HOMOTOPY GROUPS OF é&(S™, sntr)
Tadatoshi Akiba

E. C. Zeeman conjectured that 7, (&(S?, Sn*r)) =0 for k+3 <r (8, Chapter 8].
L. S. Husch [4] and E. Lusk [7] gave affirmative answers, using a general-position
lemma for maps and a taming lemma, respectively. The purpose of this note is to
present a new, elementary proof of this result.

The idea of our proof is to build a series of fibrations, so that we can reduce
the computations to rather trivial cases in the framework of [6]. The precise state-
ment and the proof of our result will be found in Section 2.

I would like to thank Brian Sanderson for taking the trouble to read the essential
part of the manuscript and for suggesting improvements.

1. DEFINITIONS AND PREPARATIONS
We work in the piecewise linear (PL) category, and the symbol PL will often
be omitted.

We use standard notation such as
R™, 2X (boundary), Ay (standard k-simplex),
™=[o, 1]*, D*=[-1, 1", s =aDp ",
Int X (interior), Cl1(X) (closure).

Sometimes, Ay, DX, and IK are identified. For r > 0, rD® = [-r, r]2.

Let Q denote a PL-manifold of dimension q and M a submanifold of Q of
dimension m.

Definition 1. By &(M, Q) we denote the semisimplicial (s.s.) complex whose
typical k-simplex is a k-isotopy
f: Ak XM — Ak XQ
such that

(E) f is a restriction of a k-homeotopy F of Q

(that is, F: A X Q — A X Q is a surjective isotopy).

Remarks., 1. If q - m>3 and f | 0 X M extends to a homeomorphism of Q, the

condition (E) is automatically satisfied, in view of the unknotting theorem of Zeeman
[8] (see Hudson [2]).
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2. M and Q can be manifolds with boundary. The condition (E) implies that if
N C M lies in 8Q, then f(x X N) C x X 9Q, and if N C x X Int(Q), then f(x X N) C IntQ
for each x € A .

Definition 2. Let M and Q be as in Definition 1, and suppose Y is a submani-
fold of M. '

(1) &v¥(M, Q) is a subcomplex of &(M, Q) defined by an extra condition that a
k-simplex f: Al XM — A X Q of &(M, Q) belongs to &v(M, Q) if f| A X Y is the

standard inclusion. When Y is a union of spaces U?:l Y;, we often write
Y, Y2, -+, Yq instead of U?:l Y;.

(2) The complex & (IP x M, IP X Q) will be abbreviated as
&5, Q).

(3) G &o(D", D™T) denotes the quotient complex obtained from &y(D®, D?T)
by the following equivalence relation: two k-simplices f and g are equivalent if
f| A X N(0) = g | Ay X N(0) for some neighborhood N(0) of 0 in D™.

oIPxMUIP x v

To prove our theorem, we need several lemmas in the framework of [6].

LEMMA 1. Lel the s.s. maps r: E — B and q: A — E be surjective, and let
p: A — B be a Kan fibvation. If the following diagram is commulative and E is a
Kan complex, then r is a Kan fibration with an appropriate fibre.

A
q/\i’
E—>B
Ir

The proof follows directly from the definition in D. M. Kan’s paper [5].

In the next lemma, we use special notation for certain subspaces of S™ as fol-
lows: We denote the base point (north pole) of any sphere by a. The disk D™ is
identified with the northern hemisphere of S™, and the origin 0 € D™ is identified
with the north pole a. By 3 we mean the boundary of the disk D™, and

U5 éa(‘an-p(Sn—p’ Sn*tr-P) denotes an s.s. subcomplex of &EP(S™-P, SntT-P) de-

fined as follows: a k-simplex

f: A X IPXS™P — A X IPx SNTTP

of &P(S™-P, S™*T-P) pelongs to U@ é“gDn_p(Sn"P, S™tT-P) if and only if
f] A, x P x 6D™P is the standard inclusion map for some §.

