TOPOLOGICAL ENTROPY FOR NONCOMPACT SPACES
J. E. Hofer
1. INTRODUCTION

For compact spaces, topological entropy was defined in [1]. In this paper we
extend the concept to noncompact spaces. Let T be a continuous mapping from a
topological space X into itself. We define the topological entropy of T for noncom-
pact spaces in three different ways: h2(T), h3(T), and h*(T) (see [6] for more
ways). Then we establish some properties.

We shall use the following notation: #(X), or simply ¢ when the meaning is
clear, will denote the class of all open covers of X, while . ¢(X), or simply A,
will denote the class of all finite open covers of X. Suppose that X is a compact

topological space and ¢: X — X is a continuous mapping. Let o;€ .« for
n

i=1,2, .-+, n. We define the join \/izl o of the covers «; by the formula

n
\/ai =a1VaV---Va, = {Ul N--NU,:U;ea@;,i=1 -, n}.

i=1

We define Ny(a) (or simply N(a) when the space X is understood) as the number
of sets in a subcover of o of minimal cardinality. Set

n-1
h(a, ¢) = lim %mg N(\/ qb-ioz) and h(¢) = sup h(a, ¢).
i=0

n—oo o€ A

The quantity h(¢) is called the topological entropy of ¢ (see [1]).

Now let X be a noncompact Hausdorff space, and let T: X — X be a continuous
mapping. In defining topological entropy for noncompact spaces, at least two ap-
proaches appear natural: one is to compactify the space and to consider the exten-
sion T* of T to the compactification X* of X; the second approach is to consider
only finite open covers of X.

Another approach that involves no compactification is based on the notion of
uniform spaces (see Section 4).

2. BASIC DEFINITIONS AND PROPERTIES

Although many of our results are valid when T is merely assumed to be con-
tinuous, we shall assume, unless we specify otherwise, that T is in fact a homeo-
morphism.
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Let (X, 9) be a noncompact Hausdorff space, and let T: X — X be a homeo-
morphism.

Definitions. (a) The entropy he of the mapping T is defined by the formula
h?(T) = h(T*), where T* is the unique continuous extension of T to the Stone-Cech
compactification X* of X. Here (X, ) is a completely regular topological T)-
space.

(b) The entropy h3 of the mapping T is defined by the formula

h3(T) = sup hia, T).
O€ A

Remark. I X is compact, it is clear that hi(T) = h(T) for i = 2 and i = 3.
PROPOSITION 1. Let X be a zevo-dimensional Hausdovff space. Then

h%(T) < h3(T).

For the proof, we refer the reader to [6].

Definition. A flow is a pair (X, T), where X is a compact Hausdorff space and
T: X — X is a continuous mapping. If T is a homeomorphism, then (X, T) is a
cascade. That is, a cascade is a transformation group in which the acting group is
the set of integers.

Example. Let Z be the set of integers, and let T: Z — Z be the shift defined
by T(x) =x+ 1. In [4] it is shown that (X* T*) (again, X* is the Stone-Cech com-
pactification of X) is the universal point-transitive cascade, and hence
hZ(T) = h3(T) = oo,

Proof. Because every point-transitive cascade is the homomorphic image of
the universal transitive cascade, the universal transitive cascade has entropy
greater than any homomorphic image. But there exist point-transitive cascades of
arbitrarily large entropy. Hence h2(T) = h3(T) = .

Definitions. (a) We say that h satisfies the power formula if h(TX) = kh(T) for
each positive integer k (see [1]).

(b) Let Y be a closed T-invariant subset of X. We say that h has the mono-
tonic property if h(T | Y) < h(T).

(c) Let X and Y be topological spaces. We say that h has the continuous-
image property if, whenever the diagram

X<———T——X

bk
S Y
Y<—Y

commutes (that is, ¢ ©T = So¢), then h(S) < h(T), where S and T are continuous
mappings and ¢ is a continuous and surjective mapping.

LEMMA 1. Let X be a topological space, and let Y be a Hausdovff space. Lel
f, g: X = Y be continuous. If D C X is dense and £ ] D=g | D, then f =g on X.

PROPOSITION 2. The mappings h% and h3 satisfy the power formula, and both
have the monotonic property.
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Proof. We prove only that h? satisfies the power formula, and we refer the
reader to [6] for the proof of the remaining assertions. It is clear that

T*K| X = T&* | X. By Lemma 1, this implies that T*k = Tk* on X*. Hence
h(Tk) = h(TK") = h(T*k) = kh(T*) = kh2(T).

We shall need the following two well-known results from topology.

THEOREM 1. If X and Y ave topological spaces, then a function £ from X
onto Y is continuous if and only if <aV ) —a* in X implies thal <f(a1,)> — f(a*)
in Y, wheve {a,) isanetin X.

