COMPACTNESS CONDITIONS IN TOPOLOGICAL GROUPS
Ta-Sun Wu and Ying-King Yu

INTRODUCTION

In 1938, H. Fitting proved the following theorem (see [1] or [3, Section 61]).

THEOREM (H. Fitting). Every finite group is an extension of a soluble group by
a semisimple group.

Thus the study of the theory of finite groups is reduced to the study of soluble
groups, semisimple groups, and the theory of group extensions. Semisimple groups
were first defined in the context of finite groups, by Fitting. Later, the idea was ex-
tended to infinite groups by P. A. Gol’berg [2]. In the paper [6], the idea was further
extended to topological groups.

In this paper, we attempt to find a theorem similar to Fitting’s for topological
groups. For this purpose, we introduce in Section 1 the concept of W-subgroups of a
topological group. In fact, each W-subgroup of a topological group G is a member
of a well-ordered ascending soluble chain in G, and it is therefore a generalized
soluble group. We shall show that every topological group has a unique maximal W-
subgroup, called the W-7adical of the group. A topological group is called W-
soluble if it coincides with its W-radical. A structure theorem for W-soluble
groups will also be given in Section 1.

Now, for an arbitrary topological group G with W-radical Q, one might expect
G/Q to be topologically semisimple (see [6] for the definition of a topologically
semisimple group). However, this is not true unless G/Q satisfies a certain mini-
mal condition. This is justified by the following characterization of a topologically
semisimple group G:

(a) G has no nontrivial, normal, abelian subgroups, and

(b) every nontrivial, closed, normal subgroup of G has a minimal closed,
normal subgroup.

The minimal condition in (b) is certainly satisfied by finite groups. Thus finite
semisimple groups can be defined by condition (a) alone. We find that (b) is also
satisfied by discrete groups with certain finiteness conditions, for instance, periodic
FC-groups (locally normal groups). Thus, if G is a periodic FC-group and Q is its
W-radical, then G/Q is semisimple.

This last result leads us tc the study of topological groups with an analogous
compactness condition. An element in a topological group G is called bounded if its
class of conjugates is relatively compact. The set of all bounded elements of G, de-
noted by B(G), forms a normal subgroup of G. An element in G is called periodic
if it generates a relatively compact subgroup of G. The set of all periodic elements
of G is denoted by P(G). In Section 3, we shall describe the structure of a totally
disconnected, locally compact group with the compactness condition, G = P(G) = B(G),
through the study of its W-radical Q and the factor group G/Q. This can also be
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considered as a continuation of the authors’ previous paper [5]. In Section 2 we
develop some results on locally projectively soluble groups, to prove that the W-
radical Q is locally projectively soluble.

We shall follow [5] and [6] in notation and terminology.

1. W-SOLUBLE TOPOLOGICAL GROUPS
Let us consider, in a topological group G, a well-ordered ascending chain

e:AOEAIEAZE“‘EAaC"'

of closed, normal subgroups such that

(1) Ag = Ua <gAq if B is a limiting ordinal and
(2) Ag /Ag_1 is a nontrivial abelian subgroup if B - 1 exists. Such a chain is

called a W-chain of G. A subgroup of G is called a W-subgroup of G if it is a
member of a W-chain.

(1.1) PROPOSITION. Let f be a continuous homomovrphism of a topological
group G onto a topological group H. If N is a W-subgroup of G, then f(N) isa W-
subgroup of H.

Proof. Let e =ApC A} C Az C - C Ay be a W-chain of G such that A, = N.

We construct a W-chain of H leading up to f(N) by a transfinite argument. Let
B =e. Suppose u is an ordinal such that, for each A < u, a closed, normal sub-

group By of H contained in f(N) is determined. If u is limiting, let

B“ = UA <u B, . Otherwise, consider the factor group f(-ﬁ)/B‘u -1-

f f(N)/B}u _; is nontrivial, let B be the first ordinal such that f(Aﬁ)B‘U‘_l/B‘u 1
is nontrivial. We claim that f(AB)B“ -1 /B‘u _1 is abelian. Assume g is limiting;

then Ag = Ua <B A, . This implies f(Aﬁ) C By, -1, which is a contradiction. Hence
B - 1 exists. By assumption, Ag/Ag_) is abelian. It follows that f(Ag)/t(Ag_1) is
abelian. Since f(Ag_1) € By -1, f(Ag)By -1/By -1 is abelian. Now let By, be the
closure of__f(_Aﬁ)B“ -1 in H. Clearly, B, isa closed, normal subgroup of H con-
tained in £(N), and By, /B, _; is a nontrivial abelian group. Thus the transfinite

argument is complete, and there exists an ordinal p such that f(N) = By .

