INTERPOLATION AND UNAVOIDABLE FAMILIES
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The well-known Weierstrass factorization theorem says that given a sequence
{an} of complex numbers with no finite limit point, one can always construct an
entire function f that vanishes precisely at the points a,,, where multiple occur-
rences of an a, correspond to zeros of the corresponding multiplicity. It is natural
to ask whether it is possible to construct an entire function whose zeros and one-
points are prescribed. Now, by the well-known interpolation theorem for entire
functions (see [6, p. 298]), given two sequences {a,} and {b,} that are disjoint
and have no finite limit point, one can find an entire function f such that f(a ) =0
and f(b,) = 1 for all n. But this does not answer the question, since it is conceiv-
able that such an f must have other zeros or one-points. To see that this unpleasant
possibility may actually arise, let {a_} be a finite nonempty set of cardinality A,
and let {b,} be one of cardinality B # A. If a suitable f were to exist, it would
omit O, 1, and « in a neighborhood of «, and would therefore have to be a polyno-
mial, by Picard’s Great Theorem; this is impossible, since A # B.

Our question is: For what pairs of disjoint sequences {a_ } and {b_ } without
finite limit points can one construct an entire function f whose zero-sequence is
exactly {a,} and whose one- sequence is exactly {b,}? If this is possible, we call
({a_t, {b r}) the zero-one set of f. A more general form of this question was
briefly studied by R. Nevanlinna in [5].

There are also infinite sequences ({a,}, {b,}) that are not zero-one sets.
One way to see this was shown to us by J. Miles. By a result of A. Edrei [1, p. 277],
an entire function with only real zeros and real ones has order at most 1. Since the
exponent of convergence of the a-points of an entire function is no greater than the
order of the function, we need only take {a,} and {b,} realand {a_}, say, to
have exponent of convergence greater than 1. By a slight variation of this argument,
we can take the {an} and {bn} arbitrarily sparse, so long as they lie on the real
axis and each b, is very close to some a, ; for this would force the derivative of an
admissible entire function f to have order exceeding 1. This is impossible, since
the order of f' equals the order of f. The same ideas show, for example, that there
are three disjoint discrete sequences {a,}, {b,}, and {c,} such that no pair of
them forms a zero-one set.

In Theorem 1, we prove that to each sequence {a,} there corresponds a dis-
joint discrete sequence {b,} such that ({a,}, {b,}) is not the zero-one set of any
entire function. We give two proofs of this result. The first proof is a bit com-
plicated, but does not require deeper tools than Nevanlinna’s First Fundamental
Theorem. The second proof is due to J. Miles, whom we thank for allowing us to
use it. It is simpler than the first proof, but does use Nevanlinna’s Second Funda-
mental Theorem.
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Then we prove Theorem 2, which says that if an entire function has the same
zero-one set as sin z, then that function must be identically equal to sin z.

Finally, we consider unavoidable families of meromorphic functions. A family
F of meromorphic functions is unavoidable if the graph of any meromorphic function
must somewhere intersect the graph of some function in F. We prove in Theorem 3
that the minimum cardinality of an unavoidable family of meromorphic functions is 3.

THEOREM 1. Corrvesponding to each infinite sequence {a,} in the complex
plane, there exists a discrete infinite sequence {b } of complex numbvers, disjoint
from {a_}, such that ({a,}, {b,}) is not a zevo-one set of any entive function.

Fivst proof. We shall use the standard ideas and notation of the Nevanlinna
Theory ( see [2]). Let {c,} be any discrete sequence of complex numbers. We de-
note by n(r, {c,}) the number of ¢ in |z| < r, with due count of multiplicity. We
write

r nt, N
N(r, {cn}) = SO Mdt’

where we suppose that no ¢, is 0. For simplicity, we suppose now that no a, is O,
and that {a_} has no finite l1m1t point. We let II,(z) be the canonical product
formed W1th the {a } as zeros. Now let {b 1 be an infinite discrete sequence of
non-zero complex numbers distinct from all the a,, and satisfying the conditions
b, =-bs, by=-bg, -**. Furthermore, we demand that

(c) T(r, ,(z)) = o(N(r, {b,}) asr— o,

It is clear that such sequences {b,} exist. We claim that ({a,}, {b,}) is not the
zero-one set for any entire function. Proceeding by contradiction, suppose that
there exists an entire function f having {a,} as its precise zero set and {b,} as
its precise one set. Let II(z) be the canonical product with {b_}._, as its zero
set. Then

(1) f(z) = II,(z) e®(?)
and
(2) f(z) - 1 = (z - by) I(z) ef(?)

where @ and B are entire functions. Here we note that we may take II(z) = II(~z),
because b,, =-by,+; for n=1, 2, 3, ---. By the basic properties of the Nevanlinna
characteristic function,

(3) T(r, ) = T(r, M, e%) < T(r, ) + T(r, %)
and
(4) N (r, 715 ) < T, D +0(1).

