FREE INVOLUTIONS ON 6-MANIFOLDS

Ian Hambleton

INTRODUCTION

In this paper, we give the diffeomorphism classification of smooth, closed, orientable manifolds M of dimension six with $\pi_1 M = Z_2$ and $\pi_2 M = 0$. This is equivalent to the classification of free differentiable orientation-preserving involutions on a connected sum of finitely many copies of $S^3 \times S^3$. In this case, it is therefore possible to carry out the program proposed in [5] for the study of involutions on (n-1)-connected 2n-manifolds (n>3).

The paper is organized as follows. Section 1 contains an explanation of the notation and an exposition of the results needed from [1] and [5]. In Section 2, we state the classification results, Theorems 2 and 3, and give an example. The remaining sections contain the proofs.

1. BILINEAR FORMS

Let K be a finite orientable Poincaré complex of dimension six [8] with $\pi_1 \, K = Z_2$ and $\pi_2 \, K = 0$. The generator of $\pi_1 \, K$ will be denoted by T. Then the integral homology and cohomology groups of the universal covering space \widetilde{K} are modules over the integral group ring Λ of Z_2 via the action of T. In particular, $H_3(\widetilde{K}) \cong r\Lambda \oplus Z_+ \oplus Z_+$ for some integer r, where Z_+ is the group of integers with trivial action of Z_2 . This can easily be shown, if it is recalled that since $H_3(\widetilde{K})$ is a free abelian group it has the form $r_0 Z_+ \oplus r_1 Z_- \oplus r_2 \Lambda$ as a Λ -module. From the spectral sequence of the covering $\widetilde{K} \to K$, we deduce the values $r_0 = 2$ and $r_1 = 0$.

Let us write $H = H_3(\widetilde{K})$ and consider the effect of the involution on the intersection pairing $\lambda \colon H \times H \to Z$. This is a unimodular, skew-symmetric bilinear form with the further properties

- (1) $\lambda(Tx, Ty) = \lambda(x, y)$ for all x, y in H, and
- (2) $\lambda(x, x) = \lambda(x, Tx) = 0$ for all x in H.

Associated with $\lambda,$ there is the Browder-Livesay self-intersection map $\phi\colon H\otimes Z_2\to Z_2$ (see [1] and Sections 5 and 6 below). This is related to λ by the equation

$$\phi(x + y) - \phi(x) - \phi(y) = \lambda(x, Ty) \pmod{2},$$

valid for all x, y in H. Although ϕ is actually defined on $H \otimes Z_2$, it will cause no confusion to write $\phi(x)$ for x in H, instead of $\phi(x \otimes 1)$. The geometry of K therefore gives the algebraic data (λ, ϕ, H) . Any such triple, satisfying the relations listed above, will be called a Z_2 -form.

Received March 13, 1975.

This research was partially supported by NSF Grant GP-38875X.

Michigan Math. J. 22 (1975).

In fact, the Z_2 -forms that come from Poincaré complexes have an additional structure. From obstruction theory, there is a 2-connected map $f\colon RP^3\to K$, covered by $\widetilde{f}\colon S^3\to \widetilde{K}$. In [5], it is shown that we can choose f so that $e_0=\widetilde{f}_*[S^3]$ generates a Z_+ direct summand of H. Let $(e_1\,,\,\cdots,\,e_r\,,\,e_0\,,\,e_\infty)$ be a set of Λ -generators of H containing e_0 such that $(e_1\,,\,\cdots,\,e_r)$ is a Λ -base for an $r\Lambda$ complementary summand to $Z_+\oplus Z_+$ generated by $(e_0\,,\,e_\infty)$. Such a set will be referred to as a *basis* of H. It is not difficult to see that the only basis changes B of H that come from homotopy equivalences of K have the property

(*)
$$Be_0 - e_0 = (1 + T)z$$
, for some z in H.

This condition ensures that $e_0' = Be_0$ can be represented by a mapping of $RP^3 \to K$ if e_0 has such a representation. The following definitions are motivated by this geometric fact. Suppose $H = r\Lambda \oplus Z_+ \oplus Z_+$.

