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INTRODUCTION

Let D be a commutative integral domain with a unity element, and let D[x] de-
note the ring of polynomials with coefficients in D. For a polynomial f(x) in D[x],
the content of f, denoted by Ay, is defined to be the ideal of D generated by the co-
efficients of f. The polynomial { is said to be primilive over D in case Ay is con-
tained in no proper principal ideal of D, or equivalently, if no nonunit of D divides
every coefficient of f. Primitive polynomials arise in the classical theory of unique
factorization domains (UFD’s) and in the theory of GCD-domains--those domains in
which every pair of elements has a greatest common divisor--in the proof that both
the class of all GCD-domains and the subclass of all UFD’s are closed under poly-
nomial extensions. Specifically, they appear in the preliminary result that if D is a
GCD-domain, then the product of two primitive polynomials over D is primitive.
This proposition is usually called Gauss’s L.emma.

In this paper, we investigate the class of domains with the property of satisfying
the conclusions in Gauss’s Lemma. This property, which for obvious reasons we
call the GL-property, is defined formally as follows:

Definilion. A domain D has the GL-property if the product of two primitive
polynomials over D is always a primitive polynomial.

In a related study of primitive polynomials over an arbitrary domain, H. T.
Tang [6] presents a new concept closely related to primitivity, by defining a poly-
nomial f(x) in D[x] to be superprimitive over D in case Af‘1 = D. Tang shows
that, without any restrictions on D, every superprimitive polynomial is primitive,
and furthermore, that the product of a primitive polynomial and a superprimitive
polynomial is again primitive [6, Theorems C and D, p. 374]. The latter result is a
generalization of Gauss’s Lemma, since over a GCD-domain, a polynomial is prim-
itive if and only if it is superprimitive [6, Theorem H, p. 375]. These results lead
naturally to the study of the following property:

Definition. A domain D is said to have the PSP-property if every primitive
polynomial over D is superprimitive.

In Section 1 of this paper, we characterize both the GL-property and the PSP-
property in ideal-theoretic terms, and we derive a number of properties of domains
with the GL-property, including the fact that irreducible elements are necessarily
prime. Section 2 is largely devoted to the relation between the PSP-property and
the GL-property. Since it follows directly from Tang’s results cited earlier that
the PSP-property implies the GL-property, we ask whether the reverse implication
is true in general. We present a counterexample to this implication, but we also
present some conditions on a domain that together with the GL-property are suffi-
cient to imply the PSP-property. Additional results in Section 2 include an embed-
ding theorem for a domain with the GL-property in a domain with the PSP-property,
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and an example showing that the condition that irreducible elements are prime does
not imply the GL-property. The final section considers the question when the poly-
nomial ring D[x] has the GL-property. We characterize the domains D for which
D[x] has the GL-property, showing in the process that neither the class of domains
with the GL-property nor the class of domains with the PSP-property is closed
under polynomial extensions. Moreover, we show that for a polynomial ring, the
GL-property, the PSP-property, and the property that all irreducible elements are
prime are all equivalent. Also, we show that the polynomial ring in a family of
variables over D has the GL-property if and only if the single-variable polynomial
ring over D has the GL-property. Finally, we present some examples concerning
questions raised in this section.

Throughout this paper, the word “domain” denotes a commutative integral do-
main with a unity element. In other respects, our notation and terminology are
those of Gilmer [3]. The authors wish to thank Prof. M. Boisen for originally sug-
gesting the study of the GL-property and for a number of other helpful suggestions
in the writing of this paper.

1. IDEAL-THEORETIC PROPERTIES OF DOMAINS
WITH THE GL-PROPERTY

While the terms “primitive” and “superprimitive” have been defined so far only
for polynomials over a domain D, they can be applied in a rather obvious fashion to
ideals of D.

1.1 Definition. Let I be a finitely generated ideal of D. Then I will be called
primitive in case I is contained in no proper principal ideal of D, and I will be
called supervprimitive in case I-1 =D. (In other words, I is a primitive (respec-
tively, superprimitive) ideal if I is the content of a primitive (respectively, super-
primitive) polynomial over D.)

These definitions enable us now to characterize both the GL-property and the
PSP-property without ever mentioning polynomials. These characterizations will be
particularly useful in Section 3, where we consider when the polynomial ring D[x]
has the GL-property.

1.2 PROPOSITION. A domain D has the GL-property if and only if the product
of any two primitive ideals of D is primitive. Moveover, D has the PSP-property
if and only if every primitive ideal of D is superprimitive,

Proof. In view of the remark in Definition 1.1, the verification of the second
sentence is completely elementary. Now suppose that D has the GL-property, and
that I and J are primitive ideals of D. Then I = Afand J = A for some poly-
nomials f and g in D[x], which are necessarily primitive. Then fg is primitive,
and therefore Ag, is a primitive ideal; that is, Af is contained in no proper prin-
cipal ideal of D. But A¢, C IJ; therefore IJ is contained in no proper principal
ideal of D, and hence it is a primitive ideal.