THEOREM 2. A space X is a Hausdovff space if and only if every convergent
net in X has a unique limit.

PROPOSITION 3. The mappings h® and h3 have the continuous-image prop-
erty.

Proof. The proof for h3 is easy; we give that for h2. Let X and Y be com-
pletely regular T;-spaces. Consider the diagram

X «—F—— X

Y«<—Y
where T and S are continuous, ¢ is continuous and surjective, and ¢ oT = So¢.
The problem is to show that h2(S) < h2(T), or equivalently, that h(S*) < h(T*). We

extend the diagram by forming the Stone-Cech compactification of each space and
extending the corresponding maps. This gives the diagram

From topology we know that ¢* exists and is unique and continuous. It remains to
show that ¢*¥oT* = S*o¢*, Let x € X*. If x € X, then

$*oT*(x) = poT(x) = Sop(x) = S*o¢p*(x).

Let x € X* - X. Then there exists a net <Xv> € X such that < xy> — X. By
Theorem 1,

$oT(xy) = ¢*¥oTH*(x,) — ¢*¥oT*(x) and Sod(xy) = S*od™(xy,) — S*o¢*(x).

Hence ¢*oT* = S*o¢* by Theorem 2. This implies h(S*) < h(T*). The proof is
complete.
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3. THE MAIN RESULT

A good reference for the material of this section is [7, p. 167, Problem 5R].
The next result is of considerable importance, since it shows that in calculating the
topological entropy for normal T ;-spaces we obtain the same result using finite
open covers of X as with the Stone-Cech compactification of X.

THEOREM 3. Let X be a novmal T-space. Thern h%(T) = h3(T).
The proof requires a few lemmas, all easy to prove.
LEMMA 2. Let X be a normal T;-space, and let ¢: X — w(X) be defined as in
[7]. Then, if U is open in X,
U* N ¢(X) = ¢(U).
LEMMA 3. Let U and V be open subsets of X. Then the velation U C V im-
plies that U* C V*,

LEMMA 4. Le! X be a normal T|-space. Define a*={U* Ue a}, wheve
the members of a ave open sets in X. Then « is a finite open cover of X if and
only if a* is an open cover of w(X).

LEMMA 5. Consider the covvespondence U <> U*, wheve U is open in X and
U* is open in w(X). Let o be a finite open cover of X. Then

Nx(Ol) = NW(X)(a*) .

LEMMA 6. Let X be a novmal T-space, and let T: X — X be a homeomor-
phism. Define T*: w(X) — w(X) by T* &) ={T(A): A e L}. Then
T* (%) = (T (AD*.

LEMMA 1. The mapping T* is a continuous mapping.

Proof of Theovem 3. Since X is normal, w(X) is a Hausdorff space topologi-
cally equivalent to the Stone-Cech compactification of X. Let o be any finite open
cover of X. Then

n-1
NX(\/ T-ia)
i=0

*

n-1 n-1
muon(V 10 ) = ooV @)
i=0 i=0
n-1 .
= Nw(x)(\/o T*‘la*).
i=

Hence

n-1 n-1
2 10g Nx { V T a) = 2 log Nyx) \/T*'ia*).

i=0 i=0
Letting n — «, we get the relation
h(a, T) = h(a*, T¥%).
Hence h(e, T) < h(T*) = h?(T), and therefore h3(T) < h%(T). Now let 8 be any open

cover of w(X). Since {U*: U is open in X} forms a base for the topology of w(X)
and since w(X) is compact, we can refine B by a finite open cover of the form
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a* = {U*: U is open in X}.
Hence B << a* (see [1]), and therefore
h(B, T*) < h(a*, T = h(a, T) < h3(T).

But 8 is arbitrary, and consequently h2(T) = h(T*) < h3(T). The proof is complete.

Remavk. We conjecture that h2(T) = h3(T) for all completely regular spaces.
This would validate the theorem to a larger class. Whether there exists a space on
which h? and h3 disagree appears to be an open question.

4. UNIFORM TOPOLOGICAL ENTROPY

In this section we consider the calculation of topological entropy on noncompact
spaces, using a method that, unlike the treatment in Sections 2 and 3, does not de-
pend upon first compactifying the space. We accomplish this by using the notion of
uniform spaces. Our definition of h*(T) is motivated by the work done in [3]. A
good reference for the material of this section is [7, pp. 174-199].

We shall reserve the letters H, K, K;, K,, --- for compact subsets of X.

Definition. Let (X, %) be a uniform space, and let @ be a uniform cover of X.
Let T: X — X be uniformly continuous. We define

n-1
higla, T) = lim %log NK(\/ T'ia) and h*T) = sup Ksup hy(a, T),
n-—e i=0 ¢ uniform KCX
cover

where K is any compact subset of X. We shall call h*(T) the uniform topological
entropy of T.