Definition 1. A based Z_2 -form on H is a Z_2 -form (λ, ϕ, H) together with a generator e_0 of a Z_+ direct summand of H.

Definition 2. Two based forms (λ, ϕ, e_0) and (λ', ϕ', e'_0) on H are *base-equivalent* if there exists a Λ -isomorphism B: H \rightarrow H such that

- (1) $\lambda'(Bx, By) = \lambda(x, y)$,
- (2) $\phi'(Bx) = \phi(x)$, $e'_0 = Be_0$, and
- (3) $Be_0 e_0 = (1 + T)z$ for some z in H.

The discussion of the preceding paragraph can be summed up: With each Poincaré complex of our type, there is associated a based \mathbf{Z}_2 -form whose base-equivalence class is a homotopy invariant.

It will be useful to observe that, given a based Z_2 -form $(\lambda,\,\phi,\,e_0\,,\,H),$ we can, by a purely algebraic argument, find a 'splitting basis' of H for $\lambda.$ More precisely, there exists a basis change $B\colon H\to H$ with property (*) such that the direct-sum splitting of H into $H_1=r\Lambda$ and $H_0=Z_+\oplus Z_+$, given by the new basis, is an orthogonal splitting with respect to $\lambda.$ This implies that, in the new basis $(e_0'\,,\,e_\infty')$ for H_0 ,

$$\lambda(e_0', e_\infty') = 1$$
 and $\lambda(e_0', e_0') = \lambda(e_\infty', e_\infty') = 0$.

The proof of this fact is an immediate consequence of the following result of [4]. In the statement, we denote G/2G by \overline{G} , for an abelian group G. Given λ , a Z_2 -form on a Λ -module N, we construct a form $\overline{\lambda}$ on \overline{N} by reducing the values of λ modulo 2.

LEMMA 1. Let $\overline{\lambda}$ be the reduction of a nonsingular \mathbb{Z}_2 -form on a Λ -module $N \cong r\Lambda \oplus M$, where M has no Λ -free direct summand. Then $\overline{\lambda}$ restricted to \overline{M} is nonsingular.

Proof. We set $Q = (l + T)r\Lambda$ and let P be the subgroup of N generated by a Λ -base for the $r\Lambda$ summand, so that as a free abelian group $N = P \oplus Q \oplus M$.

Then, if

Ann
$$(\overline{Q}) = \{x \in \overline{N} \mid \overline{\lambda}(x, y) = 0 \text{ for all } y \in \overline{Q} \}$$
,

It is clear that $\overline{M} \oplus \overline{Q} \subseteq \operatorname{Ann}(\overline{Q})$. Suppose $\overline{\lambda} \mid \overline{M} \times \overline{M}$ is singular. This implies that there exists a nonzero $z \in \overline{M} \cap \operatorname{Ann}(\overline{M})$. Since $\overline{\lambda}$ is nonsingular on \overline{N} , there is an

 $x \in \overline{P}$ with $\overline{\lambda}(x, z) = 1$. By adding suitable multiples of z to basis elements of \overline{Q} , we obtain \overline{Q}' of the same rank (as a \mathbb{Z}_2 -vector space) with

$$\operatorname{Ann}\left(\overline{Q}'\right) \supseteq \overline{Q}' \oplus \overline{M} \oplus \left\langle x \right\rangle.$$

Since \overline{Q}' is also a direct summand of \overline{N} , there is a subgroup \overline{T} of \overline{N} such that $\overline{N} \cong \operatorname{Ann}(\overline{Q}') \oplus \overline{T}$. Clearly, rank $\overline{T} = \operatorname{rank} \overline{Q}'$. Now there is a contradiction: rank $\overline{N} = 2(\operatorname{rank} \overline{Q}) + \operatorname{rank} \overline{M} > 2(\operatorname{rank} \overline{Q}) + \operatorname{rank} \overline{M} + 1$.