Conversely, suppose that D does not have the GL-property and that £ and g
are primitive polynomials in D[x] such that fg is not primitive. Then there is a
positive integer m such that (Agm*1 A, = (Af)™ Ag, [3, Theorem 28.1, p. 343].
Since fg is not a primitive polynomial, the right-hand side of this expression is
contained in some proper principal ideal of D. But the left-hand side is a product of
primitive ideals, and from this it follows inductively that some product of two prim-
itive ideals of D is not a primitive ideal of D. W
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This result leads to another ideal-theoretic characterization of the GL-
property.

1.3 PROPOSITION. The domain D has the GL-property if and only if every
ideal that is maximal with rvespect to the property of conlaining no primitive ideals
is prime.

Proof. Assume D has the GL-property, and suppose A is an ideal that is
maximal with respect to the property of containing no primitive ideal. Let b and ¢
be elements of D - A. Then A +bD and A + ¢D both contain primitive ideals.
Therefore (A + bD)(A + cD) contains a primitive ideal, which implies that
(A +DbD){A +cD) € A. In other words, bc ¢ A; therefore A must be prime.

Conversely, suppose that D does not have the GL-property and that I and J
are primitive ideals such that IJ is not primitive. Let & denote the set of all
ideals that contain 1J and contain no primitive ideal. Then & is not empty, since

IJ € . Let @€ Dbe a chainin &, and let B denote the ideal chgg C. Then every
finite subset of B is contained in some C € &; therefore, every finite subset of B
generates an ideal that is not primitive. Consequently B contains no primitive
ideal, and thus B is in &. By Zorn’s Lemma, & contains an ideal M that is maxi-
mal with respect to the property of containing no primitive ideal. But 1IJ C M, with
IZM and J & M. Therefore M is not prime, and the proof is complete. B

The final results of this section involve the concept of an irreducible element
of D, that is, an element a of D such that aD is maximal among the proper princi-
pal ideals of D, or alternately, an element a that can only be factored in D as a
product of a unit of D with an associate of a in D. Recall that a sufficient condition
(but not a necessary one) for a to be irreducible is that a be prime, that is, that
aD be a prime ideal of D.

1.4 PROPOSITION. Let D be a domain with the GL-property, and let d be an
trveducible element of D. Then

(i) d is prime, and
(ii) ¢ I is a primitive ideal containing d, then 1 is superprimitive.

Proof. (i) Assume d is not prime. Then there exist a and b not in dD such
that ab is in dD. Therefore dD # (a, d), and this implies that (a, d) is primitive,
since otherwise dD would be properly contained in a proper principal ideal of D.
Similarly, (b, d) is primitive. But the product ideal (a, d)(b, d) is contained in dD,
and therefore it is not primitive. Hence D does not have the GL-property.

(ii) Now suppose I is a primitive ideal that contains d and is not superprimi-
tive. Pick k in I-! - D. If J = (kd, d), then, since kd € D - dD, the argument used
above shows that J is primitive. But then JI = (kd, d)I = kdI + dI; consequently JI
is contained in dD, since k € I-1. Therefore JI is not primitive, and hence D does
not have the GL-property. H

2. RELATIONS BETWEEN THE GL-PROPERTY AND
SOME RELATED DOMAIN PROPERTIES

In this section we consider the relations between the following conditions on a
domain D:

(i) D is a GCD-domain.
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(ii) D has the PSP-property.
(iii) D has the GL-property.
(iv) Every irreducible element of D is prime.

We begin by observing that each of these conditions implies its successor. That (i)
implies (ii) and (ii) implies (iii) follows at once from the results of Tang mentioned
in the Introduction. The final implication was proved in the preceding section. We
further observe that in the presence of the ascending-chain condition on principal
ideals, condition (iv) implies that D is a UFD, which in turn implies (i}). Thus under
this additional hypothesis, all four conditions are equivalent.

In general, however, no two of these conditions are equivalent, and we have
counterexamples to each of the three reverse implications. An example showing
that (ii) # (i) is found in Example 3.11 of the next section.

Before we develop an example to show that (iii) 7 (ii), we present a few positive
results to suggest how closely related the GL-property and the PSP-property are.
In particular, we show that in the presence of certain additional hypotheses, a do-
main with the GL-property necessarily has the PSP-property. Moreover, we show
that every domain D with the GL-property has an overring with the PSP-property
that is “close to” D in the sense that no nonunit of D is invertible in the overring.

