WEAK COMPLETENESS AND INVARIANT SUBSPACES

Donald W. Hadwin

Throughout, X will denote a complex locally convex topological vector space.
An operator on X is a continuous linear transformation on X. An operator on X is
intransitive if it has a non-trivial closed invariant subspace. The space X is
operator-intransitive if every operator on X is intransitive. A hyperinvariant sub-
space of an operator T is a subspace that is left invariant by every operator com-
muting with T.

A. L. Shields [5, Theorem 2] showed that the space (s) of all complex sequences
(topologized by the coordinate seminorms) is operator-intransitive. Later, B. E.
Johnson and A. L. Shields [1, Theorem 1] proved that every operator on (s) that is
not a scalar has a non-trivial closed hyperinvariant subspace.

Since (s) is a separable, locally convex Fréchet space, it seems natural to ask
whether the techniques applied to (s) might also be applied to some infinite-
dimensional Banach space.

This paper isolates the property (property #) that makes Shields’s proof [5,
Theorem 2] work, and it shows (Theorem 1) that this property is equivalent to weak
completeness. (Note: weak completeness means that every weakly fundamental net
is convergent.)

The remainder of this paper shows (Theorem 2), for a weakly complete space X
with dimension greater than 1, that every operator on X that is not a scalar has a
non-trivial hyperinvariant subspace if and only if the (continuous) dual of X has

linear dimension less than 250 .

The notation and terminology of [3] will be used. The set of all linear func-
tionals on X will be denoted by X*, and the set of those functionals in X* that are
continuous will be denoted by X' Also, dim X will denote the linear dimension
of X. If M is a subspace of X', then M‘ denotes the set of all vectors in X that
annihilate M. The space X has properiy # provided that, for every subspace M of
X', M* =0 only if M =X".

The proof of the following proposition is almost a word-for-word copy of
Shields’s proof that (s) is operator-intransitive.

PROPOSITION. If X has property # and dim X > 1, then X is operator-
inlvansitive.

Proof. Let T be an operator on X. Then T' (the adjoint of T) is a linear
transformation on X'. By a theorem of H. H. Schaefer [4], there is a subspace M of
X' suchthat 0 # M # X' and T'(M) € M. Therefore M+ is a closed subspace of X
and T(M') € M*. Since M # 0, we see that M # X. Since X has property # and
M # X', it follows that M1 # 0. Thus T is intransitive.

Let € denote the field of complex numbers. If B is a nonempty set, let

cB = {¢: ¢ is a function from B to C}
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with the product topology. If B is countably infinite, then cB is isomorphic to (s).
The next lemma lists most of the important properties of this space. The proof is
contained in [2, Section 20, and the material on wq].

LEMMA 1. Let B be a Hamel basis for X'. Then the following statements are
equivalent.

(i) X is isomorphic to CB,
(ii) X is weakly complete,
(iif) (X)* =X,
(iv) if L is any linear tvansformation on X', then theve is an opevator T on X
such that T' = L.

It follows from part (iii) of the preceeding lemma that every weakly complete
space has property #. The following theorem shows that the converse is also true.

THEOREM 1. If X has property #, then X is weakly complete.

Proof. By Lemma 1, we need only show that (X')* = X. Suppose ¢ € (X')*. We
may assume ¥ # 0. The space X has property #; therefore there is an x in X
such that x # 0 and x € (ker Y)*. If Y, is the linear functional defined on X' by
Y, (f) = f(x) for every f in X', then ker {; = ker ¢. Hence there is a scalar a such
that ¥(f) = ay(f) = f(ax) for every f in X'.

We now turn our attention to hyperinvariant subspaces.

LEMMA 2. If V is a complex vector space with dimension greatev than 1, then
the following two statements are equivalent:

(i) dim v < 250,

(ii) every non-scalar lineav transformation on V has a non-tvivial hypervinvavi-
ant subspace.

Proof. (i) = (ii). This can be proved in the same way as Lemma 1 of [1].

(ii) = (i). Suppose dim V > 980 | Then there is a field F that is an extension
of € and such that dimg F = dimg V. Thus F and V are isomorphic as vector
spaces over C. It follows from Lemma 2 of [1] that there is a linear transformation
T on V such that p(T) is invertible whenever p is a non-zero polynomial. Let

K = {r(T): r is a rational function} .

Then K is a field and V is a vector space over K with scalar multiplication defined
by r(T)x = r(T)(x) for each x in V and each rational function r. Also, every sub-
space of V over C that is left invariant by T is a subspace of V over K, and every
linear transformation of V over C that commutes with T is a linear transformation
of V over K. Therefore T has a non-trivial hyperinvariant subspace on V over C
if and only if T has a non-trivial hyperinvariant subspace on V over K. However,
T is a scalar on V over K and therefore cannot have a non-trivial hyperinvariant
subspace. Hence T, considered as a linear transformation on V over C, has no
non-trivial hyperinvariant subspace.

THEOREM 2. Let X be a weakly complete space with dimension greatev than
1. Then the following two statements ave equivalent:
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(i) dim X' < 2%0
(ii) every non-scalayv operatorv on X has a non-trivial closed hypervinvarviant
subspace.

Proof. It follows from Lemma 1 that (ii) holds if and only if every non-scalar
linear transformation on X' has a hyperinvariant subspace. The latter condition

holds if and only if dim X' < 250
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