We conclude this section by describing a condition the map ϕ must satisfy for K to be smoothable. Choose an embedding of $H_0 = Z_+ \oplus Z_+$ so that $H \cong H_0 \oplus H_1$. Then $\phi \mid H_0$ is an associated quadratic map to $\lambda \mid H_0$ (in the usual sense); for if x is in H_0 , then Tx = x. Denote by $A(\phi, H_0)$ the Arf invariant of $\phi \mid H_0$. The following calculation shows that $A(\phi, H_0)$ is in fact independent of the choice of embedding of H_0 .

LEMMA 2. Let B: H \rightarrow H be a basis change, and let H'₀ = BH₀. Then A(ϕ , H'₀) = A(ϕ , H₀).

Proof. Pick a basis (e_0, e_∞) of H_0 containing e_0 , and set $e_0' = Be_0$ and $e_\infty' = Be_\infty$. Then

$$\mathrm{Be}_0 = \mathrm{ae}_0 + \mathrm{be}_{\infty} + (1 + \mathrm{T})\mathrm{x}$$
 for some x in H_1 ,

and

$$Be_{\infty} = ce_0 + de_{\infty} + (1 + T)y$$
 for some y in H_1 .

Using the fact that $\lambda(e_0', e_\infty') \equiv 1 \pmod{2}$ from Lemma 1, we deduce that ad + bc $\equiv 1 \pmod{2}$. This clearly implies that $\phi(e_0') \phi(e_\infty') = \phi(e_0) \phi(e_\infty)$.

Now suppose we are given a Poincaré complex K as above, with its map ϕ defined on $H_3(\widetilde{K}) \otimes Z_2$. Set $A(K) = A(\phi, H_3(\widetilde{K}))$, where in view of Lemma 2, the notation for the Arf invariant has been simplified. The following restriction on ϕ was obtained in [5].

THEOREM 1. Let M be a closed, smooth, oriented 6-manifold with π_1 M = Z_2 and π_2 M = 0. Then A(M) = 0.

2. THE CLASSIFICATION

Our classification is contained in the next two results. All manifolds mentioned are smooth, closed, and oriented, and they have dimension six.

THEOREM 2. Suppose K is a finite, oriented Poincaré complex that is the homotopy type of a manifold M^6 , with $\pi_1 M = Z_2$ and $\pi_2 M = 0$. Then K has exactly two smoothings.

THEOREM 3. Homotopy types of 6-manifolds M with π_1 M = Z_2 and π_2 M = 0 are in bijective correspondence with the sets of invariants

- (1) a Λ -module $H = r\Lambda \oplus Z_+ \oplus Z_+$, for some even integer $r \geq 0$,
- (2) a based Z_2 -form (λ , ϕ , e_0 , H) on H with $A(\phi, H)=0$, modulo the equivalence relation generated by base-equivalence of Z_2 -forms.

In a special case we have computed the classification also for Poincaré complexes.

PROPOSITION 1. There are exactly ten homotopically distinct, finite, oriented Poincaré complexes K of dimension six, with $\pi_1 \, K = Z_2$ and $\widetilde{K} \simeq S^3 \times S^3$. Only two are smoothable.

This is discussed in Section 6. We remark that because of the existence of a splitting basis in each base-equivalence class, and the fact that $L_6(\mathbb{Z}_2,+)\cong\mathbb{Z}_2$, the classification of Theorem 3 is computable.

3. PROOF OF THEOREM 2

Suppose M is a manifold of the kind considered above. According to surgery theory, the proof of Theorem 2 amounts to computing $\mathscr{G}_{\mathrm{PL}}(M)$ and the action of $L_7(Z_2,+)$ on it [9]. In dimension six, it is clearly enough to work in the PL category.

LEMMA 3.
$$[M, G/PL] \cong [M, G/PL_{(2)}] \cong Z_2 \oplus Z_2$$
.

Proof. It is known that $G/PL_{(odd)} = BO \otimes Z[1/2]$, and that [M, BO $\otimes Z[1/2]$] can be computed by means of a spectral sequence with

$$E_2^{p,q} = H^p(M; KO^q(*)) \otimes Z[1/2].$$

However, $\widetilde{H}^p(M, \mathbb{Z}[1/2]) = 0$ unless p = 3 or p = 6, and $KO^q(*) \otimes \mathbb{Z}[1/2] = 0$ unless $q \equiv 0 \pmod{4}$. Therefore $E_2^{p,-p} = 0$ for all p, and $[M, G/PL_{(odd)}] = 0$.