2.1 PROPOSITION. Let D be a domain with the GL-property in which every
finitely genevated propeyr ideal is in the vadical of some principal proper ideal.
Then D has the PSP-property.

Proof. We shall prove this result by showing that every primitive ideal is equal
to D itself, hence trivially superprimitive. Let I be a proper ideal of D that is fi-
nitely generated. Then by hypothesis, I C Vv (d) for some nonunit d of D; thus
Ik ¢ (d) for some natural number k. Hence I is not primitive. ®

2.2 COROLLARY. If D is a domain with the GL-property and the QR-property
[3, p. 334], then D has the PSP-property as well.

2.3 COROLLARY. If D is a one-dimensional domain with the GL-property and
with only a finile number of maximal ideals, then D has the PSP-property.

Proofs. Corollary 2.2 follows at once from the proposition and the result of
Pendleton [5, Theorem 5, p. 500] that in a domain with the QR-property, every fi-
nitely generated ideal shares its radical with a principal ideal. A domain satisfying
the hypotheses of Corollary 2.3 has the property that every maximal ideal is the
radical of a principal ideal. This follows immediately from the well-known result
that the union of a finite set of prime ideals cannot contain a prime ideal unrelated
to those in the set. B

2.4 THEOREM. If D is a domain with the GL-property, then there exists an
overving E of D that contains the invevse of no nonunit of D and has the PSP-
property.

Proof. Let K denote the quotient field of D, and let S denote the set of all
primitive ideals of D.

Since S is a multiplicatively closed set of ideals, the set

{xe KIXIED forsomeIeS}
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is an overring of D, which we shall denote by E. We begin by showing that no non-
unit of D is invertible in E. Assume d € D and d-! € E. Then d-1I € D for some
primitive ideal I. Hence, I C dD; therefore d must be a unit of D.

Next let J be a primitive ideal of E, with generators j;, j2, ---, in- We wish
to show J is superprimitive. For each index Kk, let I, denote a primitive ideal of D
such that j, I, € D. We know that the product A =1, --- I, is a primitive ideal of D
and that jx A € D for every index k. Now let B denote j; A + -+ +j, A, a finitely
generated ideal of D. We claim that B is primitive. If not, then B C dD for some
nonunit d of D. Therefore, jxA C dD for all k, so that d-1ji A C D for all k.
Hence d‘ljk isin E for all k, which means j, is in dE for all k. But by the argu-
ment in the preceding paragraph, d is a nonunit of E; thus we conclude that
J CdE # E. This contradicts the way we chose J, and we conclude that B is prim-
itive ideal of D.

Now let X be an element of J-!. Then xJ C E; in fact, xJ is a finitely gener-
ated ideal of E, with generators xj;, ---, Xj,. By the reasoning used earlier to
construct the ideal A, there is a primitive ideal C of D such that xj; C C D for all
k. Clearly, xjixAC C D for all k, which implies that xj;AC+ - +xj,AC C D.
This means that x(j; A + - +j,A)C C D, so that xBC C D. But we know BC is a
primitive ideal of D, and hence we conclude that x is in E. This implies that
J-1 = E, which is what we wanted to show. M

Next we construct the counterexample to show that (iii) £ (ii).

2.5 Example. Let QJr denote the set of positive rational numbers, and let Qg
denote Q1 U {0}. Let F denote the field of two elements, and let J be the ring
F{X%| a € Q§}, {Y%] @ € Qf}, {2%| @ € Q§}] of all “polynomials” over F in
which the exponents for the indeterminates range over Qg instead of merely the
nonnegative integers. Finally, let D denote the subring

F{XY a e i}, {¥?] ac Ql}, {x¥2P| 0 € Q%, B Q},
{y¥zP| a € QF, p € Q'}]
of J. We shall show that D has the GL-property (Proposition 2.8) but not the PSP-
property (Proposition 2.9). We need the following two lemmas.

2.6 LEMMA. J is a GCD-domain.

Proof. J may be considered as the semigroup ring over F of the semigroup
S=Qf xQf xQf. Since § is clearly a GCD-semigroup, J is a GCD-domain [4,
Theorem 6.4, p. 76]. W

2.1 LEMMA. Assume f and g ave in J and fg isin D. Then f isin D or g
is in D. If, in addition, f is in D and f has nonzevo constant teym, then g is in D.

Pyroof. Let 1 denote the ideal of J generated by the set
{x% aeq@t u{Y? aeQt.