(1.2) PROPOSITION. Let N be a W-subgroup of a topological group G. If K is
a nontyivial normal subgroup of G contained in N, then K contains a nontrivial nov-
mal abelian subgroup of G.

Proof. Let e=AgC A1 C - C A), be a W-chain of G such that Ay = N. There
exists a least ordinal 8 such that K N AB # e. We claim that K N AB is abelian. If

B is limiting, then Ag = Ua<5 Ay . Since KN Ay =e forall a <g, KN Agisa
central subgroup of AB’ and hence abelian. If 8 - 1 exists, then Ag /AB-l is
abelian. Therefore (K N Ag)Ag_;/Ag_y is abelian. Since (KN Ap)Ag._1/Ag.; is
algebraically isomorphic to (K N Aﬁ)/(K N Ag) NAg-1 and KN Ag-1=e, KN Ag is
again abelian.

(1.3) THEOREM. Thevre exists, in every topological group G, a unique maximal
W-subgroup Q of G. Furthermove, the factor group G/Q has no nontvivial W-sub-
groups,
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Proof. First we construct a W-chain of G by a transfinite argument. Let
Ay = e. Suppose B is an ordinal such that A, is determined for each o <. If B

is limiting, let Ag = Ua <B Ag - Otherwise, let AB /AB-I be a nontrivial, closed,
normal, abelian subgroup of G/Ag.; (if any exists at all). The chain must stop at
some ordinal y where G/Ay has no nontrivial, normal, abelian subgroups. Let

Q = Ay; then Q is a W-subgroup of G.

Suppose H is any W-subgroup of G. If H is not contained in Q, then, by Propo-
sition (1.1), the closure of HQ/Q in G/Q is a nontrivial W-subgroup of G/Q. By
Proposition (1.2), HQ/Q contains a nontrivial, normal, abelian subgroup of G/Q, a
contradiction. Hence H is contained in Q. It follows that Q is the unique maximal
W-subgroup of G. This completes the proof of the theorem.

In view of the theorem above, we define the W-radical of a topological group to
be the unique maximal W-subgroup of the group. A topological group is called W-
soluble if it coincides with its W-radical. It is easy to see that a topological group
G is W-soluble if and only if there exists a W-chain {Ay}o <o <y Of G such that
A, =G. -

(1.4) PROPOSITION. The W-radical of a topological group is the intersection

of all closed novmal subgvoups N of G such that G/N has no nontrivial, normal,
abelian subgroups.

Proof. It suffices to show that if N is a closed normal subgroup of G such that
G/N has no nontrivial, normal, abelian subgroups, then N contains the W-radical Q
of G. Suppose Q is not contained in N; then the closure of QN/N in G(N is a non-
trivial W-subgroup of G/N, by Proposition (1.1). But this implies that G/N has a
nontrivial, normal, abelian subgroup, which contradicts the assumption on N.

The following two propositions follow easily from Propositions (1.1) and (1.2).

(1.5) PROPOSITION. Every continuous homomovphic image of a W-soluble
group is W-soluble.

(1.6) PROPOSITION. Every nontrivial normal subgroup of a W-soluble group G
contains a nontvivial, novmal, abelian subgroup of G.

(1.7) PROPOSITION. A topological group G is W-soluble if and only if each of
its nontrivial continuous homomorphic images has a nontrvivial, normal, abelian sub-
group.

Proof. The necessity of the proposition follows from Propositions (1.5) and (1.6).

Suppose each nontrivial, continuous homomorphic image of G has a nontrivial,
normal, abelian subgroup. Let Q be the W-radical of G. Then G/Q has no non-
trivial, normal, abelian subgroups (Theorem (1.3)). This implies that G/Q is
trivial and hence G is W-soluble.