Now it is clear that

$$[M, G/PL_{(2)}] \cong [M, Y] \oplus [M, K(Z_2, 6)],$$

where Y is the 2-stage Postnikov system occurring as a factor of $G/PL_{(2)}$ [7]. From the exact sequence

$$[M, K(Z_{(2)}, 4)] \rightarrow [M, Y] \rightarrow [M, K(Z_{2}, 2)] \rightarrow 0$$

and the fact that $H^4(M; Z) = 0$, we see that $[M, Y] \cong Z_2$.

We shall now prove Theorem 2 by calculating the surgery obstruction $\gamma\colon [M,\,G/PL]\to L_6(Z_2\,,\,+)=Z_2\,$, using the formula of [9, p. 178]. The map $L_7(Z_2\,,\,+)\to \mathscr{S}_{\rm PL}(M)$ is trivial [6, p. 48]. In fact, if g: $M\to G/PL$ corresponds to the essential map $M\to K(Z_2\,,\,6)$, then

$$\gamma(M, g) = (1 + w_2(M)) g*(1 + Sq^2 + Sq^2 Sq^2) k[M] = g * k[M] = 1,$$

where $k = k_2 + k_6$, and k_i is in $H^i(G/PL; Z_2)$. Similarly, if g corresponds to the essential map $M \to K(Z_2, 2)$, then $\gamma(M, g) = 0$, since $Sq^2 = 0$ on $H^2(M; Z_2)$.

4. CONSTRUCTION OF 6-MANIFOLDS

In this section, we prove half of Theorem 3 by constructing a one-to-one map from the equivalence classes of invariants to the homotopy classes of manifolds. This is a special case of a construction in [5].

Suppose we are given a based form (λ, ϕ, e_0, H) , and set $w_2 = 1 + \phi(e_0)$ in Z_2 . Let ξ be the orientable 3-plane bundle over RP^3 , with second Stiefel-Whitney class

 w_2 . Then ξ is either 3ϵ or $\epsilon\oplus 2\eta$, where ϵ (respectively, η) is the trivial (respectively, nontrivial) line bundle over RP^3 . After changing the Z_2 -form, if necessary, within its base-equivalence class, we may assume that $H\cong H_0\oplus H_1$ is a split decomposition of H for λ with e_0 in H_0 . Let $(e_1\,,\,\cdots,\,e_r\,,\,e_0\,,\,e_\infty)$ be the splitting basis, and denote by $D(\xi)$ and $S(\xi)$ the disk and sphere bundles, respectively, associated with ξ .

We begin the construction by forming $W_0 = D(\xi) \cup_f D^3 \times D^3$ and using an embedding $f \colon S^2 \times D^3 \to S(\xi)$, obtained from trivializing $S(\xi)$ over a disk $D^3 \subset RP^3$. Observe that $\partial W_0 \approx S(\xi_0)$, where ξ_0 is $i * (\xi \oplus \eta)$, the bundle $\xi \oplus \eta$ pulled back over $i \colon RP^2 \subset RP^3$.

If r=0, we finish by attaching $D(\xi_0)$ to W_0 along ∂W_0 with some diffeomorphism. If r>0, we attach r disjoint handles $D^3\times D^3$ to W_0 along ∂W_0 to obtain W. We construct the required embeddings $f_i\colon S^2\times D^3\to \partial W_0$ by first picking r unknotted and unlinked embeddings $f_i^0\colon S^2\times D^3\to \partial W_0$ ($i=1,\cdots,r$) inside disjoint embedded disks $D_i^5\subset \partial W_0$. These embeddings are then moved by regular homotopies $\eta_i\colon S^2\times D^3\times I\to \partial W_0$ ($i=1,\cdots,r$) (with both ends embedded) whose intersections and self-intersection numbers are prescribed by λ and ϕ as in [9, p. 53]. For f_i we take $\eta_i\mid S^2\times D^3\times I$.

