ON THE DERIVED ALGEBRA OF L, OF A COMPACT GROUP

Alan L. Armstrong

INTRODUCTION

In [6], S. Helgason defined the derived algebra Dp of a semisimple commuta-
tive Banach algebra A. In [2], G. F. Bachelis showed that if A = Lp(G), where G is
a compact abelian group and 1 < p <, then Dy is the ideal of unconditionally con-
vergent Fourier series. D. S. Browder [3] has extended the definition of the derived
algebra of Lp(G) to the more general case where G is a compact group, and he has
extended Bachelis’s result by showing that the derived algebra of the center of
Lp(G) is the same as the center of the ideal of unconditionally convergent Fourier
series. He asks whether there are any necessary and sufficient conditions to ensure
that the derived algebra of Lp(G) is the ideal of unconditionally convergent Fourier
series. This paper attempts to answer that question.

1. PRELIMINARIES
Throughout the paper, G will denote a compact group, and I' = I'(G) will denote
the set of equivalence classes of irreducible unitary representations. Correspond-

ing to each « € T, we denote by Uy a fixed representative of @, by d, its degree,
and by X the trace Tr Uy . If f € L;(G), its Fourier series is given by

£(x) ~ 27 dg Tr(Ay Ug(x)),
o

where A, is the matrix determined by the equation
Ay = S f(x) Uy(x) dx.
G

We shall also denote A, by f(a).

If A is a matrix over the complex numbers with absolute value |A| [7, p. 691],
we define

”A"w = max {|r|: X is an eigenvalue of IAI}
and

Ials, = (Z12)"°,

the sum being over all eigenvalues of IAI .

For f € L;(G), we define
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Il = sup [If(@)].,.
ael’

Definition 1. The derived algebva Dy of Lp(G) is given by

f *
sup ————-" ng < }

D, =<{feL. ”
P { P g€Lp ”g”oo

( * denotes convolution).
The norm of f € Dy, is given by
f *
lelp, = sup Li2Ele
P g€ Lp ” g ” oo

and it is clearly equal to

sup “f * g”p )
fT(G)
ITglImfl

where T(G) is the space of trigonometric polynomials.
Let # denote the family of all nonempty finite subsets of I', and let
D(F) = 25 dy X o, Where F € &,

Definition 2. The space S, of functions in Lp(G) having unconditionally con-
vergent Fourier series is defined by

Sp={feLp lim ||f-f*D(F)|,=0}.
FeF
The norm of f € S; is

@ Iils, = sw o o®l,.
€

~Browder [3] has shown that Sp is an ideal in Lp(G), and also that f € S if and only
if (1) is finite.
2. NECESSARY AND SUFFICIENT CONDITIONS THAT S, = Dy,
For 1 < p <2, we find a necessary and sufficient condition that S, = D, . For
p > 2, we find a necessary as well as a slightly stronger sufficient condition. We

begin by giving some equivalent conditions for a function to be in S, or Dy.

LEMMA 1. If f~ 22dq Tr(AyUg) € Ly, then f € S, if and only if

(2) sup { | 2 04 dg Tr (Aq Ug) ||y 8g =£1, F e F | < .
F
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Proof. If f € Sy, then the left side in (2) is less than 2sup [|f * D(F) | , < .
F

The sufficiency of condition (2) is obvious.

LEMMA 2. If f ~ 22dg Tr(AqUq) € Ly, then f € Dy, if and only if

(3) sup { 127 do Tr(Vy Aq U) || 2 V¢ unitary, F e & } <,
F

Proof. Suppose f € Dp,. If g= EF dy Tr (V4 U,), where Vg is unitary and
F € &, then |g]lw =1 and the left side in (3) is bounded by |f|| D, -

The sufficiency follows from the fact that if A is a finite-dimensional matrix
with ||Alle <2, then A =V +W, where V and W are unitary [7, p. 399].

Since ||f|| SPS ”f” Dy it is clear that D, € S,. Browder [3] has shown that if

G is a compact group and 1 <p < 2, then Dy = L>(G). He has also given an example
to show that the inclusion Dp < Sp can be strict if p # 2. The example is the group

G = Holo &3, where &3 denotes the nonabelian group of order 6.

Definition 3. A set E C I'(G) is said to be a local Ap-sel if there exist a con-
stant M and an r < p such that for all f(x) = Tr(Ag Uy(x)) and a € E,

el < M

If this inequality holds for some r < p, then with M replaced by M(s), it holds
for all s < p.

