FREE INVOLUTIONS ON 6-MANIFOLDS

Ian Hambleton

INTRODUCTION

In this paper, we give the diffeomorphism classification of smooth, closed,
orientable manifolds M of dimension six with 7 M =%, and 7, M = 0. This is
equivalent to the classification of free differentiable orientation-preserving involu-
tions on a connected sum of finitely many copies of S3 X S3. In this case, it is
therefore possible to carry out the program proposed in [5] for the study of involu-
tions on (n - 1)-connected 2n-manifolds (n > 3).

The paper is organized as follows. Section 1 contains an explanation of the
notation and an exposition of the results needed from [1] and [5]. In Section 2, we
state the classification results, Theorems 2 and 3, and give an example. The re-
maining sections contain the proofs.

1. BILINEAR FORMS

Let K be a finite orientable Poincaré complex of dimension six [8] with
1K =2, and 7, K =0. The generator of 7; K will be denoted by T. Then the in-
tegral homology and cohomology groups of the universal covering space K are
modules over the integral group ring A of Z, via the action of T. In particular,

H3(Ih{') SErINPZ,. O Z , for some integer r, where Z . is the group of integers with
trivial action of Z,. This can easily be shown, if it is recalled that since H3(I~() is
a free abelian group it has the form rgZ; ®r1Z_®r A as a A-module. From
the spectral sequence of the covering K — K, we deduce the values rg =2 and

r1=0.

Let us write H = H3(K) and consider the effect of the involution on the intersec-
tion pairing x: H X H — Z. This is a unimodular, skew-symmetric bilinear form
with the further properties

(1) M(Tx, Ty) = M(x, y) for all X, y in H, and
(2) A(x, x) =a(x, Tx) =0 for all x in H.

Associated with A, there is the Browder-Livesay self-intersection map
¢p: H® Z, — Z, (see [1] and Sections 5 and 6 below). This is related to A by the
equation

o(x +y) - ¢(x) - ¢(y) = Ax, Ty) (mod 2),

valid for all x, y in H. Although ¢ is actually defined on H® Z,, it will cause no
confusion to write ¢(x) for x in H, instead of ¢(x® 1). The geometry of K there-
fore gives the algebraic data (A, ¢, H). Any such triple, satisfying the relations
listed above, will be called a Z,-form.
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In fact, the Z,-forms that come from Poincaré complexes have an additional
structure. lirom obstruction theory, there is a 2-connected map f: RP3 — K,
covered by f: S3 — K. In [5], it is shown that we can choose f so that ey = f, [S3]
generates a Z, direct summand of H. Let (e;, **, €., €y, €,) be a set of A-gen-
erators of H containing ey such that (el y Tty er) is a A-base for an rA comple-
mentary summand to Z, @ Z, generated by (eg, €.). Such a set will be referred to
as a basis of H. It is not difficult to see that the only basis changes B of H that
come from homotopy equivalences of K have the property

(%) Bey -eg = (1+T)z, for some z in H.

This condition ensures that e; = Beg can be represented by a mapping of RP3 — K
if ep has such a representation. The following definitions are motivated by this
geometric fact. Suppose H=rA D Z, D Z, .

Definition 1. A based Z,-form on H is a Z,-form (A, ¢, H) together with a
generator ey of a Z; direct summand of H.

Definition 2. Two based forms (A, ¢, eg) and (\', ¢', ) on H are base-
equivalent if there exists a A-isomorphism B: H — H such that

(1) X'(Bx, By) = x(x, y),
(2) ¢'(Bx) = ¢(x), e; =Beg, and
(3) Beg - eg = (1 + T)z for some z in H.

The discussion of the preceding paragraph can be summed up: With each Poin-
caré complex of our type, theve is associated a based Z,-form whose base-equiva-
lence class is a homotopy invariant.

It will be useful to observe that, given a based Z,-form (A, ¢, ey, H), we can,
by a purely algebraic argument, find a ‘splitting basis’ of H for A. More precisely,
there exists a basis change B: H — H with property (*) such that the direct-sum
splitting of H into H; =rA and Hy = Z; @ Z,, given by the new basis, is an ortho-
gonal splitting with respect to A. This implies that, in the new basis (e;, e,,) for
HO 3

Meg, o) =1 and (e, ep) = Mew, €w) = 0.

The proof of this fact is an immediate consequence of the following result of [4].
In the statement, we denote G/2G by G, for an abelian group G. Given A, a Z,-
form on a A-module N, we construct a form X on N by reducing the values of A
modulo 2.