Remark. A compact Hausdorff space is completely regular. It is easy to show
that in the case of a compact Hausdorff space, h*(T) = h(T).

Example. Let R denote the space of real numbers, let T: R — R be defined by
T(x) = 2%, and suppose R has the usual uniformity . Then h*(T) = log 2.

Proof. Clearly, a contains all subsets U C R X R such that

-

U8={(x,y): |x—y|<8}EU for some € > 0.

Therefore each Ug € %. The topology generated by Ug is og = {B(x, €)X € R},
where B(x, €) = (x - ¢, X +¢&). Now it clearly suffices to consider the uniform
covers ag . Also, since

n-1 n-1
HC K > NH(\/ T'ia) < NK(\/ T-ia)
i=0 i=0

(hence hyfag, T) < hglag, T), and since each compact subset of R is contained in a
compact set of the form K,, = [-mg, me], where m is a positive integer, it suffices
to consider compact subsets of the form K,,,, where m is a positive integer. Hence,
for each positive integer n,
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n-1
NKm(\/ T_ias) = 2n‘1NKm(C£8).
i=0

Therefore

—logNK (\/ T laa) = n;110g2+%10gNKm(a8).

Let n — <. Then th(oz8 , T) = log 2 for each positive integer m and each &€ > 0.
Hence h*(T) = log 2.

Remark. If % is the uniformity of all neighborhoods of the diagonal in R X R,
then h*(T) = oo,

Example. Under the conditions of the example above, let T(x) = x + 1. Then
h*(T) = 0. If T is the identity, then h*(T) = 0.

Proof. The proof is identical to that of the example above, except that now for
each positive integer n we have the relation

n-1
1=

Remark. Let Z be the set of integers, and let T: Z — Z be defined by
T(n) =n -+ 1. Then h*(T) =0

PROPOSITION 5. The mapping h* satisfies the power formula and has the
monotonic property.

The proof that h*(T™) = mh™*(T) for each positive integer m is similar to that
for h given in [1], and we refer the reader to [6] for the proof that h* has the mono-
tonic property.

Definition. We say that h distinguishes between the transformations S and T
if S# T implies h(S) # h(T). We want to test the ability of h!, h2, and h* to dis-
tinguish between the transformations T, S: R — R defined by T(x) =x + 1 and
S(x) = 2x.

Recall that h*(T) = 0 and h*(S) = log 2. Now R with the usual topology is a
normal T;-space, and hence h%(T) = h3(T) and h2(S) = h3(S). We shall show that

h3(S) = h3(T) = h2(S) = h3(T) = « .

Hence h* distinguishes between the transformations T and S, but h2 and h3 do not.
Example. Let T: R — R be defined by T{(x) = x + 1. Then h2(T) = h3(T) = .

Proof., From the preceding paragraph we know that h%(T) = h3(T). Let R* be
the Stone-Cech compactification of R, and let T*: R* — R* be the unique continuous
extension of T to R*. Note (see [4] and [5, p. 167]) that (R*, T*) is the universal
point-transitive cascade and hence hZ(T) = h(T*) = «.

Definition. Let K be the circle group K = {z = C: |z| = 1}, where C is the set
of complex numbers. Then KP =K X KX --- X K (n terms) is called the n-torus.
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Choose a line L in R™ passing through the origin such that L is orthogonal to
no lattice lines (lines joining points of Z»). Clearly, L is isomorphic to R. Project
the line L onto K", using the map 7 defined by

i 27 .
7(x) = w(xp, -, X,) = (e2™*1 e, ™) for x in L.

>

LEMMA 8. The set 7L is a dense subgrvoup of K.

We refer the reader to [6] for the proof.

Example. Let S: R — R be defined by S(x) = 2x. Then
h2(S) = h3(S) = «.

Proof. The n-torus has a dense subgroup isomorphic to R. Consider the
diagram

R < R

P,k

Kn <5 gn

where S(x) = 2x, where 7 is as defined previously, and where S' (not yet deter-

mined) satisfies the condition 70S = S'o7. From the relation 70S = S' o7 it follows
easily that S' squares each component; that is, 8'(x,, -+, x,) = (x?, TR szl)' Now 7

induces a continuous mapping ¢ from R* onto K™ (here R* is the Stone-Cech com-
pactification of R), and we can extend the diagram to get

R* < S* R*
I l¢'
S

KM« Ko

where, clearly, $oS* = S'op. Now the map from the 1-torus onto the 1-torus de-
fined by x — e27i(2x) has the associated matrix A = (2). This implies (see [2, pp.
67-79]) that h(A) = log 2. Hence h(S') = n log 2, by the product theorem (see [1]).
Hence, for each positive integer n, h(S*) > n log 2. Therefore

h2(S) = h3(8) = h(S*) = « .
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