THEOREM 1. The following conditions ave equivalent for a compact gvoup G.

(1) T(G) is a local A,-set.

(2) Sp =Dy for all p(1 <p < 2).

(3) Sp =Dy, for some p(1 < p < 2).

Proof. (3) = (1). Suppose Sp = Dp(=1;) for some p (1<p<2). If feS§,,
then

ltls_ = sup [t *DE)|, < suwp |t*DE)|, = [t],.
P Fe& Fe

The open-mapping theorem implies the existence of a constant K such that
I£]l, <K ||£] s, Now, if f=Tr(AqUg), then ”f“sp = [[£]},. Thus I'(G) is a local

Az-Set.

[~}
(1) > (2). Let H=11, Z,, where 7, = {1, -1}, and let r, be the projection

onto the nth coordinate. There exists a constant B such that if h(t) = 27 _a_r,(t),

where t € H and the coefficients a,, are complex numbers, then ”h" 2<B ||h”1 .
The functions h are the well-known Rademacher functions.

Now let f € S; and £ ~ 27 dy Tr (Ag Uy). The relation f € S; implies that
there exists a constant K < « such that
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sup S IE_—I_—daTr(AaUa(x))ldx < K.
¥Yes "G F

Now, for x € G and F € &, define a function h on H by

h(t) = 20 1y (t) dy Tr(Agy Ug(x)) .
F

By the Plancherel theorem, we have the equality

S

|22 ry(®)dy, Tr(Ag Ug(x) |2 dt = 27 |dg Tr (A Ug() |2.
H F F

Thus

5 (Z} IdaTr(AaUa(x))|2)l/2dx
G F

) S ( S lEra(t)daTr(AaUa(x))lzdt)l/Z i

G H F

(4)
< S B S |2 rot) dy Tr (Ag Uy (%)) | dt dx
G H F

- B S S | 2 rg(t) dg Tr (Ay Ug(x)) | dxdt < BK .
H G F

Now, if g(x) = dy Tr(By Ug(x)), then, by hypothesis, ”g"z <M |gl;, so that

(5) Vg |Balle, <M | lg]ax.
G

If {yy} is a square-summable sequence of positive numbers, then (4) and (5)
yield the inequalities

2 Vo |Aalle,ve SMZ | |aaTr (40 Vat)|ax v

< M(Eyg)l/z S (Z) IdaTr(AaUa(x))lz)l/z < MBK(Z) yg)l/‘2
F G F ¥

1/

2
Therefore, (Ea dy ” Ay ”é,z) < . The Peter-Weyl theorem implies that

f € Ly(G). Thus S) C L;, and therefore L, =D, C S, CS) =L, . Therefore
D,=8,=Ly for 1<p<2.

The implication (2) = (3) is obvious.

For p > 2, we obtain a less satisfactory result.
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THEOREM 2. Let p > 2. If S, =Dy, then I(G) is a local Ay-set.

Proof. Let f(x) = Tr (Ag Ug(x)), and let W be the group of all dy-by-dy uni-
tary matrices. The hypothesis Sp = Dp implies that there exists a constant K < «
such that

sup [|Tr (VAL U |, < [l < Klltfs = K |t]l,.
VeW P p

Thus, since K is independent of A, , we have the inequality

ITr(Aa UL ||, < K[ Tr (VAL Ug)|, forall vew.

Hence

|Tr (Ag v I

(6)

gw | Tr (A Ug) IIEdV < KP SW [Tr(VAg Ug) ]|§dv

1!

KPS 5 ]Tr(VAaUa)Ipdde=KpS |Te (VAy)|Pav.
G W W

Now, if G* = Ha W, where each Wy is a unitary group, then the projection
Tq onto the ath coordinate is an irreducible representation of G*. A. Figa-
Talamanca and D. Rider [5] have shown that for each p the 7y form a A -set in
T(G*). In particular, the 75 form a local Ap-set. Thus there exists a constant K
such that for each Wy, each matrix A, , and each p > 2.

(1) SW |Tr (A, V[PV < K, [Tr (Ag V) |15.
o

Now, by the Peter-Weyl theorem, both the right side in (7) and K “f”; are equal to
Ko[dg! | Al éz]p/z . Thus (6) and (7) imply that T is a local A,-set.