An easy surgery argument (see [5]) now shows that $\partial W \approx S(\xi_0)$ also, and we finish as before by attaching $D(\xi_0)$ with a diffeomorphism h: $\partial W \to S(\xi_0)$. Denote $M = W \cup_h D(\xi_0)$ by $\Gamma(\theta)$, where $\theta = (\lambda, \phi, e_0, H)$. The following lemma shows that we may omit the map h from our notation.

LEMMA 4. Any two choices of the diffeomorphism h: $\partial W \to S(\xi_0)$ result in homotopy-equivalent manifolds M.

This is the main step in showing that Γ is surjective. It will be carried out in the next two sections. First we apply the result to conclude that Γ is well-defined on equivalence classes and is one-to-one.

LEMMA 5. Let $\theta = (\lambda, \phi, e_0, H)$ and $\theta' = (\lambda', \phi', e_0', H)$. Then $M = \Gamma(\theta)$ and $M' = \Gamma(\theta')$ are homotopy-equivalent if and only if the forms θ and θ' are base-equivalent.

Proof. Since any homotopy equivalence induces a base-equivalence of the forms and w_2 is a homotopy invariant, the necessity is clear.

Now suppose that e_0 and e_0' are contained in splitting bases and that B: $H \to H$ gives a base-equivalence of θ and θ' . Then $\phi(e_0) = \phi'(e_0')$. Because B is based, there is a map $RP^3 \to M'$ representing Be $_0$ that is a 2-connected and can be taken to be an embedding, by Haefliger's theorem [3]. In fact, by general position, we can assume that this embedding lies in W'; therefore we let $N \subset W'$ be a small tubular neighborhood. One can use the basis Be $_i$ of H to attach handles to N inside W' and thus to produce an embedding of $W \subset$ interior W'. It is easy to see that W' - W is an h-cobordism between $\partial W'$ and ∂W , so that $W \approx W'$. From Lemma 4, we conclude that $M \simeq M'$.

5. REDUCTION TO INVOLUTIONS ON $S^3 \times S^3$

We shall prove Lemma 4 by listing the possible homotopy types of oriented Poincaré complexes K^6 , then proving that the smoothable homotopy types can be specified by our invariants.

The first step is to reduce the problem to the case where r=0. Consider a normal cell decomposition [8] of K induced by a splitting basis of $H_3(\widetilde{K})$ with respect to λ . It will be necessary to have a notation for the skeleta K^1 :

$$K^3 = RP^3 \lor S_{\infty}^3 \lor L_r$$
, where $L_r = \bigvee_{k=1}^r S_k^3$,

$$K^{i+1} = K^i \cup D^{i+1}$$
 for $3 \le i \le 5$.

One can show [5] that for i = 4 and i = 5,

$$\tilde{K}^{i} \simeq S^{i} \vee N_{r}$$
, where $N_{r} = S_{0}^{3} \vee S_{\infty}^{3} \vee L_{r} \vee L_{r}^{*}$.

As the notation indicates, the obvious inclusion $j\colon S^3_\infty \vee L_r \subset \widetilde{K}^4 \subset \widetilde{K}$ has the property that $j_*[S^3_i] = e_i$ for $i=1,\cdots,r$ and $i=\infty$, while the inclusion $RP^3 \subset K^4 \subset K$ is covered by $S^3_0 \subset \widetilde{K}^4 \subset \widetilde{K}$ and represents e_0 . Finally, L^*_r is another copy of L_r , the image of L_r under the covering transformation T in \widetilde{K} .

We ask what complexes K' have the same homology and cup-product as K. Clearly, K^4 is determined by homology. However, the attaching map of the 5-cell has homotopy class in π_4 $\widetilde{K} = \pi_4$ $S^4 \oplus \pi_4$ N_r . Let α be the summand from π_4 N_r (which is a direct sum of copies of $Z_2 = \pi_4$ S^3). This element α must have the property that $(1 - T)\alpha = 0$. It is not detected by homology or cup-product. Similarly, the summand of the homotopy class of the attaching map for the 6-cell that is not detected by this means is β , in

$$(\mathbf{Z}_2)^{2\mathbf{r}+2} \oplus \bigoplus_{k=1}^{\mathbf{r}} \pi_5(\mathbf{S}^3 \vee \mathbf{S}^3)_{(k)}.$$

We shall use e_k for the inclusions $S^3_k \subset \widetilde{K}$ as well as for the homology classes they represent.

