GEODESIC SPHERES AND SYMMETRIES IN
NATURALLY REDUCTIVE SPACES

J. E. D’Atri

INTRODUCTION

In [2], the author and H. K. Nickerson proved that in a naturally reductive
pseudo-Riemannian homogeneous space, the geodesic symmetries are divergence-
preserving (volume-preserving up to sign). The proof is based on a complicated
combinatorial identity; the paper [2] also contains a proof, due to N. Wallach, which
is much simpler but not obviously applicable to all naturally reductive spaces. In
Section 1 of the present paper, we prove an algebraic result, and in Section 2, we use
it to extend Wallach’s proof to all naturally reductive spaces. We find other restric-
tions on the geometry of naturally reductive spaces (respectively, harmonic spaces);
in particular, in Section 3, assuming a positive-definite metric, we show that all
sufficiently small geodesic spheres have antipodally symmetric (respectively, con-
stant) mean and scalar curvatures. There is overlap here with work of S. Tachibana
and T. Kashiwada [6].

1. ALGEBRAIC PRELIMINARIES

Let g be a Lie algebra over a field F of characteristic different from 2, and
suppose g = (D p is a vector-space decomposition, where [f, p] C p. Let P and
K denote projection on p and f, respectively, and let B be a symmetric, bilinear
F-valued form on p satisfying the condition

(1) B(P[V, Y], Z) +B(Y, P[V, Z]) =0 for Ve g, Y,Z € »p.

LEMMA. For X € p, the map ad X oK cad X: p — p is B-symmeltric.

Proof. For X, Y, Z € p, we have the relations

B([X, K[X, Y]], 2) = -B(X, [Z, K[X, Y]]

= -B(X, P[z, [X, Y]) + B(X, P[z, P[X, Y])),

-B(X, P[Z, [X, Y]) = B(X, P[X, [¥, Z]) +B(X, P[Y, [Z, X])
= B(X, P[Y, P[z, X]]) + B(X, P[Y, K[Z, X])
= -B(P[X, Y], P[X, z2]) + B([X, K[X, 2]}, Y).

Remark 1. In the situation of Section 2, the lemma is equivalent to the curva-
ture identity { R(X, V)X, Z) = (Y, R(X, Z)X ).
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PROPOSITION 1. If X, Y, Z € p and n is a nonnegative integer, then
B(Po(ad X)*Y, Z) = (-1)"B(Y, Po(ad X)2Z). Heve (ad X)0 is the identity map 1.

The proof is by induction on n. The result is clear for n = 0, 1; we therefore
suppose that n > 1 and that the result holds for all m < n. Then, using also the
previous lemma, we have the equations

B(Po(ad X)Y, Z)
= B(Po(ad X)" 1 oPoad X(Y), Z) + BPo(ad X)" % o0ad X oK oad X(Y), Z)
= (-1)"B(Y, Poad XoPo(ad X)*"17) + (-1)*2B(Y, ad X oK oad X o Po(ad X)"2Z)
= (-1)"B(Y, Poad Xo(P +K)o(ad X)" 1 Z) = (-1)"B(Y, Po(ad X)"Z).

In this calculation, note that Koad XoP = Koad X.

2. NATURALLY REDUCTIVE SPACES

Let M be a naturally reductive, pseudo-Riemannian homogeneous space. Thus
we have a connected Lie group G with Lie algebra g, a closed subgroup K with Lie
subalgebra f such that M = G/K, and a vector space decomposition 8 = f (P » that
is Ad K invariant. The projection 7: G — G/K takes e € G to 0 =7(e) € M, and T,
is used to identify p with ToM. Finally, M has a G-invariant pseudo-Riemannian

metric < R >, and this induces a nondegenerate symmetric bilinear form B on p

that satisfies condition (1). Summarizing some notation and results from [2], we let
U be a symmetric neighborhood around zero in p such that the map Y(X) = n(exp X)
is a diffeomorphism of U onto an open neighborhood of 0 in M. Since M is na-
turally reductive, ¢ is the exponential Exp for the pseudo-Riemannian structure.
With P: g — p denoting projection, define Ay: p — p for Z € U by the equation

_ I-e23dZ (-1)i j
(2) Az—-POad—Z—jZ>)0 (]+1)'Po(adZ) .

The differential of the exponential exp for the Lie group is computed as in [3,
page 95],.and is given by the formula

I- -ad Z
(dexp)z = dLexp 2)e © —gm— (Z € g).

Identifying the vector space p with each of its tangent spaces and considering exp Z
as a mapping of M, we obtain the relation

(3) ()7 = (dexpZ)yoAy.

Let w be a volume form for the pseudo-Riemannian structure defined in a

neighborhood of 0 € M, set &= (Y*w)y, and take & as a volume form on p, invari-
ant under translation and invariant up to sign under the map Z — -Z. Then

(4) (W*w)z = (det Ay D .

Also, since exp(-Z) is an isometry on M, we obtain the formula
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(5) @)z Y1, (@)Y, ) yz) = BAZ Y, AzY,)  for Yy e Ty,
Let Atz denote the transpose of Az with respect to B; that is, let
(6) B(A,Y,,Y,) = B(Y,;, ASY,) for Y;ep.

We now apply Proposition 1 and conclude that Atz = A _5 (it was to obtain this rela-

tion that N. Wallach’s argument, given in [2], needed to restrict itself to a special
class of naturally reductive space). Combining these, we have the following result.

PROPOSITION 2. If M is a naturally reductive, pseudo-Riemannian homogene-
ous space, then the geodesic symmetries of M are divevgence-presevving (volume-
presevving up to sign). Further, the space M is harmonic (in the sense of [5])
if and only if det Ay is a function of B(Z, Z) alone, and M is locally symmelric if
and only if Ay and A_; commute for all Z € U.