THEOREM 3. If sup dy <« agnd 1< p <=, then Sp =Dy.
ael’

Note: For 1 < p <2, this result is implied by Theorem 1. For p > 2, itis a

partial converse to Theorem 2. Groups for which sup dy <~ have been character-
ael

ized by C. C. Moore [8].

Proof. Let f~ 2idg Tr(AyUg) € S,. We want to show that

sup ”EdaTr(VaAaUa)”p < e,
Vo, F F

where the Vy are d,-by-d, unitary matrices. We know that

(8) sup || 2 £dg Tr(Aq Ug) [, < M < .
Fe¥,+1 F
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Therefore we fix F € # and consider g = EF( N-1 211\1 ri(a)dy Tr (A, Ua)) ,
where r;(a) =+1 or 0. It follows from (8) that ”g”p < M. This implies that

(9) |22 bg dg Tr (Aa Ug) |, < M,
F

where by is rational and -1 < by < 1. It follows easily that (9) remains valid, with
M replaced by 2KM, for all by with |by| < K.

Now let y € G, and suppose Ibal <K for @ € F. Then

|22 dg Tr (bg Ug(y) A U || = |20 dg Tr (b Ag Ualxy) ||,
F ¥

= | 27 dg Tr (bg Ag Uy (%)) I, < 2xM.
¥

Put by(y) = dy(Ug(y))ij, and let Bjij be the matrix with a 1 in the ith row and
jth column and zeros elsewhere. (The condition sup dy <« allows us to assume
a

that dy = dg for all @, B € F). Then

12 do Tx (Byy(e) A0 Vat [ = |12 aa (] baly) Ualv)4v) A0 Ual)) I
= [ § (2 daTr a9 Ualy) Aqt) ) ay |2
G F

< S dyS |22 do Tr (b () Ug(y) Ag Ug(x))|Pdx < S (2KM)Pdy = (2KM)P .
G G F G

Thus, for all F € # and for all index pairs i, j,

(10) 127 dg Tr (B;5(@) Ag Ug(x) ||, < 2KM.
F

This follows since the hypothesis implies the existence of a K < « such that
|ba(y)| <K forall y € G and « € T.

An argument similar to that at the beginning of the proof shows that (10) is
valid, with possibly a new constant in place of 2KM, if the Bij(a) are replaced by

complex matrices all of whose entries are bounded in absolute value by some con-
stant K. In particular, (10) holds if the Bij(a) are replaced by unitary matrices.

For p > 2, I have not been able to show that Sp =D, if T is a local Ap-set. A
more interesting question is whether sup dy <« is equivalent to I' being a local
a

Ap—set for some p and hence for all p.
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3. GROUPS FOR WHICH S; # D,

In this section, we identify some classes of groups for which I" is not a local
Ap-set. Our first result generalizes the example given by Browder.

THEOREM 4. If G = HT G;, wheve each G; is nonabelian, then Sy # Dy, for
p # 2.
The proof of the theorem rests on the following two lemmas.

LEMMA 3. Let W(n) be the unitary matrices of degvee n > 1, and let
Xn(V) = Tr V for V € W(n). Then there exists a positive numbey A <1 such that

Ix.ll, <A for all n> 1.

Proof. Suppose not. Then there exists a sequence {ni} with ”Xn. ||1 — 1. Let
1
6 > 0, and let

= {x e W): (|x,®| - D% < 8}.

Now S (|Xn1 - 1)2 — 0, since ||)(n || — 1. Thus we can choose an integer
= ny such that (|xm| - 1)2 < 6%, and therefore
W(m)
(11) Am(ER) < 6,

where A,, denotes Haar measure on W(m). Now there exists a constant B such that

Ix.ll5 < B for all n [7, p. 123]. Thus H8lder’s inequality and (11) yield the in-
equalities

§ Ialav, < Ixulld VrnEs) < BYE.
Em

On E, , we have the inequality ”xm|4 - 1| < g(0), where g(6) -0 as 6 =0 and g
is independent of m. Therefore, if 6 is chosen small enough, we can find an m
such that " xm” 4 is a close to 1 as we like. But this is a contradiction, since

Ix .l 5=2 for m# 1 [7, p. 148).

LEMMA 4. Let G be a compact group, and let a € " with dy > 1. There
exists a positive number A < 1, independent of G and «, such that
[Tr (VULx) |1 < A for some dy-by-dg unitary matvix V.