LEMMA 6. Let $(e_1$, \cdots , e_r , e_0 , e_∞) be a splitting basis for K. There exists a normal cell decomposition of K induced by the basis, as above, such that

(1)
$$\alpha = e_0 \circ \alpha_0 + e_\infty \circ \alpha_\infty$$
, where α_0 and α_∞ are in $\pi_4 S^3$, and

(2)
$$\beta = \sum_{k=1}^{r} e_k \circ \beta_k + e_0 \circ \beta_0 + e_\infty \circ \beta_\infty + \sum_{k=1}^{r} m_k [e_k, Te_k],$$

where the element β_k is in $\pi_5\,S^3$, the coefficient m_k is in Z_2 , and $[e_k\,,\,Te_k]$ generates $\pi_5(S^3\vee S^3)_{(k)}$.

LEMMA 7. The covering space \widetilde{K} is smoothable if and only if β_k = 0 for $1 < k \leq r.$

Proof. In the notation established at the beginning of the section, $\widetilde{K} \simeq N_r \cup_{(1+T)\beta} D^6$. Clearly, \widetilde{K} is smoothable if and only if it is the homotopy type of a connected sum of copies of $S^3 \times S^3$. In that case, there exists for each $k=1, \cdots, r$ a projection $p_k \colon \widetilde{K} \to S_k^3$ such that $p_k \circ e_k$ is the identity. Hence β_k , the obstruction to the existence of p_k , is zero.

Next we identify the coefficients m_k occurring in the expression for β of Lemma 6. Recall that in [1] ϕ is defined by means of a cohomology operation $\psi \colon H^3(\widetilde{K}, \mathbb{Z}_2) \to H^6(K, \mathbb{Z}_2) \stackrel{\sim}{=} \mathbb{Z}_2$ (see also Section 6 below). In fact, if \widetilde{x} is the Poincaré dual to x in $H_3(\widetilde{K}, \mathbb{Z}_2)$, then

$$\phi(x) = \psi(\bar{x})[K]$$
, where [K] generates $H_6(K; \mathbb{Z}_2)$.

An easy calculation using the definition of ψ yields the following result.

LEMMA 8. Let e_k^* be reduction modulo 2 of the class in $H^3(\widetilde{K})$ dual to e_k . Then $m_k = \psi(e_k^*)$ for $k=1, \cdots, r$.

By the construction of Section 4, each value of $\phi(e_k)$ (and therefore each value of m_k) is possible for $k=1,\,\cdots,\,r$ in smoothable complexes. Note that $K_0=K/L_r$ has the homotopy type of a Poincaré complex with $\pi_1\,K_0=Z_2$ and $\widetilde K_0 \simeq S^3 \times S^3$. The following result is a consequence of Lemmas 6 to 8.

LEMMA 9. K is smoothable if and only if K_0 and K are smoothable.

6. INVOLUTIONS ON $S^3 \times S^3$

First we shall prove part of Proposition 1.

LEMMA 10. There are ten distinct complexes K of our type with $\widetilde{K} \simeq S^3 \times S^3$.

Proof. The possibilities for $(\alpha_0, \alpha_\infty)$ may be written (00), (10), (01), and (11). Similarly for (β_0, β_∞) . For constructing K^5 , given K^4 , we have three choices: $K^5(00)$, $K^5(10)$, and $K^5(01)$, since $K^5(11)$ is homotopy-equivalent to $K^5(01)$. For constructing K^6 , given K^5 , we have three complexes based on $K^5(00)$ or $K^5(10)$, but four on $K^5(01)$. These must all be shown to be distinct.