(1.8) PROPOSITION. Every normal subgroup of a W-soluble group is W-
soluble.

Proof. Let G be a W-soluble group, and let H be a normal subgroup of G.
Since the W-radical Q of H is a topologically characteristic subgroup of H (see [6]
for the definition of a topologically characteristic subgroup of a topological group),
it is normal in G. We show that H ¢ Q. In fact, if H ¢ Q, then HQ/Q is a nontrivial
normal subgroup of G/Q. Since G/Q is W-soluble, HQ/Q contains a nontrivial,
normal, abelian subgroup, by Proposition (1.6). It follows that H/Q = H/H N Q has a
nontrivial, normal, abelian subgroup, which is a contradiction.
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We conclude this section with a structure theorem, which in a sense tells the
degree of commutativity of a W-soluble group.

(1.9) THEOREM. Let G be a W-soluble group, and let A be a maximal novmal
abelian subgroup of G. Then G/A can be embedded algebraically in the group of
automovphisms on a nilpotent gyvoup of class at most two.

Proof. Let H be the centralizer of A in G. Clearly, H contains A. First
suppose A = H. For each element g in G, let ¢(g) = I, | A. Then ¢ is a homomor-
phism of G into /(A) with kernel A. Hence G/A is embedded in (A).

On the other hand, suppose A # H; then, by Proposition (1.6), H/A contains a
nontrivial, normal, abelian subgroup of G/A. Let B/A be a maximal normal abelian
subgroup of G/A contained in H/A. Since B is contained in H, it is easy to see that
B is a nilpotent group of class at most two. Now we show that the centralizer K of
B in G is equal to A. Since B is in the centralizer H of A, A is contained in K.
Suppose K/A is nontrivial, then it contains a nontrivial, normal, abelian subgroup
B; /A of G/A. Since B; € K and B/A and B /A are both abelian, BB /A is
abelian. By the maximality of B/A, BB, /A = B/A. This implies that BB; = B and
hence B; C B. It follows that B; is contained in the center Z(B) of B. But
Z(B) = A, since A C Z(B) and A is a maximal normal abelian subgroup of G. Hence
B, C A, a contradiction. Thus K = A. The map that sends each g to I |B is a
homomorphism of G into .« (B) with kernel A. Hence G/A is 1somorphlc to a sub-
group of (B).

2. LOCALLY PROJECTIVELY SOLUBLE GROUPS

We call a topological group G projectively soluble if each neighborhood of its
identity contains a normal subgroup H such that the factor group G/H is soluble. A
topological group is called locally projectively soluble if each of its finitely gener-
ated subgroups is projectively soluble. It is not hard to see that subgroups and con-
tinuous homomorphic images of projectively soluble (locally projectively soluble)
groups are also projectively soluble (locally projectively soluble). The closure of a
projectively soluble subgroup in a topological group is again projectively soluble.

(2.1) LEMMA. A relatively compact, locally projectively soluble subgroup in a
locally compact, totally disconnected group is projectively soluble.

Proof. Let G be a locally compact, totally disconnected group, and let H be a
locally projectively soluble subgroup of G with compact closure H. Let K be an
arbitrary open normal subgroup of H. Then H = HK and H/K is finite. Since
H/H N K is isomorphic to HK/K = H/K, H/H N K is also finite. As a continuous
homomorphic image of a locally projectively soluble group H, H/H N K is soluble.
Hence H/K is soluble. Since H has arbitrarily small open normal subgroups, it is
projectively soluble.

(2.2) LEMMA. Every compact subgroup of a locally compact, totally discon-
nected group is contained in an open compact subgroup.

Proof. Let H be a compact subgroup of a locally compact, totally disconnected

group G. Let K be any compact open subgroup of G. Then N = ﬂh eHh‘1 Kh is a
compact open subgroup of G such that h-!Nh C N for all h in H. This implies
HN = NH and HN is an open compact subgroup containing H.
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A topological group is called fopologically locally finite if each of its finitely
generated subgroups is relatively compact.

(2.3) LEMMA. Let G be a topologically locally finite, locally compact, totally

disconnected gvoup. If H is a locally projectively soluble subgroup of G, then H is
also locally projectively soluble.