Proof. The translation invariance of the Haar measure of W(d,) implies that
for V € W(dgy),

{ S |Tr (V Uu () | dxav = § g | Tr (V U, ()| av dx
Wwi(d,) W(d )

(12)

- SG Sw(da) |Tr V| avdx = S |Tr V| av.

W(dg)

Thus, by (12) and Lemma 3, there exists a V € W(dy) such that
5‘ ITr (v Ua(x))| dx < A, where A can be taken as in Lemma 3.
G
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Proof of Theovem 4. Case 1. 1 < p < 2. By Theorem 1, we need only show
that T'(G) is not a local A-set. This amounts to showing that corresponding to
each & > 0, there exist an o € I'(G) and a unitary matrix V such that

| Tr (VUg(x))||1 < 6. This suffices, since |Tr(VUg®)|2 = 1.

Since each G is nonabelian, there exist o; € I'(G) with dai > 1. By Lemma
4, there exist unitary matrices V; such that if h;(x) = Tr (V; Uy, (x)), then
In; |, <A <1, where A is independent of i. (Notation: [h;; = SG |h;(x) | dx.)

1

Putting
=TV, @ @ Vy) Uy, ® -+ @ Ua)),

we see that ”fn”l = Hrll “hi"l — 0 as n — «, since A < 1. This completes the
proof, since @] & - @ a, € T(G).

Case 2. p > 2. By Theorem 2, we need only show that T'(G) is not a local Aj-
set, in other words, that for each M, there exist an @ ¢ I'(G) and a unitary matrix

V such that || Tr (V Ug(x)) ”p > M. This easily reduces to showing that there exists
a 0> 0 such that S |x, [P > 1+6 for all n > 1. Since S |xn |% =2, we

(n n

need only worry about 2 < p < 4. Let q =2(p - 2)/(p - 1). Then, by Hélder’s in-
equality, we have the inequality

1= f el (§ ) )

It follows from Lemma 3 that S lxn [P must be bounded away from 1.
Wi(n)

Let G be an infinite, compact Lie group. C. Cecchini [4] has shown that
”on ||4 —© as d, — », for @ € I'(G). Thus for these groups S, # Dy, for p > 4.
For compact, connected Lie groups we can say more; but first we give a definition.

Definition 4. A set E C I'(G) is said to be a local central Ap-set if there exist
a constant M and an r < p such that for all o € E,

Ixalls < Mlixgl:-

THEOREM 5. If G is a compact, connected group, then the following ave
equivalent,

(1) G is abelian.

(2) Dy =8p, forall p (1 <p <=).

(3) Dy, =8, for some p > 4.

(4) T(G) is a local A,-set for some p > 4.

(5) T'(G) is a local central A,-set for some p > 4.
Proof.

(1) = (2) is Bachelis’s theorem.
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(2) = (3) is obvious.

(3) = (4) is Theorem 2.

(4) = (5) is obvious.

(5) = (1). A theorem of A. Weil [11, p. 91] says that G is a factor group of

= Ha Gy X A, where each Gy is a compact, connected, simple Lie group and A
is abelian. If G is nonabelian, then there exists a normal subgroup K of G such
that G/K is a compact, connected, simple Lie group. If (5) holds, then this implies
that I'(G/K) is a local central Ap-set; but this contradicts Cecchini’s theorem.

Finally, we note that Rider [10] has shown the existence of a sequence of char-
acters x,, on the unitary group W(n) of degree n such that ”xm”2+2/n — % as

m — . Thus Sp(W(n)) # Dp(W(n)) for p>2+2/n. J. F. Price [9] has
shown that I‘(SU(Z)) is not a local Ap-set for any p > 1. Therefore,
(SU(2)) # DL(SU(2)) for p # 2.

4. CENTRAL DERIVED ALGEBRAS

In this section we investigate relationships among D% and S%, the centers of
Dp and Sp, and the derived algebra @p of the center of Ly

Definition 5. The devived algebva D, of L% is defined by

*
@p={fe L3 supME<w}.
gGLg‘ "g”co

The norm is given by

f” = sup "f gl .

HP e I
18]l =1

Browder’s principal result [3] is that Sg = @p for every compact group G. For

the group G = Holo &3, Browder shows that if 1 < p < 4, then DFZ, = @p if and only
if p = 2. Our next theorem shows that this cannot be extended to p = 4.

