ALGEBRAICALLY SEPARABLE EXTENSIONS
OF BANACH ALGEBRAS

Andy R. Magid

Let A be a commutative complex Banach algebra with identity, and let X(A) be
its carrier space. In this paper we explore the relation between the finite-fibered
covering spaces Y of X(A) and the faithful, commutative, separable algebras over
the commutative ring A. (An algebra S over the commutative ring R is separable
if S is a projective S(X)r S-module [8, p. 40].) We begin by showing that every such
algebra B over A is also a Banach algebra, and that the induced mapping
X(B) — X(A) on carrier spaces is a finite-fibered covering space projection. Thus
separable algebras lead to covering spaces. Using Silov’s idempotence theorem, we
next show that the covering space mappings between any covering spaces of X(A)
that are carrier spaces of separable algebras as above are induced from algebra
homomorphisms. In other words, the functor B — X(B) above is full and faithful.
For the functor to be a (contravariant) equivalance, we need to know that every
covering space of X(A) comes from an algebra B. We show that this is the case if
A is a regular Banach algebra without radical.

This equivalence, for the case of full rings of complex-valued continuous func-
tions on compact spaces, was established by B. Wajnryb [13] and L. Childs [7];
since such function algebras are regular and without radical, this theorem is a con-
sequence of our results here. Child’s proof used the fact that rings of germs of
continuous functions at a point are Henselian [7, Lemma, p. 32]. Since such rings
are the local rings at maximal ideals of full function rings, the question arises
whether the local rings at maximal ideals of an arbitrary Banach algebra are
Henselian. We show that this is the case for regular Banach algebras without radi-
cal, but that there are examples to show that this is in general false.

We adopt the following conventions: € is the complex field, and all the rings we
consider are commutative C-algebras with identity. We use X(A) for the carrier
space of the Banach algebra A, in the usual topology, although occasionally we also
use the hull-kernel topology on X(A). If A is a Banach algebra and a € A, we let
4: X(A) — C denote the Gelfand transform of a.

For our purposes, the particular norm on a Banach algebra is not important,
since we are concerned primarily with carrier spaces, and these do depend not on
the norm chosen for the algebra, but only on the fact that the algebra is complete in
some norm. Thus we refer throughout to Banachable algebras, by which we mean
an algebra A such that there is some norm on A making A a Banach algebra.

If A is a Banachable algebra and f € A, let Uf = {x € X(A): f(x) # 0}.

Our first goal is to show that a finitely generated projective faithful extension
algebra of a Banachable algebra is also Banachable. We begin with some standard
facts about Banach modules.
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Definition 1. Let A be a Banach algebra. A Banach A-module M is a unitary
A-module that is a Banach space such that |am| < |la| ||m| for all a in A and
all m in M. The free Banach A-module of rank n, A(n), is the free A-module
AD) with norm |[(ay, -+, ay)| = [lai] + -+ Ja,]. (it is an elementary exercise
to verify that A(n) ig in fact a Banach A-module in this norm.)

LEMMA 2. Let T: A®) 5 A(m) pe gn A-module homomorphism. Then T is
bounded as a linear mapping of Banach spaces.

Proof. Let (tj;) be the matrix of T in the standard bases on A(n) and Alm),
and let M = max("tij”). It is easy to see that || Tx” < mM ]|x” for each x in Afn),

LEMMA 3. Let P be an A-module divect summand of A(®). Then P is a
closed subspace of the Banach space A(n),

Proof. There exists an A-module homomorphism T: A(®) — A{®) gych that P
is the kernel of T. (T denotes projection on a complementary summand to P.) By
Lemma 2, T is continuous, and hence its kernel is closed.

The extension theorem will follow from Lemma 3 and the following result of R.
Arens and K. Hoffman (2, 3.6, p. 205]: Let A be a Banach algebra, and let f in
A [X] be a monic polynomial. Then there exists a norm on the A-algebra

B = A[X]/(f) that extends the norm on A and under which' B is a Banach algebra
isometric, as a Banach A-module, to A (n),

THEOREM 4. Lei A be a Banrachable algebra and B a faithful A-algebra,
Jinitely genevated and projective as an A-module. Then B is Banachable.

Proof. Since B is integral over A and finitely generated, there exist elements

by, ', b, in B that generate B as an A-algebra, and each b;j satisfies a monic
polynomial f; in A[X] of degree d;. Let By =A and B; = B;_; [X]/(f;) for
i=1, ---, n. If B;j.; is normed so that it is a Banach algebra, then by the result of

Arens and Hoffman we can extend this norm to B; so that it is a Banach algebra

isometric (as a Banach B;_;-module) to B;_] . By induction, we see that every
Banach norm on A extends to a Banach norm on B,, where B, is isometric, as a
Banach A-module, to A{d) (d = d;d,---d,). By construction, we have an A-algebra
homomorphism f: B, — B. Since B is projective, the kernel of f is a direct sum-
mand of B,,. By Lemma 3, this kernel is closed. Thus if we norm B by using the
quotient seminorm, this seminorm is actually a norm making B a Banach algebra.