Proof. Let F be the closure of a finitely generated subgroup of H. Then F is
a compact subgroup of H, and by Lemma (2.2), F is contained in an open compact
subgroup K of H. The subgroup H N K is relatively compact, and it is dense in K.

By Lemma (2.1), H N K = K is projectively soluble. As a subgroup of K, F is also
projectively soluble.

(2.4) LEMMA. Let G be a topologically locally finite, locally compact, totally
disconnected gvoup, H a locally projectively soluble subgroup, and N a normal,
locally projectively soluble subgroup of G. Then HN is also a locally projectively
soluble subgroup of G.

Proof. Let F = <x1, X5, **, xr> be the closure of a finitely generated sub-
group of HN. For i=1, 2, -*, r, let X; = h;n;, where h; € H and n; € N. If

L = {hy, ~ by, np, g Y,

then F C L, and hence it is sufficient to show that L is projectively soluble. Let
H, = <h1, ey, hr> and L;=L N N. Then L =H;L;. Since, by assumption, G is

topologically locally finite, the subgroups, L, L;, and H; are all compact. Let K
be any open normal subgroup of L. Then H;/H; N K and L;/L; NK are both
finite and soluble. This implies that both H; K/K and L; K/K are soluble. It fol-
lows that

(H;K/K)(L1K/K) = H L, /K = L/K
is soluble.

(2.5) LEMMA. Let G be a compact, totally disconnected group and H a closed
normal subgroup of G. If both H and G/H are projectively soluble, then G is also
projectively soluble.

Proof. Let K be an arbitrary open normal subgroup of G. Then KH/H is also
an open normal subgroup of G/H. Since G/H is projectively soluble, the factor
group (G/H)/(KH/H) is soluble. Hence G/KH is soluble. The group KH/K is iso-
morphic to H/H N K. But H/H N K is soluble, since H is projectively soluble and
H N K is an open normal subgroup in H. This implies that KH/K is soluble. Now
G/K, as an extension of the soluble group KH/K by the soluble group G/KH is itself
soluble.

(2.6) THEOREM. Let G be a topologically locally finite, locally compact, to-
tally disconnected group. Then therve exists, in G, a unique maximal closed, normal,
locally projectively soluble subgroup L. Fuvthermove, the factor group G/L con-
tains no nontrivial normal locally projectively soluble subgvoups.

Proof. The union of the members in an ascending chain of locally projectively
soluble subgroups in G is obviously locally projectively soluble. By Lemma (2.3),
the closure of the union is also locally projectively soluble. This implies the exist-
ence of a maximal closed, normal, locally projectively soluble subgroup L. The
uniqueness of the subgroup L follows from Lemma (2.4).
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To show that G/L contains no nontrivial normal locally projectively soluble
subgroups, assume that H is a normal subgroup of G such that H contains L and
H/L is locally projectively soluble. Let F be the closure of a finitely generated
subgroup in H. Then FL/L is compact and projectively soluble. Since F/(F N L)
is topologically isomorphic to FL/L, it is also projectively soluble. As a compact
subgroup in the locally projectively soluble group L, F N L is projectively soluble
(Lemma (2.1)). Now, by Lemma (2.5), we see that F is projectively soluble. Con-
sequently, H is locally projectively soluble and is contained in L. This completes
the proof of the theorem.

3. PERIODIC GROUPS WITH DENSE BOUNDED PARTS

An element in a topological group G is called bounded if its class of conjugates
is relatively compact. The set of all bounded elements of G, denoted by B(G), forms
a topologically characteristic subgroup of G, and it is called the bounded part of G.
Locally compact groups with dense bounded parts have been studied in the paper [5].
There, it was proved that every locally compact group with dense bounded part is an
extension of a compact group by a direct product of a vector group and a locally
compact, totally disconnected group with dense bounded part. Hence the problem of
finding the structure of locally compact groups with dense bounded parts is, in a
sense, reduced to the totally disconnected case. In a topological group G, an ele-
ment is called periodic if it is contained in a compact subgroup. The set of all
periodic elements in G is called the periodic part of G, and it is denoted by P(G).
If G = P(G), then G is called periodic. It has been proved in [5] that P(G) forms an
open, topologically characteristic subgroup of G, and the factor group G/P(G) is a
discrete pure abelian group, whenever G is a locally compact, totally disconnected
group with dense bounded part. In this section, we make an attempt to describe the
structure of a periodic, locally compact, totally disconnected group G with dense
bounded part, through the study of its W-radical Q and its factor group G/Q.