Remark 2. If [p,p|C I, wefind Ay =A_5, and therefore M is locally-
symmetric (as is well-known).

Remark 3. Our results imply further restrictions on the geometry of M. For
simplicity, suppose B is positive definite, {Zl y Tt Zn} is an orthonormal basis
for p, and {zl, ---, 2"} is the corresponding normal coordinate system on Y(U);

for Z = 27 zK Z1 , define ag(Z) = a{(zl , **+, z) by the equation

n

(") AzZi = L al(z) Z; .
j=1

Then the metric coefficients of M in the normal coordinate system are given by the
formula

n
k=1

Thus the eigenvalues of the matrix (gij) are the same at Y(Z) and Y(-Z). Equiva-
lently, if < , >° denotes the flat metric on ¥(U) induced by dy from B on yp, then
the eigenvalues of < , > with respect to < , >° are the same at ¥(Z) and Y (-Z).
Note that for a local isometry f of (M, < , >) with fixed point 0, these eigenvalues
are also the same at p and f(p), but in general there is no such f taking Y(Z) to

Y(-Z).

Remark 4. For future reference, note that since exp(-Z) is an isometry trans-
lating the geodesic t — Y(tZ) along itself, we have the equation

(9) Ricy(z)(dY)z Z, (d¥)z Z) = Rico(Z, Z).

3. GEODESIC SPHERES

Now let (M, < , >) be any Riemannian manifold with normal coordinate sys-
tem (zl, ---, z1), centered and orthogonal at 0 € M. Let s be the geodesic distance
from 0, and let X be the unit tangent vector field along geodesic rays emanating

from O given by sX = 27 zk ﬁ Define (1, 1)-tensor fields A and II by
Z
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A(Y) =Vy(sX) and I(Y) = R(X, Y)X (see [1]). Let ¥(s) be the geodesic sphere of
radius s centered at 0. Since X gives a unit normal field to & (S), the shape oper-
ator ¢ and the second fundamental form h of & (s) in M are given by

(10) WYy, ¥p) = (oY), Y,), oY) = VyX = - ZA®),

for vectors Y tangent to #(s). Note that A(X) = X. Thus we can compute the mean
curvature & of #(s) by

(11) (n-1).7f=TrU=é(1-TrA),

a formula also essentially found by Tachibana and Kashiwada [6].

We can also compute the trace of A by

Tr A = div sX = E(sz+zkdivi) = n+2zk1"’;k =n+sX-logvg,
k sz aZk i,k

where T ;k are Christoffel symbols and g is the determinant of the coefficients of
the metric tensor in the normal coordinate system. Therefore we have proved the
following result.

PROPOSITION 3. The geodesic symmeltry at 0 is divevgence-preseyvving in a
neighborhood of 0 if and only if each sufficiently small geodesic spheve centeved at
0 has antipodally symmetric mean curvature., Furthev (Tachibana and Kashiwada
[6]), M is havrmonic at O if and only if each sufficiently small geodesic sphere cen-
teved at 0 has constant mean curvature.

Let <4 be the scalar curvature of #(s), and K the scalar curvature of M. The
Gauss equation yields the formula

(12) H =K - 2Ric(X, X) - Tr 62 +(Tr 0)2,

and, since A(X) = X, we see that Tr 02 = LZ (Tr A% - 1). For any vector field Y, we
S

also have the relation

R(Y, sX)sX = VyV x(sX) - VxVy(sX) - V[Y,SX](SX)

= =(V xM(Y) + A(Y) - AA(Y)) .
This yields the basic differential equation [1], [4], [5]
(13) Tr A2 = Tr A - sX-Tr A +s%Tr II.

Remark 4 shows that if M is a naturally reductive, Riemannian homogeneous
space, then Tr II = -Ric (X, X) is antipodally symmetric on geodesic spheres cen-
tered at 0, while if M is harmonic, it is an Einstein space and Tr II is constant on
geodesic spheres centered at 0. The same holds for Tr A and sX-Tr A, thus by
(13) for Tr A2 . In both cases, K is constant. Therefore we have proved the follow-
ing result.
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PROPOSITION 4. If M is a naturally veductive, Riemannian homogeneous
space, each sufficiently small geodesic sphere has antipodally symmelrvic mean and
scalar curvatures. If M is harmonic, each sufficiently small geodesic spheve has
constand mean and scalayv cuvvatures.

Remark 5. If M is a naturally reductive, Riemannian homogeneous space, and
we identify p and Ty(z)M via (dy)z, then at Y(Z) we find that

(14) A =%AQIO(A:IZOPOeadZ-{-Poe'adZoA'Zl)oAZ,

(15)  -sh(Y,, Y;) = %B(Yl, Poe?dZoA,(Y,)) +% B(Poe?dZ0A,(Y)), Y2)

for all Y; orthogonalto Z in y. To prove this, note that the components of A in
the normal coordinate system (zl, ---, zn) are

. _ . 1 rj
A = 6{+§(SX-gir)g .

Using the Euclidean coordinate system (z!, :--, z) on p, we can apply sX to
End(p, p)-valued functions on p and obtain the equations

(16) sX+(Po(adZ)) = jP o (ad Z),
(17) SX'AZ = -Az+Poe_adZ.

Now use (8) and A}, = A_, to obtain (14) and (15).

It is useful to note that with the identifications indicated,
d(exp(-2)): Ty(z)M — ToM

is given by Agy.

Remavk 6. If M is a naturally reductive, Riemannian homogeneous space, then
ad hoc calculations (omitted) using formulas in [1] and [2] indicate that Tr A3 is not
in general antipodally symmetric, although we have not constructed a specific coun-
terexample.
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