THEOREM 6. If G is a compact group, then DZ pfor p=2s
(s=1, 2, 3, -..).

Proof. It is clear that Dg C 9, for every p. We must show that Dp Dg‘ for

p = 2s, where s is an integer. Now, if f € PDp and f ~ 2 do ag X » then
sup{”E daaabaXa”p3 [by| <1, Fe 9‘} < oo,
F
We need to show that

(13) sup{ I ? dgag Tr (Vg Ug) ||yt V¢ unitary, F € & } < oo,

Now
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sup || 2 dyay by Xa ”g

b, . ¥ F
(14){04}

i (al;"',azs) 1 1 2s 2s G 1 2 2s

since |ba| <1 and S Xaliaz XQZSZ 0 {7, p. 20]. The second sum in (14)
G

extends over all 2s-tuples (a;, -, @,) of elements of F. We shall show that (13)
is bounded by (14). Now

5 | 22 dgyaq Tr (V,U,) |P
G F

> — ... —— S
@ . )dalaaldazaaz da?.saazs . Tr(Voleal)Tr(Voeraz)
15" & 2s

e Tr (VaZS UaZs)

L g ag, g5, day,day, SG Tr(v(m11® Z @miUTi)) ’

(al""’aZS)

where m;1I ) E@ miU,ri is a decomposition of the tensor product
Ug, ® U, ) X - ® Uy el R U, ,, into irreducible components, and where
V=V ®Vy,® - ®Vy, ®Vy, - Now

<k, £<d.),

- - 1

[ wrgax=0 «
G 1

if UTi # I. Therefore the left side of (13) is majorized by

E |dalaa1 ot dazsa—azsl my
(a 1,"',0125)
- 2 do) |2g,| = da,, |aa, | SG Xay Xap " Xapg:
(@, ,az)

since S Xa faz )Tazs is the number of times the identity representation ap-
G

pears in Ual®ﬁa2® QUq, ®ﬁO‘2s .

For 1 < p < 2, we have a result analogous to Theorem 1.
THEOREM 7. The following ave equivalent.

(1) T(G) is a local central A,-set.

(2) D§= @p=LZZforall p (1<p<2).
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(3) Dg = @, for some p (1<p<2).

Proof. Because the proof is almost identical with the proof of Theorem 1, we
omit it.

For connected groups, more can be said. The following, however, is stated as a
conjecture, since I was not able to establish one direction of the proof.

CONJECTURE. If G is a compact, connected group, then the following condi-
tions can be added to Theovem 1.

H'I GiXA
(9 ¢ =152

A is abelian, and 1 is finite,

where each G; is a compact, connected, simple Lie group,

(5) Z(LG)_ is semisimple, wheve Z(G) is the center of G.

Every compact, connected group can be written as in (4), where N is a closed
normal subgroup of HI G; X A and I is an index set of arbitrary cardinality.

It is easy to see that (4) and (5) are equivalent. To see that (4) implies (1) of
Theorem 7, let G be a compact, connected, simple Lie group, and let T be a maxi-
mal torus of G. The Weyl integration formula [1] states that

1
SG fdx = o §T £(t) | D(t) |2 at

for all central functions f on G, where W is the order of the Weyl group, and where
D is a polynomial on T with integral coefficients. Thus ¥ o(t) D2(t) is also a poly-
nomial on T with integral coefficients. Therefore,

§_ Ixa®lax =g § Ixat] [D0)[2a > 5

for all @ € I'(G). This gives (1) for the case where G is a compact, connected Lie
group. Condition (1) clearly holds for a finite product of such groups G as well as
for any abelian group A. Also, (1) holds for factor groups of groups that satisfy (1).
This gives the sufficiency of (4).

Showing the necessity of (4) amounts to showing that if I is infinite, then (1)
does not hold. It would suffice to show the existence of an A < 1 such that for each
compact, connected, simple Lie group G there exists an a € I'(G) with ”Xa ”1 <A
Lemma 3 contains a proof of this for the unitary groups. I have not been able to
show this for the general case, even though it seems very likely to be true.

Finally, we give an analogue of Theorem 3. The proof is similar to that of
Theorem 3, and we omit it.

THEOREM 8. If sup dy <« and 1< p <, then DX = @

p*
ael’
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