP[U]. The proof is complete.

We end this section with an example fo show that when the characteristic is
positive, then K may indeed be different from IF(U) and may even be an infinite
extension of IF(U).

Example 4. Let p be a prime, and let S =IF,[Y], where Y is transcendental
over IF,. Let R be the set of fractions f(x)/g(xP), where x is an indeterminate and
f(x) and g(x) belong to S[x] (g(x) # 0). Then U consists of all fractions f(xP)/g(xP),
where f(x) # 0 and g(x) # 0. Clearly, the polynomial ¢(Z) = ZP - Y maps R into U,
and [K: IFp(U)] = p. If we use infinitely many indeterminates x;, x,, X3, ---, we get
an example where [K: IFp(U)] is infinite.

3. DEDEKIND RINGS

We consider now the relation between Dedekind rings and D-rings.

PROPOSITION 8. Let R be a Dedekind ving of chavacteristic (, and let K be
the field of fractions of R. Then R is a D-ving if and only if whenever L is a finite
Galois extension of K, theve ave infinitely many prime ideals of R that split com-
pletely in the integral closure of R in L.

Proof. Use a well-known theorem of Kummer (see Theorem 34 in Chapter 5 of
[9]), together with statement (iv) of Proposition 1.

PROPOSITION 9. Let R be a Dedekind ring of chavacteristic 0, and let K be
the field of fractions of R. Suppose that the group of units of R has finite rank.
Then, whenever L is a finite Galois extension of R, theve ave infinitely many prime
tdeals of R that split completely in the integrval closuve of R in L.

Proof. This result follows from the preceding proposition together with Propo-
sition 6.

Now let R be an arbitrary Dedekind ring, and let K be its field of fractions. We
consider rings between R and K (see Examples 1 and 2 in Section 2), and we shall
give a necessary and sufficient condition for such a ring to be a D-ring. We first
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recall some well-known facts about these rings. Let RC T G K. Then T is a

Dedekind ring, and we can associate with T a family S = 4(T) of prime ideals p of
R as follows: p € S if and only if there exists an element & in T such that

ordy (@) < 0. Conversely, if S is a family of prime ideals of R (with at least one
prime ideal of R not in S), we can define a ring T = 7(S) between R and K as fol-
lows: T consists of all elements @ in K such that ordy(a) <0 for all p in S.

Now #(7(S)) =S and (J(T)) =T, and if T and S correspond in this way, we write
T =S-! R. We recall that if T =S3! R, then the prime ideals of T are the ideals pT,
where p is a prime ideal of R and p ¢ S.

We shall use the following notation:

(i) If S) and S, are families of prime ideals of R and there is a finite set S
of prime ideals of R such that S; C S, U Sy, then we write S; <8,.

(ii) If S; < S, and S, < S;, we write S} ~ S,.

PROPOSITION 10. Let R be a Dedekind ving, and let K be its field of frac-
tions. Lel T be a ving such that R C T % K. Then T is a non-D-ring if and only if

theve exists a nonconstant polynomial f(x) in R[x] such that S(f) < F(T).

LEMMA 1. Suppose RCT; CK (i=1, 2). Let T; = S{l R, and suppose
Sy ~ S;. Then Ty is a D-ving if and only if T, is a D-ving.

Proof. Put S3 =S; N S;,, sothat S; - S3 and S, - S3 are both finite. Let
T3 = S3,‘1 R. It is enough to show that T3 is a D-ring if and only if T; is a D-ring
for i =1, 2. In view of our remarks above, we can thus limit ourselves to proving
this: R is a D-ring if and only if S-! R is a D-ring, where S is finite. Say
S=1p1, b2, -, br},andlet ve py-pp-----p., v# 0. Then S-IR C R[1/v], and
the result follows from Proposition 1 (vii) and Corollary 3 of that proposition.

LEMMA 2. Let R be a Dedekind ving, and let K be its field of fractions. Let
p be a prime ideal of R, and let o € K, a # 0. Then we can wyvite o = a/b, wheve
a, b € R and either (a, p) =1 or (b, p) = 1.

Proof. Let aR =a/p, where a and b are relatively prime integral ideals of R.
Now there exists an element a € a (a # 0) such that ((a)/a, p) = 1. Let b = (a)/a.
Then aR = ad/bd = (a)/bd. Then bd must be a principal integral ideal, say bd = bR.
Then up to a unit @ = a/b, as required.

We now prove the proposition. Say RC T g K. Suppose T is not a D-ring.

Let S = ¥(T). There exists a nonconstant polynomial f(x) in T [x] such that

f(T) C Up. Choose d in R (d # 0) so that f,(x) = df(x) is in R[x]. Then, if a ¢ R
we have the relation f;(a)R = (d)a/b, where a and b are integral ideals of R divis-
ible only by prime ideals in S. It follows that if the equation f(x) = 0 (mod p) has a
solution in R, then p divides d or p € S. Thus S(f) < S.

Conversely, suppose S(f) < S = ¥(T) for some nonconstant polynomial in R [x].

n
Write f(x) = 270 a; x}, where n >0 and a, # 0. Let Sp be the finite set of primes
p such that p divides a,. Let S; be the finite set such that S(f) C S U S;. Put
S, =S USpUS; and T = Sél R. We show that T, is a non-D-ring, from which it
follows, by Lemma 1, that T is a non-D-ring. It is enough to show that f(T,) C UTZ.

Let o € T,. Then f(a) € T,, and it will be enough to show that if f(a)R = a/0,
where a and 6 are integral ideals of R, then the only prime ideals that divide a be-
long to S;. Let p be a prime (p ¢ Sg). By Lemma 1, we can write o = a/b, where
a, b € R and either (p, a) =1 or (p, b) =1. Then
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f(@) = b-™agb™ +a;ab® ! +--- +a,a".

If p divides agb™+a;ab™ ! + .. a a®, then p cannot divide b, since otherwise p
divides a,a"™, which is impossible. Thus b has an inverse, modulo p, and we have a
solution of f(x) = 0 (mod p). It follows that p € S(f) € S,. Therefore f() is indeed
a unit in T,, and the proposition is proved.

COROLLARY 1. Suppose RC T C K. If T is a non-D-ving, then so is every
ving between T and K. If T is a D-ving, then so is every ving between R and T.

COROLLARY 2. Suppose R is the ving of algebraic integers of an algebraic
number field K. Then, among the subrings of K that ave infinitely generated over
R, theve ave infinitely many D-vings and infinitely many non-D-vings.

Proof. That there are infinitely many non-D-rings follows from the proposition.
To show that there are infinitely many D-rings, do this. If f(x) is a nonconstant ir-
reducible (in K [x]) polynomial in R[x], let S be any set of prime ideals p of R
such that p ¢ S(f). Then S-1R is a D-ring. For otherwise, S(g) < S for some non-
constant polynomial g(x) in R[x], which can be assumed irreducible in K[x]. But
then S(f) N S(g) is finite, which is impossible.
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