Then I is also an ideal of D. Furthermore, every element f of J can be written as
f; +f,, where f; € I and f; € F[{Z?| o € Q§}]. Write f and g as f; +f and

g1 T g, as above. Then fg=1£,g, +f,g; +f,g, +f,g2, and since fg € D and
figy+1i,g;+f1g, € ICD, it follows that f,g, € D. Thus the only possibility for
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f,g, is that it is a constant polynomial in F[{Z%®| & € Q}}]. If it is the zero
polynomial, then either f, =0 or g, = 0; thus either f or g isin D. In case f,g,
is nonzero, then both f, and g, must be nonzero constant polynomials, and the
sums f, +f, and g; + g, must both be in D. Finally, if f is in D with nonzero
constant term, then f, # 0. Consequently either f,g, = 0, in which case g, =0, so
that g =g, € D; or f,g, # 0, in which case the preceding sentence applies. In
either case, g is in D, as required. H

2.8 PROPOSITION. D kas the GL-property.

Proof. Assume A =(a;, ---, a;y) and B = (b}, -+, by) are ideals of D such
that the product AB is not primitive. We shall show that A and B are not both
primitive. Let c¢ be a nonunit of D such that AB C ¢D. Then c¢ is also a nonunit of
J, and

(AJ)(BJ) = (AB)J C (cD)J = cJ # J.

Since J is a GCD-domain, it follows that not both AJ and BJ are primitive ideals
in J. If we let A and p denote the ged’s in J of {a;, -+, a;n} and {by, ---, bn},
respectively, then not both A and p are units of J. Still taking ged’s in J, we see
that a;p = ged(aiby, -+, ajby) for each i. But ajbj e AB C cJ for each j, and

hence ged(a;by, -+, a;by) isin c¢J for each i. In other words, a;u € ¢J for each
i, and consequently ged(aj i, **, a;, ) is in ¢J. But
ged(ay i, -+, amie) = g ged(ay, =, ay) = Ap.

Therefore Ay € ¢J. Since J is a GCD-domain, ¢ = aff, where o, 8 € J and X € ad,
u € B [2, Theorem 2.4, p. 256]. By the preceding lemma, either @ or B is in D,
since their product ¢ is in D. Moreover, if @ is a unit of D, then « is a constant
polynomial, so that 8 = ca-! is also in D, and therefore B is a nonunit, since c is.
Hence either a or B, say «, is a nonunit of D. Then AJ C AJ C aJ; consequently,
for each i there exists y; € J such that a; = @y;. We consider two cases on «a. If
o has nonzero constant term, then by the preceding lemma, each y; is in D, be-
cause the product avy; is in D. Then aj € aD for all i, so that A C D and hence
A is not primitive. The other case is where a has constant term zero. In this
case, we can find a nonunit 6 in D such that 62 = @, simply by summing the terms
obtained on taking each term of @ and dividing the exponents by 2 (since F is the
field of two elements). Moreover, 6 is in the ideal I of D defined in the proof of
Lemma 2.7; thus y;6 € yiICJI=1C D. Since aj = (y;6)0 for all i, it follows that
A C 6D. Again we conclude that A is not primitive, and the proof is complete. B

2.9 PROPOSITION. D does not have the PSP-property.

Pyoof. Consider the ideal A = XD 4+ YD. Since X and Y are contained in no
proper principal ideal of J, and since nonunits of D are nonunits of J, we see that
X and Y are contained in no proper principal ideal of D. Hence A is a primitive
ideal of D. But Z € A-! - D, since ZA C D and Z is in the quotient field of D.
Therefore A is not superprimitive, and the proof is complete. W

The final result of this section is the construction of a domain to illustrate that
(iv) A= (iii).
2.10 Example. Let F be the field of two elements, and let

D, = F[{X%, X2, Y9, Y¢, 29| @ € Q}}].
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Let D be Do[{XP¥827°| @, 8, 6 € Q*; 1, =1, 2}]. Then D does not have the

GL-property; but irreducible elements of D are prime (since every nonunit of D is
reducible).

Proof. It will be convenient to think of D as the semigroup ring over F of the
semigroup S of 5-tuples of rational numbers in which the first four coordinates are
always nonnegative and either the fifth is nonnegative or there is a positive entry in
one of the first two entries and a positive entry in one of the third and fourth entries.
We claim that the ideal I = (X;, X;) is primitive in D. Let d be a divisor of Xj.
Then d must be a monomial [4, Lemma 4.1, p. 70], and by the way D was defined d
must be of the form X‘f . Similarly, a divisor of X, must be of the form X% .
Hence X; and X, have no nonunit common divisor; consequently (X1, X3) is prim-
itive. The same argument shows that J = (Y, Y7) is primitive. Now
I3=(X;Y,, X2Y;, X; Y, X,Y,) is contained in the proper principal ideal ZD, and
hence is not primitive. Therefore D does not have the GL-property.