LEMMA 1. Let A be the reduction of a nonsingular Z,-form on a A-module
N = rA ® M, where M has no A-free divect summand. Then N vestricted to M is
nonsingular.

Proof. We set Q =(l + T)rA and let P be the subgroup of N generated by a
A-base for the rA summand, so that as a free abelian group N=P® Q ® M.

Then, if
Anmn(Q) = {x e N|x(x, y) =0 for all y € Q},

It is clear that M @ Q < Amn (Q). Suppose hl M X M is singular. This implies that
there exists a nonzero z € M N Ann(M). Since A is nonsingular on N, there is an
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x € P with A(x, z) = 1. By adding suitable multiples of z to basis elements of Q,
we obtain Q' of the same rank (as a Z2-vector space) with

AmM@) 2 Q@ OM® (x).

Since Q' is also a direct summan_d of —ﬁ, there is a subgroup T of N such that
N 2 Ann(Q') @ T. Clearly, rank T = rank Q'. Now there is a contradiction:
rank N = 2(rank Q) + rank M > 2(rank Q) + rank M + 1.

We conclude this section by describing a condition the map ¢ must satisfy for K
to be smoothable. Choose an embedding of Hy =Z, @ Z, so that H=Hy @ H; .
Then ¢ | H, is an associated quadratic map to a | H, (in the usual sense); for if x is
in Hy, then Tx = x. Denote by A(¢, Hy) the Arf invariant of ¢ IHO. The following
calculation shows that A(¢, Hy) is in fact independent of the choice of embedding of
Ho .

LEMMA 2. Let B: H — H be a basis change, and let Hy = BH,. Then
A(¢, Hb) = A(¢; HO)-

Proof. Pick abasis (ey, e,) of Hy containing ey, and set e; = Bey and
el, = Be,. Then

Be, = aeg +be, +(1+T)x for some x in H;,
and

Be, = ceg+de, +(1+T)y for some y in H;.

Using the fact that Meg, e)) = 1 (mod 2) from Lemma 1, we deduce that
ad +bc = 1 (mod 2). This clearly implies that ¢(eg) ¢les,) = ¢(eg) dley).

Now suppose we are given a Poincaré complex K as above, with its map ¢ de-

fined on H3(K) ® Z,. Set A(K) = A(¢, H3(K)), where in view of Lemma 2, the nota-
tion for the Arf invariant has been simplified. The following restriction on ¢ was
obtained in [5].

THEOREM 1. Lef M be a closed, smooth, oviented 6-manifold with m) M =27,
and 1, M =0. Then A(M) = 0.

2. THE CLASSIFICATION

Our classification is contained in the next two results. All manifolds mentioned
are smooth, closed, and oriented, and they have dimension six.

THEOREM 2. Suppose K is a finite, oviented Poincavé complex that is the
homotopy type of a manifold MO, with Ty M =2, and 71, M = 0. Then K has exacltly
two smoothings.

THEOREM 3. Homolopy types of 6-manifolds M with 1\ M =Z, and 1, M =0
ave in bijective corvespondence with the sets of invariants

(1) @ A-module H=rA D Z, D Z,, for some even integer r >0,

(2) a based Z,-form (\, ¢, e, H) on H with A(¢, H) = 0, modulo the equiva-
lence velation generated by base-equivalence of Z,-forms.

In a special case we have computed the classification also for Poincaré com-
plexes.
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PROPOSITION 1. Thevre ave exactly ten homolopically distinct, finite, oviented
Poincaré complexes K of dimension six, with 1)K =7, and K ~ 83 x 83 . Only two
arve smoothable,

This is discussed in Section 6. We remark that because of the existence of a
splitting basis in each base-equivalence class, and the fact that L6(ZZ, +) = Z,,
the classification of Theorem 3 is computable.

3. PROOF OF THEOREM 2

Suppose M is a manifold of the kind considered above. According to surgery
theory, the proof of Theorem 2 amounts to computing & p1 (M) and the action of
L4(Z,, +) on it [9]. In dimension six, it is clearly enough to work in the PL cate-

gory.
LEMMA 3. [M, G/PL] 2 [M, G/PL(Z)] 272,D7Z,.
Proof. 1t is known that G/PL,q4) = BO ® Z[1/2], and that [M, BO® Z[1/2]]
can be computed by means of a spectral sequence with
ED-9 = HP(M; KOYU(¥) ® z[1/2].
However, HP(M, Z[1/2]) = 0 unless p = 3 or p = 6, and KO(*) ® Z[1/2] = 0 unless
q = 0 (mod 4). Therefore E5'"P =0 for all p, and [M, G/PL,4q)] = 0.