LEMMA 2. The following are Kan fibvations:
(a) gg(sn-p’ Sn+r-p) c, gp(sn~p, Sn-l—r—p) __I;__> éap(a’ Sn+r—p)’

(b) U5 £§Dn_p Ca Sn+r—p) c, gg(sn-p, Sn+r—p) yory Géag(Dn—p, Sn+r-p) ’
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> gejo™P, D" TP),
Hevre r is the obvious restriction, and the symbol y means that we take germs
along IP X 0 in IP x gntr-p or TP x pntr-p

Proof. First we prove (a). Let A = #P(S"*T-P) be an s.s. group whose k-
simplex is a k-isotopy .

f: a Xx P x §™TP A x TP x gMFTP

such that f I Ay X 9IP % SP*T-P jg the identity map. To use Lemma 1, take E to be
&P(S"-P, sntr-p) and B to be &P(a, S®*TP). Obviously, p and q are restriction
maps. By the definition of &P(M, Q), the maps p and q are s.s. principal fibre
bundles (see [1] or Kuiper and Lashof [6], for example). Here we use the n-isotopy-
extension theorem of Hudson [2] to guarantee that the extension keeps

Ay X 9IP X S™*T-P fixed. The condition (E) guarantees the local triviality. The
diagram in Lemma 1 commutes, under the present interpretation. Hence r is a
Kan fibration. We can prove (b) and (c) similarly by taking A to be %g(sn”'p)
and %S,O(Dn“'p), respectively. W

By considering D™ T-P ag the northern hemisphere of S®"*-P_ as mentioned
before, we have an inclusion map

i: G €§(D""P, DMT-P) — G EB(D"P, sHTP),

because it is easy to see that if a k-simplex f € G £§(D" P, D™ T-P) is represented
by the restriction of a k-homeotopy of IP x DA+T-P then i(f) is represented by a k-

homeotopy of IP X S™*-P_ Also, by identifying IP X (Drrl - Int (—;-Dm ) ) with
1Pl x s™-1  we obtain an inclusion map
j: ePtign-p-1 gntr-p-ly _, |J gp (DR-P, pntr-p)

n-p
5 oD"-P,0

LEMMA 3. The inclusion maps i and j ave homotopy equivalences.

Proof. We can construct an inverse map i for i, because each element of
G é"g(Dn‘P, Sn*tr-p) is represented by an element of G gg(Dn"p, D™"T-P), We need
to show that these spaces satisfy condition (E). We can do this by an argument simi-

lar to that of Lemmas 0.1 and 0.2 of [6], using the isotopy extension theorem of
Hudson [2] and the uniqueness of the regular neighborhood [3]; we omit the details.

The proof that j is a homotopy equivalence is essentially the same as that of
Lemma 2.4 of [6], and we omit it also.

LEMMA 4. The following spaces ave contvactible,

(a) U(5 éagDn—p(Sn_p’ sn+r-P)’

(b) gS’O(Dn-P’ Dn+r-P) .
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Proof. By an argument analogous to that of the precedmg lemma, it is easy to
see that the space (a) is homotopy-equivalent to é"g(Dn P D"T-P) which is again

homotopy-equivalent to (b). By the Alexander trick (see [6], for example), (b) is
contractible. ®

COROLLARY 1. (i) The mapping yor in Lemma 2 (b) is a homotopy equiva-

lence.
Ty ( Ua &P (D™-P, DT -P) ) :

IR

‘s P(pn-p ntr-
(11) TTk(G éoo(D ’ D p)) 0D™-P 9

The corollary follows immediately from Lemma 1.4 and from the homotopy
exact sequences in parts (b) and (c) of Lemma 1.2.

LEMMA 5. Ifm>0 and n+r-2p>mor m=0and n+r - p >3, then
(& P(a, SPFTP)) =

Proof. Let f: A, XIPXa — A_ XIP x §""*~P represent an element of
Tm(&P(a, S*TTP)). The composition of this with the projection

T Ap, XIP x gPTTP o, gntrep
defines an element of 7,4 1:,(S“‘Lr"i’) If m+p<n+r-p, we can find a point
b € S?T-P guchthat b ¢ 7 of(A,, X IP X a). Now we may consider f to be an ele-

ment of &P(0, D*"*"P), by deleting a small open-disk neighborhood of b from
SM*T-P and making a suitable identification. If m > 0, the condition (E) for this is
guaranteed by the theorem of Hudson. By the Alexander trick again, &P(0, D™tT-P)
is contractible. If m = 0, the condition (E) is guaranteed by the unknotting theorem
of Zeeman ([8] or [9]). m