(3.1) LEMMA. Let G be a periodic, locally compact group with dense bounded
part, and let B be a compact neighborvhood of some point in G. Then B genervales a
compact open subgroup of G.

Proof. Let H be the subgroup generated by B. Clearly, H is an open subgroup
of G. Hence

HNB(G) C HNB(G) =HNG = H.

Since B(H) D H N B(G), it follows that B(H) = H. As a compactly generated, locally
compact group with dense bounded part, H is an FC-group; that is, B(H) = H (see
Proposition 4 in [5]). Since H is periodic, it follows from Theorem 1 of [4] that H
is compact.

(3.2) PROPOSITION. If G is a periodic, locally compact group with dense
bounded part, then every compactly genevated subgroup of G is velatively compact;
in particular, G is topologically locally finite.

Proof. Let K be the subgroup generated by a compact subset C. Let B be a
compact neighborhood of the identity. Then CB is a compact subset with nonempty
interior. By Lemma (3.1), CB generates a compact open subgroup H of G.
Clearly, K is contained in H and is therefore relatively compact.

Remark. Let G be a periodic, locally compact, totally disconnected group with
dense bounded part. From Proposition (3.2), G is topologically locally finite.
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Hence, in view of Theorem (2.6), we can speak of the unique maximal closed, normal,
locally projectively soluble subgroup of G.

(3.3) THEOREM. Let G be a topologically semisimple, locally compact group
with dense bounded pavt. Then G can be embedded algebraically in the group of
automovphisms on a weak divect product of nonabelian, compact, simple groups.

Proof. Let R =2 S; be the TCR-radical of G, where each S; is a closed, non-
abelian, topologically simple subgroup of G (see [6] for notation and terminology).

Since the centralizer of 2J S; in G is trivial, we can embed G in « 27 S; ] by

assigning each element g of G to the restriction of I, to 2 S; . It is sufficient to
show that each S; is compact. We claim that B(G) N S; # e for all i. Suppose there
exists an index i such that B(G) N S; =e. Then B(G) Ng-!S;g=e forall g € G.

Since, by Proposition (3.3) of [6], each g-18;g is still a factor of 2J S;, it follows
that the family {g-1S;g| g € G} is direct and each g-!S; g is normal in

T = EgeG g-18;g.

Let D=B(G) N T. Since DN g-18S;g=e for all g € G, D is contained in the
center of T, and hence it is trivial. But this implies that T is a central subgroup of
G, since T is normal in G and B(G) is dense in G. Thus we have arrived at a con-
tradiction. Therefore B(G) N'S; # e for all i. Since B(S;) 2 B(G) N S; and S; is
topologically simple, it follows from Theorem (1.10) of [6] that S; is compact and
algebraically simple. The proof of the theorem is complete.

Let G be a periodic, locally compact, totally disconnected group with dense
bounded part. Let Q be the W-radical of G. One may ask the following question.
Is G/Q topologically semisimple? We show this is so when G is discrete.

(3.4) THEOREM. If G is a periodic FC-gvoup and Q is the W-radical of G,
then G/Q is semisimple,

Proof. From Theorem (1.3), we see that G/Q has no nonirivial normal abelian
subgroups. Let N be any nontrivial normal subgroup of G/Q. Since G is a periodic
FC-group, so is G/Q. This implies that N contains a nontrivial finite normal sub-
group of G/Q. Thus N has a minimal normal subgroup. It follows from Proposition
(4.3) of [6] that G/Q is semisimple.

Although the answer to the question is positive when G is discrete, we shall
have two examples showing that G/Q is not necessarily topologically semisimple
even when G is compact and totally disconnected. Let us first prove two lemmas.

(3.5) LEMMA. Let S be a nonabelian simple group, and let F be an arbitrary
group. Then the wreath product G =SW) F is semisimple.