Now it is clear that
[M’ G/PL(Z)] = [M’ Y] @ [Ma K(ZZ ’ 6)]9

where Y is the 2-stage Postnikov system occurring as a factor of G/PL,) [7].
From the exact sequence

and the fact that H¥(M; Z) = 0, we see that [M, Y]= Z, .

We shall now prove Theorem 2 by calculating the surgery obstruction
y: [M, G/PL] — L¢(Z,, +) = Z,, using the formula of [9, p. 178]. The map
L(Z,, +) —» #p1 (M) is trivial [6, p. 48]. In fact, if gt M — G/PL corresponds to
the essential map M — K(Z,, 6), then

¥(M, g) = (1 +wy(M)) g*(1 +8q? +Sq2Sq?)k[M] = g*k[M] = 1,

where k =k, + k¢, and k; is in Hi(G/PL; Z,). Similarly, if g corresponds to the
essential map M — K(Z,, 2), then (M, g) = 0, since Sq2 =0 on H(M; Z,).

4. CONSTRUCTION OF 6-MANIFOLDS

In this section, we prove half of Theorem 3 by constructing a one-to-one map
from the equivalence classes of invariants to the homotopy classes of manifolds.
This is a special case of a construction in [5].

Suppose we are given a based form (A, ¢, ey, H), and set w, = 1+ ¢(eg) in Z,.
Let £ be the orientable 3-plane bundle over RP3, with second Stiefel-Whitney class



FREE INVOLUTIONS ON 6-MANIFOLDS 145

w, . Then £ is either 3¢ or ¢ @ 27, where ¢ (respectively, n) is the trivial (re-
spectively, nontrivial) line bundle over RP3. After changing the Z,-form, if neces-
sary, within its base-equivalence class, we may assume that H = Hy ® H; is a split
decomposition of H for A with ey in Hy. Let (e}, -, €., €g, €,) be the splitting
basis, and denote by D(£) and S(£) the disk and sphere bundles, respectively, asso-
ciated with &.

We begin the construction by forming Wg = D(£) Uf D3 X D3 and using an embed-
ding f: 32 x D3 — S(¢), obtained from trivializing S(£) over a disk D3 c RP3. Ob-
serve that 9W, =~ S(&g), where &y is i* (¢ @ n), the bundle £ @ pulled back over
i: RP2 C RP3,

If r =0, we finish by attaching D(&p) to Wg along dW( with some diffeomor-
phism. If r > 0, we attach r disjoint handles D3 X D3 to W, along aW, to obtain
W. We construct the required embeddings f;: S2 X D3 — dW, by first picking r un-
knotted and unlinked embeddings 0: 82 X D3 — W, (i =1, ---, r) inside disjoint
embedded disks Di5 C oW, . These embeddings are then moved by regular homo-
topies ni: 8% X D> XI— dWq (i =1, -+, r) (with both ends embedded) whose inter-
sections and self-intersection numbers are prescribed by A and ¢ as in [9, p. 53].
For f; we take 7; | $2 x D® x 1.

An easy surgery argument (see [5]) now shows that 9W =~ S(£,) also, and we
finish as before by attaching D(£() with a diffeomorphism h: aW — S(£,). Denote
M =W U, D(¢;) by I(6), where 6 = (A, ¢, ey, H). The following lemma shows that
we may omit the map h from our notation.

LEMMA 4. Any two choices of the diffeomorphism h: dW — S(&() 7vesult in
homotopy-equivalent manifolds M.

This is the main step in showing that I' is surjective. It will be carried out in
the next two sections. First we apply the result to conclude that I'" is well-defined
on equivalence classes and is one-to-one.

LEMMA 5. Let 6 =, ¢, eg, H) and 0' =(\', ¢', e}, H). Then M = I'(9) and
M' = I'(0") are homotopy-equivalent if and only if the forms 6 and 0' are base-
equivalent,

Proof. Since any homotopy equivalence induces a base-equivalence of the forms
and w, is a homotopy invariant, the necessity is clear.

Now suppose that eg and ej are contained in splitting bases and that B: H —» H
gives a base-equivalence of 6 and 6'. Then ¢(ey) = ¢'(ey). Because B is based,
there is a map RP3 — M' representing Beg that is a 2-connected and can be taken
to be an embedding, by Haefliger’s theorem [3]. In fact, by general position, we can
assume that this embedding lies in W'; therefore we let N C W' be a small tubular
neighborhood. One can use the basis Be; of H to attach handles to N inside W' and
thus to produce an embedding of W C interior W'. It is easy to see that W' - W is
an h-cobordism between W' and 9W, so that W ~ W'. From Lemma 4, we con-
clude that M ~ M'.