Next, we want to consider the case where the A-algebra B is A-separable, that
is, projective as a B (X), B-module. We refer the reader to [8] for information on
separable algebras.

THEOREM 5. Let A be a Banachable algebra, and let B be a faithful, separ-
able A-algebva, finitely generated and projective as an A-module. Then the con-
tinuous mapping X(B) — X(A) is a covering space projection.

Proof. By [12, p. 166], there exists a faithful B-algebra C that is a Galois ex-
tension of A with (finite) group G (in the sense of [8, p. 84]), and there exists a
subgroup H of G such that B is the set of elements of C invariant under H. By
Theorem 4, C and B are Banachable. By [5, Theorem 2, p. 331] and [8, p. 81}, G
acts without fixed points on X(C), and X(C)/G = X(A) and X(C)/H = X(B). Since
G acts continuously without fixed points on a compact Hausdorff space, X(C) — X(A)
is a covering space, and hence so is X(B) = X(C)/H — X(A).
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D. Brown [4, Remark 2.1, p. 588] and J. Lindberg [10, Proposition 1.3, p. 358]
have proved special cases of Theorem 5. They require that the algebra B of the
theorem be of the form A [X]/(f), where f is a monic polynomial in A [X].

Next, we consider to what extent the covering projection of Theorem 5 deter-
mines the algebra B.

LEMMA 6. Let A be a Banachable algebra, and let B be a faithful A-algebra
finitely genevated and projective as an A-module. Then B (X)a B is Banachable, and
there exists a homeomorphism X(B X, B) — X(B)XX(A)X(B).

Proof. The first assertion follows immediately from Theorem 4. Concerning
the second, we observe that the maps b = b(X) 1 and b — 1(X) b induce a continuous
bijection X(B X4 B) — X(B)xx(a)X(B). Since both spaces are compact Hausdorff
spaces, the mapping is a homeomorphism.

We also need Silov’s idempotence theorem [9, 4.1, p. 51]: If A is a Banachable
algebra and X(A) is the disjoint union of open-closed sets U and V, there exists an
idempotent e of A with 0 = €(U) and 1 = &(V).

THEOREM 7. Let A be a Banachable algebra, and let B and C be faithful
separable A-algebrvas, finitely genevated and projective as A-modules. Suppose
theve exists a continuous function f: X(B) — X(C) commuting with the projections on
X(A). Then £ is induced by a unique A-algebra homomovphism g: C — B.

Proof., A-algebra homomorphisms of C to B are the same as B-algebra
homomorphisms of B(X)5s C to B, and continuous maps of X(B) to X(C) commuting
with the projections on X(A) are the same as continuous sections of
X(B) xx(a)X(C) — X(B). By using Lemma 6, then, we replace C by B(X)a C, and we
can assume B = A. Since X(C) — X(A) is a covering projection, the image of f is
open and closed in X(C). By Silov’s idempotence theorem, there is an idempotent
element e of C with & = 0 on the image of f and é = 1 elsewhere. If we replace C
by C/Ce, then f is a homeomorphism. Now, if M is a maximal ideal of A, then
C/MC is a separable A/M-algebra with only one, maximal ideal, so that
C/MC = A/M. This is true for all such M, and since C is finitely generated and
projective over A, we see that A = C. Backing up, we see further that C/Ce = A,
and the projection C — C/Ce induces the section f: X(A) — X(C). By [6, 1.2, p. 3],
every other A-algebra map C — A inducing f is of the form C — C/Ce', for some
idempotent e' of C. It is easy to see that é = &', so that e = ¢' (mod rad(C)). But
idempotents congruent modulo the radical are equal, by a well-known result. It fol-
lows that the map inducing f is unique.

We can rephrase Theorem 7 categorically:

COROLLARY 8. Let A be a Banachable algebra. Then the functor B — X(B)
Jrom the category of faithful sepavable A-algebras that ave finitely generated and
brojective as A-modules fto the category of finite covering spaces of X(A) is full and
Jaithful,

We would like to know that the functor is actually an equivalence of categories,
in other words, that every covering space of X(A) comes from a separable algebra.
We shall show that this is the case if A is regular and has no radical (recall that a
Banach algebra is regular if the hull-kernel topology on its carrier space is the
same as the Gelfand topology [9, Section 3.1, p. 54]). We shall need to deal with the
sheaf of functions locally in a Banach algebra, and we begin with a definition.