Proof. For each f € F, let S; be a copy of S, and let f be the automorphism on
Hf e ¥ S¢ defined by

(fa)); = agn  forall ae II S; and f' € F.
feEF

Then G can be expressed as the semidirect product ( HfGF Sf) ® F, where F

acts on HfEF S¢ through the homomorphism f — f. Clearly, HfGF S¢ X e is con-
tained in the TCR-radical of G (considering G as a discrete group). It suffices to
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show that the centralizer Z of HfGF Sf X e in G is trivial. Let (a, b) € Z, where
ace HfEF S¢ and b € F; then

(a, b)(x, e) = (ab(x), b) = (%, e)(a, b) = (xa, b)

for all (x, €) € I ;ew S¢ X e. This implies that ab(x) = xa for all x € Il ;¢ S¢.

Therefore ag(h(x)); = arxps = x¢ar for all x € Il (.- S; and f € F. If b is not equal
to e, then bf # f. Let x be such that x; # e and x,; = e; then a; = x;ay. But this
implies x; = e, which is a contradiction. Hence b must be e. Consequently,

(2, b) = (a, e) lies in the center of Il ;¢ S; X e and must be trivial.

Remark. The subgroup HfEF S¢ X e of G mentioned in the proof of the lemma

above is, in fact, the TCR-radical of G. Let Ry = erF S¢ X e. Suppose R is not
equal to the TCR-radical R of G; then R = Ry X T for some nontrivial normal sub-
group T of R. But this implies T is in the centralizer of Rg and must be trivial.

(3.6) LEMMA. Let A be an abelian group that has an element of ovder greater
than two, and let F be an arbitrary gvoup. Then evevy normal abelian subgroup of
the wreath product G = A@ F is contained in the base subgroup of G.

Proof. As in the proof of Lemma (3.5), G can be expressed as the semidirect

product ( er}; Af) ® F, where F acts on erF A; through the homomorphism
f —»f. Let N be a normal abelian subgroup of G. We show that N is contained in

the base subgroup LI, . A;Xe of G. Let (a, f) € N and (x, e) € H;cp ArXe.
Since N is normal,

(x, e)(a, H)(x-1, e) = (xaf(x-1), f)
is still an element of N. Thus we have the relation
(a, H)(xaf(x-1), £) = (af(x) f(a) f(f(x"1)), £2) = (xaf(x-1), f)(a, £) = (xaf(x"1)f(a), 3.
This implies f(x)f(x) = xf(f(x)). Hence
{6 f)), = xF = EE), = %%, -

Now suppose f # e. If f2 # e, let x be such that x; = Xp =€ and X, # e. But this is
contradictory to the equation xf2 = XeXpp . If % = e, let x be such that X, =€ and
x% # e. Again we have a contradiction. Hence f = e.

(3.7) Example. Let S be a nonabelian, finite, simple group. Define a sequence
{S,} of finite semisimple groups as follows: S; =S, S,;; =S® S, for n> 1. For
each n > 1, let ¢,, be the natural projection of S, +; onto S,,. Now let G be the pro-
jective limit of {S,} induced by 1¢,}. Then G is a closed subgroup of the com-

plete direct product Hn> 1 Sp with the product topology. Clearly, G is a compact,
totally disconnected group. We show that the TCR-radical R and the W-radical Q
of G are both trivial. From this it follows that G/Q is not topologically semi-
simple. Since S,y =S W) S, for all n > 1, every element s, in S, is of the

unique form x_,,s,, where s, € S,,. Hence s, can also be written as
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Xn-1Xn""" X1, where X, Xy,_1 ***X] = S € Sy, for m <n + 1. Now it is not hard to
see that the elements in G are of the form

(Xlx X2X1, "ty XpnXpo1 X1, ).

For n > 1, let K be the closed normal subgroup of an 1 S, consisting of ele-
ments whose first n components are identities. Put H, =G N K,. Then H, is a
closed normal subgroup of G. Let B, be the subgroup of G consisting of elements
of the form

(Xl ’ XZXI s *cy Xl'lXIl-l ...Xl s ex_nxn_l ---Xl s eexn ...Xl , ...) .