5. REDUCTION TO INVOLUTIONS ON S3 x 83

We shall prove Lemma 4 by listing the possible homotopy types of oriented
Poincaré complexes K6 , then proving that the smoothable homotopy types can be
specified by our invariants.
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The first step is to reduce the problem to the case where r = 0. Consider a

normal cell decomposition [8] of K induced by a splitting basis of H; (K) with re-
spect to A.. It will be necessary to have a notation for the skeleta K@:

r
k> =RrP’vsdvL,, whereL, =V s;,
k=1

kit = gy pit! for 3<i<5.
One can show [5] that for i =4 and i =5,
Ki ~ S8V N,, where N, =S}V S3VL, VL.

As the notation indicates, the obvious inclusion j: Sg’o VL, C K% € K has the prop-
erty that j*[S§] =e; for i=1, ---, r and i = «, while the inclusion RP> cK*cK

is covered by S(3) c K* €K and represents e, . Finally, Ii;‘k is another copy of L.,
the image of L., under the covering transformation T in K.

We ask what complexes K' have the same homology and cup-product as K.
Clearly, K% is determined by homology. However, the attaching map of the 5-cell

has homotopy class in 7r4ﬁ = 748* @ myN,.. Let @ be the summand from my N,
(which is a direct sum of copies of Z, = m4S3). This element o must have the
property that (1 - T)a = 0. It is not detected by homology or cup-product. Similar-
ly, the summand of the homotopy class of the attaching map for the 6-cell that is not
detected by this means is 8, in

Tr
(Z,)°T2 @ k®1 75(8% V 8%)g) -

We shall use e, for the inclusions Sl3< c K as well as for the homology classes
they represent.

LEMMA 6. Let (e;, ***, e., €, €,) be a splitting basis for K. There exists
a novmal cell decomposition of K induced by the basis, as above, such that

(1) @ = eg © ag + e, ° Oy, where Qg and Q. are in 14S° , and

o

(2) B = Z) ek°6k+eOOﬁO+eoooBoo+ E mk[ek:Tek]y
k=1 k=1

where the element By is in 5S>, the coefficient my is in Z, , and [ex, Tey]
genevates mg(S3 V S3)(k) .

LEMMA 7. The covering Space K is smoothable if and only if By =0 for
1<k<r.

Proof. In the notation established at the beginning of the section,
K~ N, U(1+T)B D . Clearly, K is smoothable if and only if it is the homotopy
type of a connected sum of copies of s> x S3. In that case, there exists for each
k=1, ---, r a projection pg: K — Sfi such that p, © e, is the identity. Hence gy,
the obstruction to the existence of p, , is zero.
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Next we identify the coefficients mjy occurring in the expression for g of
Lemma 6. Recall that in [1] ¢ is defined by means of a cohomology operation
Y: H3(K, Z,) — H6(K Z,) = Z, (see also Section 6 below). In fact, if X is the

Poincaré dual to x in H3(K Z-), then
¢(x) = Y(X)[K], where [K] generates H(K: Z,).

An easy calculation using the definition of ¢ yields the following result.

LEMMA 8. Let ek be Teductzon modulo 2 of the class in H3(K) dual to €x -
Then m, = g&(ek) for k=1,

By the construction of Sectlon 4, each value of ¢(ey) (and therefore each value
of m,) is possible for k =1, -, r in smoothable complexes. Note that Kq = K/L..
has the homotopy type of a Pomcare complex with 711 Kg =2, and Ko ~83x83,
The following result is a consequence of Lemmas 6 to 8.

LEMMA 9. K is smoothable if and only if Ko and K ave smoothable.

6. INVOLUTIONS ON s83x g3

First we shall prove part of Proposition 1.
LEMMA 10. There ave ten distinct complexes K of our type with K ~ s3xs3.

Proof. The possibilities for (ag, @) may be wrltten (00), (10), (01), and (11).
Similarly for (8¢, ﬁoo) For constructmg K>, given K4, we have three choices:
K>(00), K>(10), and K (01) since K>(11) is homotopy-equivalent to K>(01). For
constructing Ké, given K5, we have three complexes based on K>(00) or K>(10),
but four on K°(01). These must all be shown to be distinct.

Suppose that K and K; are two of the complexes above and that f: K — K; is a
cellular homotopy equivalence. Since both complexes are orientable, f maps the top
cell with degree 1 and induces a homotopy equivalence f: K — K? . This proves
that £ B = B'. Moreover, because K° is nonorientable, f maps the 5-cell with de-
gree { (odd). Therefore f o = fo'=a'. The only variation is therefore caused by
basis changes in H3(K). The only one that affects the attaching maps, namely set-
ting e, =eg+e, and eg = eg, is allowed for in our list. (Recall here that the iso-
morphism defined by e = e+ €« and ew = €, is not a base-equivalence.)