It follows from condition (¢) and equations (3) and (4) that
(5) T(r, II}) = o(T(r, e%¥) asr — .

Before proceeding further, we need the following result, which is a very slight
simplification of a lemma of G. Hiromi and M. Ozawa [3].
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LEMMA A. Let ay(z), a|(z), --+, a,(z) and g,(z), g,(2), ---, g, (z) be entive
functions. Suppose that

(6) T(r, aj(z)) = 0( 27 T(x, eg”)) (G=0,1, -, n).

v=l1

If the identity

n

2 aV(z)egV(Z) = a(z)

v=1
holds, then theve is an identity
n
27 ¢, aV(z)egv(Z) =0,
v=1

wheve the ¢, (v =1, 2, ---, n) are constants that ave not all zevo.

We now return to the proof of our theorem. By subtracting (2) from (1), we get
the equation

(7) I, (z)e*?) - (z - b)) (z)ePl#) = 1.
Hence
e B(z) - 11,(z)e®(2)-B(2) = _(z - b)) 1I(z).

From this and the evenness of II(z) it follows that
(-z-by) [e-B(z) _ 1 (z) e¥(2)-B(2)] = (g - bl)[e‘ﬁ(‘z) -1, (- 2) e®(-2)-B(-2)]
and hence
e B (-2 - b)) - (z - b1, (2) ¥ - (z - b)) e Bl-2)1B(2)

+(z - b)) I, (- z) e@(-2)-B(-24B(z)] = ¢,
Consequently,
(z +b )1 ,(z) e*(?) - (z - b)) e B-2)1B(2)
+(z - b M(-2)e@-21B(2)-fl-2) = 5 1
Since the hypothesis (6) of Lemma A is satisfied, we conclude that
¢ (z+b ) (z)e* () + ¢ (z - b)) e P-2)tB(2)
“ +cs(z - b)) (-2) e (-2)1B8(2)-B(-2) _ g

for some constants ¢, ¢, and c3 that are not all 0. Clearly, c, # 0; for other-
wise, on setting z = 0, we would see that ¢, = ¢5 and consequently

(z +b)) T (2)e*ZB2) = (5 - p )1 (-2) @ {-2)-F-2) |
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this implies that
b1111(0) = -b111;(0),

which is impossible since Hl(O) # 0 and b, # 0. Now, if c; # 0, then we see from
(8) that

ci{z +b))1(z) = -cy(z - b)) ePlz)-Bl-z)-a(z)
- ¢;(z - bl)nl(_z)ea(-Z)-a(ZHﬁ(Z)-B(—Z) .
Again applying Lemma A, we have the relation
(9) cylz - l)eB z)-B(- z)+c5(z - b)) II,(-2) eBlz)-B(-z)-a(z)+a(-z) = g
for some constants ¢4 and ¢y with ¢4cy # 0. But (9) says that
cytesllj(-z)e?(-2) = 0,

which is impossible.

Thus, we conclude that c¢; = 0. Consequently,
c, +c3Il(-2) e@(-2) = 0,
which is impossible since ¢, # 0. It follows that the identity (7) cannot hold, and our

theorem is proved by contradiction.

Second proof of Theovem 1. For an entire function f, the Cauchy integral for-
mula implies that r M(r, ') < M(2r, f), so that M(r, f') < 2M(2r, f) for r > 1. Since
log |f(z)| is subharmonic, we have for R > |z| = r the inequality

log |1(z)| < S‘ log | f(Re’ (Mf) dat .

et—

We take R = 2r to get the relation

3 o7 . 1
log M(r, f) < ES |1og| f(2relt)| |dt = 3[m(2r, f) + m (2r, ;)]

Since Nevanlinna’s First Fundamental Theorem implies that
1
(2r —)+N(2r,f = m(2r, f) + O(1),

we get the estimate
log M(r, f) < 6m(2r, f) + O(1) < Tm(2r, f) for r > ry,
supposing that f is not a constant. We see then that for r > rg,

log M(r, f') < log M(2r, f) < Tm(4r, f).
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Now let ¢(r) be an arbitrary increasing function on [0, ). We are given {an}.
Let r = |an|, and let b, = a,e'fn, where £, > 0 is chosen so that if f has a zero
at a, and a one at by, then there exists a z on the short circular arc y of
{|z| =r,} joining a, to b, for which [£'(z)| > exp(T¢(4r_ ,,)). This is clearly

possible, since 1=1(b, ) - f(a,) = f'(z)dz. Suppose now that there exists an f

whose zero-set is {a_} and whose?;ne~set is {b_ }. Then
log M(r_, ') > 7¢(4rn+ 1).
Let us now take r € [r_, r _,,], where n is large. Then
Tm(4r, f) > log M(r, ') > log M(r,, f') > 7¢(4rn+l) > T¢(4r) .