The example will be complete when we have shown that D has no irreducible
nonunits. For this, we need only observe that every monomial has a square root,
and consequently, since F is the field of two elements, every element of D has a
square root. H

3. THE GL-PROPERTY IN POLYNOMIAL RINGS

In this section we consider conditions under which the polynomial ring D[x] has
the GL-property. A natural starting place for this inquiry is the question whether
the GL-property in D implies the GL-property in D[x], and conversely. Our first
proposition shows that the converse implication holds; in fact, the GL-property in
D[x] implies the stronger condition that D has the PSP-property. This result pro-
vides a negative answer to the original question whether the GL-property in D im-
plies the GL-property in D[x]. If D is the domain in Example 2.5, which has the
GL-property but not the PSP-property, then by the proposition, D[x] cannot have the
GL-property. Later results will show that even when D has the PSP-property, D[x]
does not necessarily have the GL-property. In other words, neither the class of do-
mains with the GL-property nor the class of domains with the PSP-property is
closed under the adjunction of a polynomial indeterminate.

3.1 PROPOSITION. If D is an integral domain such that D[x] has the GL-
property, then D has the PSP-property.

Proof. Suppose D does not have the PSP-property, and let I be a finitely gen-
erated ideal of D that is primitive but not superprimitive, and that has a minimal
number of generators among ideals with this property. Let {agy, a;, -, a,} be a
minimal set of generators of I, and note that n # 0, since principal primitive ideals
are always superprimitive. Let p(x) denote the primitive polynomial
agta;x+--+a,x" in D[x]. We shall show that p(x) is irreducible. Suppose that
p(x) = g(x) h(x), where g(x) and h(x) are polynomials in D[x] of degree strictly
smaller than n. Since the product of two superprimitive polynomials is superprim-
itive [6, Theorem F, p. 374}, and the product of a nonprimitive polynomial with an
arbitrary polynomial is clearly nonprimitive, it follows that either g(x) or h(x), say
g(x), is a primitive polynomial that is not superprimitive. Thus Ag is a primitive
ideal that is not superprimitive and has fewer than n generators, contradicting our
choice of I. Hence p(x) is irreducible, as we wanted to show. Now, by Proposition
1.4, the polynomial p(x) must be prime. However, Tang [6, Theorem A, p. 372]
shows that Ay, which is simply I, must be superprimitive, and this contradicts our
assumptions about I. Hence D has the PSP-property. &
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Observe that the essence of the preceding proof is the fact that when D[x] has
the GL-property, all irreducible elements of D[x]| are prime. This implication is
reversed in the following result, which shows that for a ring of polynomials, the
GL-property is equivalent to having only prime irreducibles. Note that this equiva-
lence does not hold in general for domains other than polynomial rings, as is shown
in Example 2.10.

3.2 THEOREM. Let D be an integral domain. Then D|x] has the GL-property
if and only if all ivreducible elements of D[xX] are prime.

Proof. We need only show that the second condition implies the first. We begin
by proving that every nonconstant primitive polynomial f(x) in D[x] can be ex-
pressed as a product of irreducible polynomials. We proceed by induction on deg (f).
If deg(f) = 1, then each factorization of f includes a constant polynomial that is
necessarily primitive, and hence a unit. Thus f is irreducible. In the general case,
f is either irreducible or has a factorization f = gh, where neither g nor h is a
unit. But g and h are both primitive, and consequently, neither can have degree
zero. Hence each has degree less than deg (f), and by hypothesis each is a product
of irreducibles; hence f itself is a product of irreducibles.

Now assume that all irreducible elements of D[x]| are prime. Consider two
finitely generated primitive ideals I and J of D[x], and suppose IJ is not primitive.
Then 1J is contained in some proper principal ideal (f(x)) of D[x]. We consider two
cases for f(x).

Case 1. The polynomial f(x) is primitive. By the preceding, f(x) is a product
of irreducibles, hence a product of primes. Let p(x) be one such prime. Then
1J C (f(x)) € (p(x)), and (p(x)) is a proper prime ideal of D[x]. This implies that
either I C (p(x)) or J C (p(x)), which contradicts the assumption that I and J are
primitive ideals.

Case II. The polynomial f(x) is not primitive. There is a nonunit d of D such
that 1J C (f(x)) c dD[x]. Let {ggp, g,, ***, g} be a generating set for I. We con-

struct a polynomial g* in I of the form g x 0+ g1 XLt gmxrm for some
choice of ry, ry, -+, r,, satisfying the inequality r;;, - r; > deg(g;) for each i.