Remavk. The complex corresponding to the choice @ =8 =0 is RP3 x S3; the
choice o = (01) and B =0 gives K = S8(2¢ @ 27). These are distinguished by w(K)
or Sq2

The remainder of the proof of Proposition 1 is contained in the three lemmas
below. These show how the homotopy description of Section 5 can be given in terms
of the Zj-form, at least for smoothable complexes, and enable us to identify the
other invariants w,(K) and Sq2.

In the statement that follows, recall that e’s, eX is the (cohomology) dual basis
to ey, €w - By €% we mean the class in H3(K) dual to that represented by S3, C K,

reduced modulo 2. It should also be noted that the Poincaré duals of ep and e, are
e and eo, respectively.

LEMMA 11. ag # 0 if and only if Y(ef) = ¢(e,,) # O.
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LEMMA 12. (1) ae # 0if and only if Y(eX) = ¢(ey) = 0.
(2) @, # 0 if and only if Sq?eX + 0 (or w, # 0).
LEMMA 13. If K is smoothable, then B, = B, = 0.

Application of Lemmas 11 to 13, together with Theorem 1, which eliminates the
case « = (10), reduces the list of ten complexes to two possible smooth ones. These
are precisely RP3 x S3 and S(2¢ @ 27), and clearly they are smoothable. This
proves Proposition 1.

Combined with Lemma 9, the result evidently establishes that the homotopy type
of a smoothable complex is completely determined by the base-equivalence class of
its based Z,-form, and Lemma 4 follows. As we observed earlier, we can now con-
clude that the map I" is one-to-one and surjective. This proves Theorem 3.

Proof of Lemma11. We recall the definition of ¥ in [1]. Let T: K - K be a
simplicial, free involution and z a cocycle in Z3(K, Z 2). Then there exist cochains
vt for 0<i< 3 in C3*(K, Z,) such that

z Us_; Tz +6v3Ti-1 = (1+T)31 (0<i<3),

where v2 = 0. It turns out that cocycle (1 + '1‘)V6 represents a class in
H%-(K, Z,) = H6(K, Z,), which depends only on the cohomology class of z. Set
Y(z) = cls((1 + T)vo).

This operation can be evaluated on a complex L obtained from K by forming
K/s2 = (RP3 v 8% U D® U D® and then collapsing the resulting S*. Let j: K — L
be the quotient map, and u the generator of H3(i, ZZ). Evidently,

L ~ (RP3 U

5 6
a, D7) U D,

and j*u = ef. Using the fact that Sq% detects the generator of m,S3, we see that
Sq% u # 0 as a cochain if and only if ag # 0;

therefore y(u) # 0 if and only if @g # 0. The result now follows by naturality.

Proof of Lemma 12. For this argument, let L. = K/RP3, let j: K —» L be the
quotient map, and let u be the generator of H3(L, Z,). Clearly,

L ~ (83 Us, D’ ug D®)Vs?t and j*u=ek.
Part (2) now follows by naturality of Sq2. Since e¥% = (1 + T)o3, where o3 isin
C3(K, Z,), it is easy to compute Y(eX) and obtain (1).
Proof of Lemma 13. Suppose that M is a smoothing of K and that § is the
normal bundle of an embedded RP3 in M. It follows from the decomposition

M =~ D(£¢) U D(£)

that K/RP3 ~ M/RP3 ~ (Thom space of £). But if Bo # 0, then T(£) carries the
nonzero secondary cohomology operation on the Thom class U described in [2].
This implies that the Gitler-Stasheff characteristic class of £ is nonzero, so that £
is not a vector bundle.
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For the other part, consider the decomposition

of Section 4, where & is the normal bundle to a 2-connected embedding of RPZ in
M. By Theorem 1 and Lemma 11, there is a basis of H3(ﬁ) in which ¢(e.,) = 0.
Therefore B is the only obstruction to a map p: M — RP3 with the property that
p | RP3 is the identity. However, W ~ S3,\V RP3; hence we can try to extend the
projection W — 82 V RP3 — RP3 to all of M. Since the homotopy class of the at-
tachment of a cell in a cell decomposition of M modulo W factors through the map

h,: Wi(s(‘fo)) - ’iTi(BW),
and since the composition
7,(0W) — m,(W) - m(RP?) (1> 1)

is zero, the extension is possible.
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