2. STATEMENT AND PROOF OF THE THEOREM

In this section we prove the following theorem and some related results:
THEOREM. If k+3 <r, then m(&(S™, SPPr)) =0,

Proof. Suppose k >n. Then Lemma 5 asserts that m_,(&€™(a, S7)) =0 if
k +3 < r. Applying the argument in the proof of Lemma 5, we also see that
Ty _ n(é"n(SO S*)) =0. By the homotopy exact sequence in the fibration Lemma 2 (a),

this implies that m_,(&" (s°, s™) = o. Using the homotopy equivalences j and i of
Lemma 3, as well as yor (Corollary 1), we deduce that

7Tk—n+l(g g-l(sl , Sn+r—n+l)) ~Q.

Actually, the same argument implies that 7,,(&2-1(8!, sntr-ntl)) = g for all
m <k -n+1. Hence

ﬂ.k_n+l((g>n—1(sl , Sn+r-n+l)) ~ wk-n-}-l(éan—l(a’ Sn+r-n+l)) .

We repeat this argument, starting from 7y .ns1 (€2 L(a, S2Tr-n*1)) = 0, pecause
k+3<r impliesk-n+1+3<n+r - 2(n - 1). Now we obtain the relation

ﬁk_n+2(£n-2(sz’ Sn+r—n+2)) = 771<-n+2(<5"n'2(a, Sn+r—n+2)) .
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In the end, we have the relation m(&(S™, §**%)) = 1, (&(a, sty = o.

If we suppose k < n, we can still apply the same argument, because Lemma 6
that follows guarantees that we can use an argument similar to that above.

By virtue of the condition k + 3 <r, the rest of the argument is again the same
as above. H

LEMMA 6. If k+3 <, then mo(&X(SP%, sptr-ky) = o

Proof. This is proved by induction on n - k. When n - k = 0, this is proved in
the first half of the proof of Theorem. Suppose it is true for all values less than
n-k>0.

From Lemma 2(a), we have the exact sequence
- Wo(é"la((sn_k, Sn+r-k)) N ﬂo(gk(sn_k, Sn-l-r-k)) N ﬂo((?k(a, Sn+r—k)) ’

and the last term is zero, by Lemma 5, because k + 3 <r. We want to show that
To(&X(sn-k, gntr-Kky) = g, Because of Lemma 4 and Lemma 3 applied to Lemma 2,
it is sufficient to show that 74(G & 1(§(Dn’k, prtr-ky) =g,

Let f: X x D2~k — 1k x DT~k pepresent an element of
70(G o(DP-k, DtT-K))

By definition, f is proper and extends to a homeomorphism F of IXK x prtr-k,
Using the uniqueness theorem for relative regular neighborhoods [3], we may
further assume that

F(IK x gD7tr-k) = [k x gpotr-k,
This guarantees that f l IX x 9D™"K represents an element of
,n.o(éa k(sn—k—l , Sn+r—k—l)) .

By the induction hypothesis and the assumption k + 3 < r, this is trivial. Using the
theorem of Hudson, we can assume that £ lIk>< oD -k was the identity function, to

start with. Now we have the equation f | 3(I X D®-X) = identity. Using the Alexander
trick (see [6, Lemma 1.5]), we see that f is isotopic to the identity and that it fixes

the boundary a(IXx D®"5) and INx 0. This means that 7o(G &§(D*%, DNy ig
frivial. ®

Using our main result (Theorem) and the Alexander trick, and looking at appro-
priate Kan fibrations, we can obtain the following results. The proof is left to the
reader.

COROLLARY 2. If k+3 <, then
(1) ,”k(éo(Dn+l , Dn+r+l)) o~ 0,

1 ~
(2) ﬂk( g(EDn’ Dn+r) ) = 0,

(3) m(&(0 * SD™, DTy = o where SD™ is the southeyn hemispheve of
g aDn+r+1
2
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(4) m(&(S™-1, Dr)) 2 0, where SP-! is identified with 3 1 D™} C Int DRFT
k ’ 9 ’

(5) m(€(s™1, RPT)) = 0.
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