In other words, the set of coefficients of g* is the union of the sets of coefficients of
g0s 81, ***» 8n. Therefore g* is a primitive polynomial, because otherwise there
would be a nonunit ¢ of D such that g; € ¢D[x] for each i, and hence I C cD[x].
Similarly, we construct a primitive polynomial h* in J. As we mentioned earlier,
the proof of Proposition 3.1 shows that when irreducible elements of D[x]| are prime,
then D has the GL-property. Hence g*h* is a primitive polynomial. But

g*h* € 1J C dD[x] # D[x], which is a contradiction.

Since both Case I and Case II lead to contradictions, we conclude that 1J is a
primitive ideal and hence that D[x] has the GL-property. ®

Our next result shows that the GL-property in a polynomial extension of D is
independent of the number of indeterminates being adjoined. It also gives conditions
on D that are necessary and sufficient for D[x] to have the GL-property. We al-
ready have a necessary condition, the PSP-property, but it is not sufficient, as we
show in a later example. However, by adding integral closure and a third condition
on D, we obtain a characterization of the domains D for which D[x] has the GL-
property. The third property involves the concept of the v-operation on fractional
ideals of D. For convenience, we list the properties of this operation that we need
here. (1) If B is a fractional ideal of D, then B, is the intersection of all principal
fractional ideals of D that contain B, or equivalently, B, = (B-1)-1. (2) For any two
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fractional ideals B and C, (BC), = (B,C,), . (3) I (k) is a principal fractional
ideal, (k), = (k). (4) For a polynomial f in D[x], (A¢), =D if and only if f is super-
primitive. A detailed discussion of this v-operation can be found in Section 34 of
Gilmer’s book [3].

3.3 THEOREM. The following statements are equivalent for an integral do-
main D.

(i) D[x] has the GL-property.

(ii) D[{xq}tye Al has the GL-property for every nonempty set {xXy} o e OF
indeterminates.

(iii) D satisfies the thrvee conditions
(@) D has the PSP-property,
(B) D is integrally closed, and

(v) if B and C are finitely genevated fractional ideals of D such that
(BC)y = D, then B, is a principal fractional ideal.

For the proof of this theorem, we need the following result.

3.4 LEMMA. Let D be a domain with the propevty that ivveducible elements in
D[x] are prime. If Q is a prime ideal of D[x] such that Q N D = (0), and if Q con-
tains a primitive polynomial over D, then Q is a principal ideal.

Proof. Assume Q is a prime ideal in D[x] containing a primitive polynomial
and satisfying the condition Q N D = (0). By the argument in the proof of Theorem
3.2, for an arbitrary domain D, every primitive polynomial in D[x] is a product of
irreducible polynomials. By hypothesis, irreducible elements of D[x] are prime;
therefore @ contains a prime element p. But Q is a minimal prime ideal [3,
Corollary 30.4, p. 356]; thus Q must equal (p), as we wanted to show.

Proof of Theorem 3.3. We shall prove the sequence (i) = (iii) =~ (ii) = (i), of
which the last implication is trivial. Throughout the proof, K will denote the quo-
tient field of D.

(i) = (iii). Assume D[x] has the GL-property. We already know D has the
PSP-property. To show D is integrally closed, assume t is an element of K that
is integral over D. Let f(x) be the monic polynomial of minimal degree in D[x]
with the property that f(t) = 0. If f(x) were reducible in D[x], we could write
f(x) = g(x) h(x), where g(x) and h(x) are both monic of smaller degree; in this case,
either g(t) or h(t) would have to be zero, contradicting the minimality of deg (f).
Thus f(x) is irreducible in D[x], hence prime; therefore, f(x) is irreducible over
K [6, Theorem A, p. 372]. But f(t) = 0; therefore in K[x] the polynomial f(x) must
equal (x - t) g(x), for some g(x) in K[x]. Consequently, g(x) must be a constant
polynomial; in fact, it must be the constant polynomial 1, since f is monic. Thus,
x -t equals f(x) and hence x -t is in D[x]. Thus t € D, and therefore D is in-
tegrally closed.

Finally, we show that condition () holds in D, as follows: Let B and C be
finitely generated fractional ideals of D such that (BC), = D. Pick polynomials f(x)
and g(x) in K[x] such that Af = B and Ay = C, and let f(x) = a-1 h(x), with a eD
and h(x) € D[x]. Now we know that D is 1ntegra11y closed, hence (A v = Ag),
[3, Proposition 34.8, p. 424]. In other words, (A4f), =D, which means that g% ) £(x)
is a primitive, 1n fact a superprimitive pol nom1a1 in D[x] Moreover, A Af c D,
so that A gAf . In particular, g(x) € A;" D[x]. Therefore,
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g(x) £(x) € A;1#(x) D[x] = A;! h(x) D[x],
and by [6, Theorem B, p. 373], the right-hand member is
h(x) K[x] N D[x] = a-! h(x) K[x] N D[x] = f(x) K[x] N D[x].