Then it is easy to see that the mapping ¥, sending (X7, X2 X1, =+, Xy X,_1 "X}, ***)
into

(X1, XXy, ", XXy " Xp, XX, ] X, €eX Xy ) X, o)

is a continuous homomorphism of G onto B, with kernel equal to H,. Now let A
be a normal abelian subgroup of G; then ¥,,(A) is also a normal abelian subgroup of
B, . Since B, is semisimple, ¥,(A) is trivial. Hence A lies in the kernel H, of
¥n, for each n. It follows that A is trivial, because the intersection of all H, is
trivial. This proves that the W-radical Q of G is trivial.

Next let R be the TCR-radical of G. Then 1//n(R) is contained in the TCR-
radical of B,,. This implies every element of R is of the form

(n-1)

(e, e, """, e X, ee---e X, .|X,€e---¢e, ).

Since n is arbitrary, R must be trivial.

(3.8) Example. Let A be a finite, abelian group that has an element of order
greater than two. Define a sequence {An} of soluble groups as follows: A; = A,
Anr1 =AW A, for n> 1. Following the same scheme as that in the last example
we obtain a projective limit G of the soluble groups A, .

Again we show that the W-radical Q and the TCR-radical R of G are trivial.
For each n > 1, define H,, B,, ¥, as in the last example. Since B, is soluble,
Yn(R) is trivial. This implies that R is trivial. Next, assume H is a normal
abelian subgroup of G. Then ¥,(H) is also a normal abelian subgroup of B,,. By
Lemma (3.6), ¥,(H) lies in the base subgroup of B, . This implies that every ele-
ment of Q is of the form

b4

(n-1)
Vi N
(e, e *°*, € X €ee---e, X ;X ,€e ¢ ) .

Since n is arbitrary, Q must be trivial.

(3.9) THEOREM. Let G be a periodic, locally compact, totally disconnected
group with dense bounded part. If G has no nontrivial, novmal, abelian subgvoups,
then for each neighbovhood V of the identity in G, theve exists a compact normal
subgroup K of G such that K C V and G can be embedded algebraically in

-4 HS-l X K), where each S; is a finite, nonabelian, simple group.
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Proof. Suppose V is a neighborhood of the identity in G. There exists a com-
pact open subgroup F of G contained in V. Let & be the family of normal sub-
groups of G contained in F. Let {Ky} be an increasing chain of elements in <.
Then the union of the members in the chain is still an element of &#. Hence there
exists a maximal element XK in 4. Moreover, K is unique, because the product of
two elements in &4 is also an element in &. Clearly, K is a compact, normal sub-
group of G. Let H be the centralizer of K in G. Since, by assumption, G has no
nontrivial, normal, abelian subgroups, H N K = e.

Suppose H = e. Then G is embedded algebraically in (K) through the homo-
morphism g — Ig l K.

Suppose H # e. We show that H is topologically semisimple. In fact, let E be
any nontrivial, closed, topologically characteristic subgroup of H. Then E is a
normal subgroup of G. If E meets B(G) trivially, then E is central. This contra-
dicts the assumption of the theorem. Hence E N B(G) # e. Since G is periodic, E
contains at least one nontrivial, compact, normal subgroup of G. Let {Lq} be a
decreasing chain of nontrivial, compact normal subgroups of G contained in E. We
claim that the intersection J of all L, is not contained in F and hence is nontrivial.
Suppose J C F. Then the family {L‘&} together with F forms an open covering of
G. Fix any Lao. There exist Lal s Laz’ **, Lg, such that

C C et C
Lay S Ly, ULy, U ULy UF.

0
nn
This implies | 1;_, La_l C F. Let Laj be minimal among Lao, La1 , e, Lozn-
n
Then Laj = nizo Lozj , and it is contained in F. Since K is the unique maximal

normal subgroup of G contained in F, L(J[j must lie in K. But this is impossible,
because Lozj also lies in H and H N K = e. Consequently, E contains at least one

minimal compact normal subgroup M of G. As a minimal closed normal subgroup
of G, M is topologically characteristically simple. By Corollary (2.7) in [6], M is a
complete direct product of isomorphic finite simple groups. Clearly, such simple
groups are nonabelian. Hence the TCR-radical of E is nontrivial. From Proposi-
tion (4.1) of [6], we conclude that H is topologically semisimple.