Suppose that K and K_1 are two of the complexes above and that $f\colon K\to K_1$ is a cellular homotopy equivalence. Since both complexes are orientable, f maps the top cell with degree ± 1 and induces a homotopy equivalence $\bar{f}\colon K^5\to K_1^5$. This proves that $f_*\beta=\beta'$. Moreover, because K^5 is nonorientable, \bar{f} maps the 5-cell with degree ℓ (odd). Therefore $f_*\alpha=\ell\alpha'=\alpha'$. The only variation is therefore caused by basis changes in $H_3(K)$. The only one that affects the attaching maps, namely setting $e_{\infty}^{\mathsf{L}}=e_0+e_{\infty}$ and $e_0^{\mathsf{L}}=e_0$, is allowed for in our list. (Recall here that the isomorphism defined by $e_0^{\mathsf{L}}=e_0+e_{\infty}$ and $e_0^{\mathsf{L}}=e_0$ is not a base-equivalence.)

Remark. The complex corresponding to the choice $\alpha = \beta = 0$ is RP³ × S³; the choice $\alpha = (01)$ and $\beta = 0$ gives $K = S(2\epsilon \oplus 2\eta)$. These are distinguished by $w_2(K)$ or Sq^2 .

The remainder of the proof of Proposition 1 is contained in the three lemmas below. These show how the homotopy description of Section 5 can be given in terms of the \mathbb{Z}_2 -form, at least for smoothable complexes, and enable us to identify the other invariants $w_2(K)$ and $\mathbb{S}q^2$.

In the statement that follows, recall that e_0^* , e_∞^* is the (cohomology) dual basis to e_0 , e_∞ . By \bar{e}_∞^* we mean the class in $H^3(K)$ dual to that represented by $S_\infty^3 \subset K$, reduced modulo 2. It should also be noted that the Poincaré duals of e_0 and e_∞ are e_∞^* and e_0^* , respectively.

LEMMA 11. $\alpha_0 \neq 0$ if and only if $\psi(e_0^*) = \phi(e_\infty) \neq 0$.

LEMMA 12. (1) $\alpha_{\infty} \neq 0$ if and only if $\psi(e_{\infty}^*) = \phi(e_0) = 0$.

(2) $\alpha_{\infty} \neq 0$ if and only if $\operatorname{Sq}^2 \bar{e}_{\infty}^* \neq 0$ (or $w_2 \neq 0$).

LEMMA 13. If K is smoothable, then $\beta_0 = \beta_{\infty} = 0$.

Application of Lemmas 11 to 13, together with Theorem 1, which eliminates the case α = (10), reduces the list of ten complexes to two possible smooth ones. These are precisely RP³ × S³ and S(2 ϵ \oplus 2 η), and clearly they are smoothable. This proves Proposition 1.

Combined with Lemma 9, the result evidently establishes that the homotopy type of a smoothable complex is completely determined by the base-equivalence class of its based Z_2 -form, and Lemma 4 follows. As we observed earlier, we can now conclude that the map Γ is one-to-one and surjective. This proves Theorem 3.

Proof of Lemma 11. We recall the definition of ψ in [1]. Let $T: \widetilde{K} \to \widetilde{K}$ be a simplicial, free involution and z a cocycle in $Z^3(\widetilde{K}, Z_2)$. Then there exist cochains v^{3+i} for $0 \le i \le 3$ in $C^{3+i}(\widetilde{K}, Z_2)$ such that

$$z \cup_{3-i} Tz + \delta v^{3+i-1} = (1+T)v^{3+i}$$
 $(0 \le i \le 3)$,

where $v^2 = 0$. It turns out that cocycle $(1 + T)v^6$ represents a class in $H_T^6(\widetilde{K}, \mathbb{Z}_2) \cong H^6(K, \mathbb{Z}_2)$, which depends only on the cohomology class of z. Set $\psi(z) = cls((1 + T)v^6)$.