Consider a minimal prime ideal Q of D[x] that contains h(x) and satisfies the con-
dition Q N D = (0). Viewing K[x] as the quotient overring of D[x] with respect to

D - {0}, we see that Q extends to a minimal prime ideal Q° of K[x] that contains
f(x) and contracts to Q. Therefore Q contains the ideal (f(x))K[x] N D[x], which
contains the primitive polynomial g(x)f(x). By Lemma 3.4, Q is a principal prime
ideal, and consequently its generator p(x) is superprimitive [6, Theorem A, p. 372].
Now, since the prime ideals of D[x] satisfying the assumptions for Q correspond to
the minimal prime ideals of K[x] containing f(x), there are a finite number of them,
say Q1, -+, Qn, each generated by a superprimitive polynomial p;(x) in D[x].
Moreover, pi(x) generates Q in K[x]; therefore in K[x] the polynomial f(x) must

m m
factor as u - pj(x) L., pn(x) 7, where u is a unit of K[x], that is, a constant
polynomial. Now, by repeated application of Theorem 34.8 of Gilmer [3], it follows
that

(Ady = (A v = (A ) A )

upy (x) 7 Lepp (x p) (x Py (x)

(ADy(Ap )y '+ Bp v v

But (Api (X))V

merely the ideal (u), and therefore (Ag), is the principal fractional ideal (u). This
is what we wanted to show, and it completes the proof that (i) = (iii).

=D for each i, since p;(x) is superprimitive. Moreover, (A), is

(iii) = (ii). Assume D satisfies conditions (a), (8), and (y) of (iii). Let D' de-
note D[{xy}yeal for some nonempty set of indeterminates Xo Yaea, and let E
denote K[{xq }weal- To show that D' has the GL-property, it will suffice by
Theorem 3.2 to show that irreducible elements of D' are prime. Let f denote an
irreducible polynomial in D'. Then f is necessarily primitive over D, hence
superprimitive, by assumption («@). Since E is a unique factorization domain, it has
a principal prime ideal P containing f. If q is a polynomial in E that generates P,
then f = qr for some polynomial r in E. Since D is integrally closed, by assump-
tion (B), we see that (Ag)y = (AqAr)y [3, Proposition 34.8, p. 424]. Since f is super-
primitive, D = (AqAy)y, and by assumption (y), (Aq)v is a principal ideal, say equal
to kD.

Now, letting q; denote the polynomial k-!q in E, we see that
(Ag)v = (k"1 Ag)y = k™ (Ag)y = k™}(kD) = D.

In other words, q; is in D', and it is superprimitive over D. Moreover, by our
choice of q;, we know it generates the prime ideal P in E. Thus,
PND'=q;END'=q;D'[3, Corollary 34.9, p. 424], and hence q; generates a
prime ideal of D' that contains f. Since f is irreducible, fD' =q; D', and hence {
is a prime element of D', as we wanted to show. B

As we noted in the introduction, Gauss’s Lemma is a step in the proof that
polynomial rings over GCD-domains are again GCD-domains [3, Theorem 34.10,
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p. 424]. In particular, if D is a Bezout domain, then D[x] is a GCD-domain [3,
Exercise 12, p. 79], and hence it has the GL-property. On the other hand, if D is a
Prufer domrain and B is a finitely generated ideal of D, then B is invertible, so that
B =(B-1)"‘ =B, [3, Thecrem 22.1, p. 278]. Consequently, if D is a Priifer domain
satisfying condition (y) of Theorem 3.3, then D is a Bezout domain, since every fi-
nitely generated ideal is a principal ideal. In short, we have proved the following
corollary, characterizing the Priifer domains D for which D[x] has the GL-
property.

3.5 COROLLARY. Let D be a Priifer domain. Then D[x] has the GL-property
if and only if D is a Bezout domain.

Another corollary to Theorem 3.3 is the following result, namely, that for D[x]
the GL-property and the PSP-property are equivalent. This result and Theorem
3.2 together show that the last three of the four nonequivalent conditions considered
in Section 2 are equivalent, for a ring of polynomials. The first condition from Sec-
tion 2, that of being a GCD-domain, is still not equivalent to the other three in this
case, as we shall show in Example 3.11.