Definition 9. Let A be a Banachable algebra, Y a subspace of X(A), and
s: Y — C a continuous function. We say s is locally in A if for all y € Y there
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exist a neighborhood U of y in X and an element a of A such that

a | YNU=s | Y N U. Let #(Y) denote the set (actually algebra) of all functions
on Y locally in A.

PROPOSITION 10. Let A be a vegulayr Banach algebrva, and let F be a closed
subset of X(A). Then the vestriction miapping ¥ p(X(A)) — FA(F) is surjective.

Proof. For each Y, the set #a(Y) depends only on the Gelfand transforms of
the elements of A; therefore, we can assume A has radical zero. Let h(F) be the
hull of F in A. Clearly, s: F — C is locally in A if and only if it is locally in
B = A/h(F). Note that B is also regular and without radical, and that X(B) = F. By
[9, Theorem 5.1, p. 56], ¥B(X(B)) =B and Fa(X(A)) = A. Since A — B is surjec-
tive, s0 is FA(X(A)) — FR(X(B)) = FA(F).

We want to restate Proposition 10 in a sheaf-theoretical language. First we re-
call that with each Banach algebra A there is associated a sheaf on X(A) whose
stalk at x is the algebra of germs of transforms of elements of A (see [9, Section
5.4, p. 61]). Clearly, the set of sections of this sheaf over a subset Y of X(4) is
the set #A(Y) above. Thus Proposition 10 asserts that if A is regular, the sheaf
Fa is soft [3, 9.1, p. 47]. Since X(A) is compact, the set of all closed subsets of
X(A) is paracompactifying [3, 6.1, p. 15], and hence by [3, 9.12, p. 50], if A is regu-
lar, each (sheaf) module over the sheaf & of rings is also soft. We shall use this
remark in our next theorem.

THEOREM 11. Let A be a vegulay Banach algebra without vadical, and let
p: Y — X(A) be a covering space with finite-fibers. Then theve exist a faithful
separable A-algebra B (finitely genevated and projective as an A-module) and a
homeomovphism c: Y — X(B) commuting with the projections on X(A).

Proof. Let « = %, andlet B =p,p* /. The sheaf & is a sheaf of -
algebras, and we shall show that #(X(A)) is the desired algebra. By the remarks
above, # is soft; therefore, if F is a closed subset of X(A), then the mapping
AB(X) — B(F) is surjective. If U is a neighborhood in X(A) evenly covered by p,
then as rings #|y = (& | y){?) (for suitable n). Thus, if F is a closed subset of an

evenly covered neighborhood in X(A), it follows from [9, Theorem 5.1, p. 56] that
B(F) = (o (F))0),

Now let B = #(X(A)), and let x € X(A). There exist an evenly covered neighbor-
hood U of x and an element f of A such that x € Us and F = Uy is contained in U.
Let I be the hull of F in A. Then, by the argument in the preceding paragraph, we
have a surjection By — &B(F)¢, and &B(F) = (A/I) (n) (since A is regular and without
radical, .« (F) =A/I as in the proof of Proposition 10), and hence a surjection
B¢ — (A/]) én). Suppose b/1 is in the kernel. Then, for some m, the global section
f™b vanishes on F. Since U;C F, the section f™b vanishes outside F also, and
hence f™b = 0. Thus b/1 = 0, and the surjection B — (A/I)fcn) is an isomorphism.
Finally, (A/I)¢ = A¢, and therefore By is isomorphic to (As)(n). We can carry out
this construction for any x in X(A). By [5] and [6], then, B is a faithful separable
A-algebra, finitely generated and projective as an A-module.

Now p*.«Z is a sheafon Y with p* « (p-1(U)) = #(U) for each open set U of
X(A). In particular, B = p*Z(Y). Let c: Y — X(B) be the mapping defined by
c(y)(b) = b(y) for a point y of Y and a section b in B. We want to show that c is a
homeomorphism. If f € A is such that Uy is evenly covered, then by the first para-
graph of the proof the restriction of ¢ to p-1(Uy) is a homeomorphism. To com-
plete the proof, it will be sufficient to show that each pair y, z of points of Y
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identified by ¢ must lie in such a set p-1(Ug). If p(y) # p(z), there is an element a

of A such that A(p(y)) # a(p(z)). Then the function b = ap belongs to B, and
c(y)(b) # c(z)(b). Thus c is a homeomorphism, and the theorem follows.

We summarize Theorems 8 and 11 in categorical language as follows:

COROLLARY 12. Let A be a vegular Banach algebrva without vadical. Then
the category of faithful, separable A-algebras that ave finitely genevated projective

A-modules and the category of finite-fibeved covering spaces of X(A) ave contra-
vaviantly equivalent,

Corollary 12 applies, in particular, to rings of all continuous functions on a
compact space, and hence we recover [7, Theorem 2, p. 30]. There are, of course,
many regular algebras without radical that are not full function rings (see [9, Sec-
tion 5.1, p. 54], for example).