Now let R = 2J S; be the TCR-radical of H, where each S; is a closed, non-
abelian, topologically simple subgroup. From the fact that B(G) = G, it follows that
each S; is compact (see the proof of Theorem (3.3)). As a compact, totally discon-
nected, simple group, each S; is a finite group. Let Z be the centralizer of

Z; S;/K in G. Then Z is contained in the intersection of H and the centralizer

Zq (Zsi) of 248 in G. Since Zg (Esi) = ZG(R), it follows that Z is contained
in ZH(R) and is therefore trivial. Now it is easy to see that G can be embedded

algebraically in (E S; X K) through the mapping g — Igl (Z Si) K. The proof
of the theorem is complete.

(3.10) THEOREM. Let G be a periodic, locally compact, totally disconnected
group with dense bounded pavt. If G is W-soluble, then G is locally projectively
soluble and, fov each neighborhood V of the identity in G, theve exists a compact
novmal subgroup K of G contained in V such that every compact novmal subgroup
of G/K is soluble.
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Proof. Assume that G is W-soluble. Since G is a periodic, locally compact,
totally disconnected group with dense bounded part, it is topologically locally finite
by Proposition (3.2). It follows from Theorem (2.6) that G has a unique maximal
closed, normal, locally projectively soluble subgroup L and G/L contains no non-
trivial, normal, abelian subgroups. By Proposition (1.5), G/L is also W-soluble.
This implies that G/L is trivial. Otherwise, G/L would contain a nontrivial, nor-
mal, abelian subgroup. Thus G is locally projectively soluble.

Let V be a neighborhood of the identity in G. There exists a compact open
subgroup F of G contained in V. As mentioned in the proof of Theorem (3.7), there
exists a unique maximal normal subgroup K of G contained in F. Let H/K be a
compact normal subgroup of G/K. Then H is also a compact normal subgroup of G.
As a compact, totally disconnected, locally projectively soluble group, H is projec-
tively soluble (see Lemma (2.1)). This implies that some nth derived group H, of
H is contained in F. Since H, is normal in G, H, is contained in K. Therefore
H/K is soluble.

(3.11) THEOREM. Let G be a periodic, locally compact, totally disconnected
group with dense bounded part, and let Q be its W-vadical. Then the following
Statements are lrue:

(1) G/Q can be embedded algebrvaically in A ( IO's; x K) , where Il's; denotes
a weak divect product of finite, nonabelian, simple grvoups and K is a compact, to-
tally disconnected group.

(2) Q is locally projectively soluble.

(3) Q is an extension of a W-soluble, periodic, locally compact, totally discon-
nected grvoup with dense bounded parvt by an abelian group.

Proof. Since G/Q has no nontrivial, normal, abelian subgroups, statement (1)
follows immediately from Theorem (3.9).

Let L be the unique maximal closed, normal, locally projectively soluble sub-
group of G. Then G/L has no nontrivial, normal, abelian subgroups. It follows
from Proposition (1.4) that Q is contained in L and is therefore locally projectively
soluble. This proves statement (2).

Let Qp be the W-radical of B(G), and let R = Qp. Then Qg =R N B(G). It is
not hard to see that R is a W-subgroup of G and hence lies in Q. Let Q; /R be the
W-radical of G/R. Since (G/R)/(Q;/R) = G/Q; has no nontrivial, normal, abelian
subgroups, Q is contained in Q. Similarly, since (G/R)/(Q/R) = G/Q has no non-
trivial, normal, abelian subgroups, Q; /R is contained in Q/R. It follows that Q/R
is exactly the W-radical of G/R. We claim that Q/R is abelian. Since B(G)R/R is
dense in G/R, it suffices to show Q/R N B(G)R/R is trivial. In fact, if
Q/R N B(G)R/R is not trivial, then, by Proposition (1.2), B(G)R/R contains a non-
trivial, normal, abelian subgroup of G/R. On the other hand, B(G)R/R, being alge-
braically isomorphic to B(G)/R N B(G) = B(G)/Qgy, contains no nontrivial, normal,
abelian subgroups, and this is a contradiction. The proof of the theorem is com-
plete.
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