This operation can be evaluated on a complex L obtained from K by forming $K/S_{\infty}^3 = (RP^3 \vee S^4) \cup D^5 \cup D^6$ and then collapsing the resulting S^4 . Let j: $K \to L$ be the quotient map, and u the generator of $H^3(\widetilde{L}, \mathbb{Z}_2)$. Evidently,

$$\mathbf{L} \simeq (\mathbf{RP^3} \cup_{\alpha_0} \mathbf{D^5}) \cup \mathbf{D^6},$$

and $j^*u = e_0^*$. Using the fact that Sq^2 detects the generator of $\pi_4 S^3$, we see that

$$Sq^2 u \neq 0$$
 as a cochain if and only if $\alpha_0 \neq 0$;

therefore $\psi(u) \neq 0$ if and only if $\alpha_0 \neq 0$. The result now follows by naturality.

Proof of Lemma 12. For this argument, let $L = K/RP^3$, let j: $K \to L$ be the quotient map, and let u be the generator of $H^3(L, \mathbb{Z}_2)$. Clearly,

$$L \simeq (S_{\infty}^3 \cup_{\alpha_{\infty}} D^5 \cup_{\beta_{\infty}} D^6) \vee S^4$$
 and $j^*u = e_{\infty}^*$.

Part (2) now follows by naturality of Sq^2 . Since $e_{\infty}^* = (1+T)\sigma^3$, where σ^3 is in $C^3(\widetilde{K}, \mathbb{Z}_2)$, it is easy to compute $\psi(e_{\infty}^*)$ and obtain (1).

Proof of Lemma 13. Suppose that M is a smoothing of K and that ξ is the normal bundle of an embedded RP³ in M. It follows from the decomposition

$$\mathbf{M} \approx \mathbf{D}(\xi) \cup \mathbf{D}(\xi)$$

that $K/RP^3 \simeq M/RP^3 \simeq$ (Thom space of ξ). But if $\beta_{\infty} \neq 0$, then $T(\xi)$ carries the nonzero secondary cohomology operation on the Thom class U described in [2]. This implies that the Gitler-Stasheff characteristic class of ξ is nonzero, so that ξ is not a vector bundle.

For the other part, consider the decomposition

$$\mathbf{M} \approx \mathbf{W} \cup_{\mathbf{h}} \mathbf{D}(\xi_0)$$

of Section 4, where ξ_0 is the normal bundle to a 2-connected embedding of RP^2 in M. By Theorem 1 and Lemma 11, there is a basis of $H_3(\widetilde{K})$ in which $\phi(e_\infty) = 0$. Therefore β_0 is the only obstruction to a map p: $M \to RP^3$ with the property that $p \mid RP^3$ is the identity. However, $W \simeq S_\infty^3 \vee RP^3$; hence we can try to extend the projection $W \to S_\infty^3 \vee RP^3 \to RP^3$ to all of M. Since the homotopy class of the attachment of a cell in a cell decomposition of M modulo W factors through the map

$$h_*: \pi_i(S(\xi_0)) \to \pi_i(\partial W),$$

and since the composition

$$\pi_{i}(\partial W) \rightarrow \pi_{i}(W) \rightarrow \pi_{i}(RP^{3}) \quad (i > 1)$$

is zero, the extension is possible.

REFERENCES

- 1. W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres. Tôhoku Math. J. (2) 25 (1973), 69-87.
- 2. S. Gitler and J. D. Stasheff, *The first exotic class of BF*. Topology, 4 (1965-66), 257-266.
- 3. A. Haefliger, *Plongements différentiables de variétés dans variétés*. Comment. Math. Helv. 36 (1961), 47-82.
- 4. I. Hambleton, *The orthogonal splitting of* \mathbb{Z}_2 -forms. Preprint, University of Chicago, 1973.
- 5. ——, Free involutions on highly-connected manifolds. Preprint, University of Chicago, 1973.
- 6. S. López de Medrano, *Involutions on manifolds*. Ergebnisse der Mathematik, Band 59. Springer-Verlag, New York-Heidelberg, 1971.
- 7. D. Sullivan, Triangulating homotopy equivalences. Dissertation, Princeton, 1969.
- 8. C. T. C. Wall, Poincaré complexes: I. Ann. of Math. (2) 86 (1967), 213-245.
- 9. ——, Surgery on compact manifolds. London Math. Soc. Monographs No. 1. Academic Press, London-New York, 1970.

University of Chicago Chicago, Illinois 60637