Next, we examine a technical question arising from the proof of Corollary 12 for
full function algebras given in [7]. The technique used there to prove the analogue
for full function algebras of our Theorem 5 is essentially to use the fact that the
ring of germs of continuous functions is strictly Henselian (that is, is Henselian with
algebraically closed residue field; see [11, Proposition 4, p. 78] for the assertion;
note that the proof of [7, p. 32] is similar to the proof of [11, p. 78]). This raises
the question: are the local rings of every Banachable algebra strictly Henselian?
We shall show that the answer is positive for regular algebras, but negative in
general.

We shall need the following theorem of Arens and Calderon [1, 4.1, p. 208]: Let
A be a Banach algebra. If g = 2 b;X! is a polynomial in A[X], we use & to denote

the polynomial 2 b;X!. Now suppose that f is a polynomial in A[X] such that

there is a continuous function h: X(A) — € such that f(h) = 0, while f'(h) is a unit.
Then there exists an a in A such that 2 =h and f(a) = 0.

We also require some notation: if X is a topological space, x € X, and
f: X — € is a continuous function, we let [f]x denote the germ of f at x. If A isa
Banach algebra and x € X(A), we let [A], = {[Al,:a € A}. If M= {a € A: 4(x) = 0},
we have a homomorphism Apf— [Alx [9, Section 5.4, p. 59] that is an isomorphism
if A is regular and without radical [9, Section 5.4, p. 60]. We can now prove our
basic result.

THEOREM 13. Let A be a regular Banach algebra without vadical, and let M
be a maximal ideal of A. Then the local ving Ay is strictly Henselian.

Proof. We use the criteria of [11, Proposition 3, p. 76] to show that Ay is a
Henselian ring: let P € Ap[T] be a monic polynomial whose image P in C[T] has
a simple root a. Then P has a root in A, that lifts 4. Our hypotheses on A im-
ply that A ,; can be identified with [A],, where x € X(A) is such that
M = {a € A: A(x) = 0}; with this identification, P becomes

TP+ [2], T+ -+ 3, ],

for suitable a; € A. Let B be the ring of all germs at x of continuous functions
X(A) — C, and regard [A], as a subring. Since B is Henselian, the assumptions on
P imply that there exists a continuous function h: X(A) — C such that P([h],) =0
and h(x) = 4. Since P'(h(x)) # 0, we also see that P'([h],) is a unit in B. Let
Q=T"+4;T" !+ ... +4,. The argument above implies that there exists an s € A
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with the following properties: let Ug= {y € X(A): &(y) # 0}. Then x belongs to
U, and for all y € Ug, we see that Q(h)(y) = 0 while Q'(h)(y) # 0. Choose t € A
so that x € Ui, and so that the closure F of Ui is contained in Ug. Let

I =h(F)={aecA:raly)=01forallye F}.

By restriction, regard Q as an element of A/I[T]. By the theorem of Arens and
Hoffman quoted above, there exists an element b of A/I such that b=h. Let a in
A map to b. Then [i], = [h];; we have thus produced the desired root of P, and
A is Henselian. It is strictly Henselian because its residue class field is C.

Finally, we give an example to show that Theorem 13 may fail for nonregular
algebras.

Example 14. Let D={z € C: 1< |z| <5}, and let A be the Banach algebra of
all continuous functions on D analytic on the interior of D. We identify X(A) with
D in the usual manner. Let z denote the identity function of D, and let B denote
the A-algebra A[X]/(X?% - z). The algebra B is clearly faithful, and also B is
finitely generated and projective as an A-module. Since the element z of A isa
unit, B is also a separable A-algebra (see [8, p. 113]). By Theorem 5, the mapping
p: X(B) — X(A) is a covering space projection, which must be equivalent to the
standard double covering of D. Let M = {a € A: 4(3) =0}, and suppose that Ay, is
strictly Henselian. Then Ay is separably closed, and hence Bp = Aﬁ) . Therefore
there exists an s € A such that Bg = Agz), and hence such that p-1(Uy) is a disjoint
union of two copies of U,. Let D' = {zeC:2< ]zl < 4}. Then, since s is ana-
lytic on a neighborhood of D', the set §-1(0) N D' is finite. It follows that we can
find a mapping ¢ of the circle into D', of degree 1, whose range is contained in Ug.
But then ¢ lifts to a mapping of the circle to X(B). But a mapping of the circle of
degree 1 onto D can not be lifted to the standard double covering of D. This contra-
diction shows that our assumption is false; that is, Aps is not a Henselian ring.
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