3.6 COROLLARY. Let D be an integrval domain. Then D|x] has the GL-
property if and only if D[x] has the PSP-property.

Pyroof. If D[x] has the GL-property, then by the fact that (i) = (ii) in the pre-
ceding theorem, we know D[x, y] has the GL-property. Now, considering D[Xx, y]
as D[x][y], we see from (i) = (iii) of the same theorem that D[x] has the PSP-
property. H

The rest of this paper is devoted to the construction of examples. Since the
examples we obtain are all special cases of a general construction, the D + M con-
struction [1], we shall develop some common notation and preliminary results be-
fore stating the examples explicitly.

3.1 Notation. Let K be a field, and let V be a rank-one valuation ring of the
form K + M, where M is the maximal ideal of V. We shall consider subrings of V
of the form F + M, where F is a proper subfield of K. Since our examples are
concerned with the PSP-property, we characterize those rings F + M with this
property in the following lemma.

3.8 LEMMA. Let D denote F + M, as in Pavagvaph 3.71. Then D has the PSP-
property if and only if V is a nondiscrete valuation ring.

Proof. Assume V is a nondiscrete valuation ring. Then its value group is a
subgroup of the real numbers having no smallest positive element. Let A be a fi-
nitely generated ideal contained in M. Then there is an element x of V with
smaller positive value than any element of A. Hence A C xM C xD, and since x has
positive value, XD # D. Therefore A is not primitive, and consequently no proper
ideal of D is primitive. Hence D has the PSP-property trivially.

Now assume V is a discrete valuation ring with the integers as its value group.
Then, if m is an element of M of value 1, it is irreducible in D, but not prime,
since it doesn’t generate M as an ideal of D. By Proposition 1.4, D does not have
the GL-property, hence not the PSP-property, either. B

We also need the following result.

3.9 LEMMA. If D is as in Lemma 3.8, then D satisfies condition (y) of
Theorem 3.3.
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Proof. If we consider V as a fractional ideal of D, then V-1 = M. Hence
M, = (M-1)-1=((v-1)-1)-1 =v-1 =M. Consequently, for every ideal I of D con-
tained in M, I, C M,, C M. Hence, if A and B are finitely generated fractional
ideals of D such that (AB), = D, then AB C D and AB ¢ M. In other words,
AB =D, so that A is an invertible ideal of D. Since D is quasilocal, A must be a
principal fractional ideal, as we wanted to show [3, Proposition 7.4, p. 72]. ®

3.10 Remark. The argument used above proves a slightly more general result,
which may be of assistance in generating examples of domains satisfying the condi-
tions in Theorem 3.3. The result we have in mind reads as follows: Let D be a
semi-quasi-local domain with the property that the only superprimitive ideal of D
is D itself. Then D satisfies condition (y) of Theorem 3.3.

The first example we construct shows that for a polynomial domain D[x], the
PSP-property does not imply that D[x] is a GCD-domain. This answers the ques-
tion raised in the remarks preceding Corollary 3.6.

3.11 Example. Let D be as in Lemma 3.8, where F is algebraically closed in
K, and V is nondiscrete. Then D[X] has the PSP-property but is not a GCD-
domain.

Proof. Since F is algebraically closed in K, D is integrally closed, [1, Theo-
rem 2.1(b), p. 80]. By Lemmas 3.8 and 3.9, D satisfies the other two conditions in
Theorem 3.3 (iii); therefore, by Corollary 3.6, D[x] has the PSP-property. But D
is not a GCD-domain [1, Theorem 3.13, p. 85]; therefore neither is D[x], since
some pair of constant polynomials will not have a greatest common divisor. ®

The remaining examples arise from the consideration of the relations between
the three conditions on D in Theorem 3.3 (iii). Specifically, we want to know
whether any one of them is superfluous in the sense of being implied by the other
two. That the PSP-property is not implied by the other two is shown by an example
in which F is algebraically closed in K and V is a discrete rank-one valuation
ring. On the other hand, if F is not algebraically closed in K, and V is nondis-
crete, then the resulting example shows that integral closure is not a consequence
of the other two conditions. Both of these results follow immediately from the
lemmas. Note also that in the second example, D has the PSP-property but D[x]
does not; from this we conclude that the class of domains with the PSP-property is
not closed under polynomial extensions.

The question remains whether condition (y) of Theorem 3.3 (iii) is implied by
the other two conditions. We do not know the answer, but we conjecture that it is
negative. Even in some very special cases, the answer does not seem to be known.
For example, it seems to be an open question whether a Priifer domain with the
PSP-property satisfies condition (y). Recalling the observation preceding Corollary
3.5 that a Priifer domain satisfying (y) is a Bezout domain, we can recast the ques-
tion whether a Priifer domain with the PSP-property is a Bezout domain. Even in
the very special case of a Priifer domain D in which every maximal ideal is princi-
pal (so that D has the PSP-property trivially), it seems to be an open question
whether D is a Bezout domain.
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