Thus, for large r, we have the inequality m(r, f) > ¢(r). Now we suppose, in addi-
tion, that N(r, {a_})/¢(r) > 0 as r — «. Then N(r, {a_})/m(r, f) — 0. Hence
6(0, f) = 1, where 6(0, f) is the deficiency of zero for f. But

N(r, {b,}) = N(x, {a_ }),

so that 6(1, f) =1 also. But 6(w, f) = 1, since f is entire, and therefore the sum of
the deficiencies of f is at least 3, contrary to Nevanlinna’s Second Fundamental
Theorem.

Our next result is related to material in the second part of Chapter V of [4].

THEOREM 2. If { is an entive function with the same zevo-one set as sin z,
then f(z) = sin z.

Proof. By the theorem of Edrei mentioned earlier, { has order at most 1, since
it has real zeros and real ones. Alternately, we could use a well-known theorem of
E. Borel, since the exponent of convergence of the ones and of the zeros of sin z are
both 1. We may write

f(z) = e2(2) gin g,
£(z) - 1 = eB(2) (sin z - 1),

where A(z) and B(z) are entire functions. It follows that

(i) f(z) = aeP? sin z
and
(ii) f(z) - 1 = ced%(sin z - 1),

with constants a, b, ¢, d and ac # 0. We shall show that a=c=1and b=d =0, so
that f(z) = sin z. Suppose that this is not the case. Then, unless a =c and b =d,
we must have the relation aeP? - ced? # 0. But if a =c and b = d, then it is easy to
show that b =d =0 and a = ¢ = 1. Thus, we may assume that aebP?z - cedz # 0.
Eliminating f from the equations (i) and (ii) above, we get the equations

eiZ - e—iZ Sin y = 1 - cedZ _ e—dZ -C
2’1 aebZ - cedZ ae(b—d)z -c

]

Letting z = 0, we see that ¢ = 1. We then have the relation



294 LEE A.RUBEL and CHUNG-CHUN YANG
(10) aelb-dti)z - ae(b-d-i)z _ giz + g-iz _ 9je-dz +2i = 0.

Now an exponential polynomial vanishes identically if and only if all of its terms are
zero. Therefore, the last four terms on the left side of equation (10) involve at most
two distinct frequencies (where the frequency of Ae™? is A by definition). An ele-
mentary analysis shows that this is impossible, so that the proof by contradiction is
complete.

On the other hand, there exist entire functions f and g, with f # g, that have in-
finitely many zeros and infinitely many ones, such that f and g have the same zero-
one sets. For g to have the same zeros and ones as f, we need the two relations

g(z) = e®(#) f(z)

and
e(z) - 1 = P2 (8(z) - 1),
or
_ JBlz) a(z) _
f(z) = 1-e _€ 1
e0(z) _ oBlz)  gblz) _ 1~

say. Therefore we now choose

eSln'iTZ -1

f(z) = w1

and we are assured that some g (g # f) has the same zero-one set as f. Clearly, f
has infinitely many zeros, since the numerator vanishes whenever (sin #z)/27i is an
integer, while the denominator vanishes only when z is an integer. Also, f(z) =1
whenever

sin 7z = 27wiz + 2kwi

for some integer Kk, and this happens infinitely often by the three-functions theorem
(see [2, p. 47]). The assertion is proved.

Finally, we consider a loosely related question. We say that a family F of
meromorphic functions in the plane is unavoidabdle if for every meromorphic func-
tion g there exist an f € F and a complex number z such that g(z) = £(z).

THEOREM 3. The minimum cavdinality of an unavoidable family of mero-
morphic functions in the plane is 3.

Proof. First we show that there exists an unavoidable family of three functions.
Let a;(z), ay(z), and a3(z) be three different polynomials such that a;(z) - a>(z) and
a,(z) - a3(z) are not both constants. Suppose now that f(z) - a;(z) has no zeros for
i=1, 2, 3, and consider the function

_ 1(z) - a)(z) as3(z) - ax(2)
T 1(z) - a,(z) az(z) - a;(z)

F(z)

It can take the values 1, «, and 0 only where a;(z) = ay(z) or a;(z) = a3(z) or
a,(z) = a3(z), and this accounts for at most finitely many points.

Therefore, by Picard’s Great Theorem, F has a nonessential singularity at o,
and hence F must be a rational function. Hence f must be a rational function that
avoids a,(z), a,(z), and a3(z), which is clearly impossible.
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To conclude, we prove that no two meromorphic functions form an unavoidable
family. Let g =g, /g2 and h=h, /hz denote two distinct meromorphic functions,
g1, &, hy , h, being entire, and neither g, nor h, being identically zero. Ob-
viously, we can assume that g; and g, have no common zeros, and that the same is
true of h; and hp.

To construct a meromorphic function f that avoids both g and h, we construct
entire functions & and ¥ to satisfy certain conditions that will be imposed soon, and
let ¢ = exp ® and ¥ = exp ¥. Then we let

hj¢ -g ¢ hy¢ - g ¢

f = ——— = =
I " hygy-gh; 2 hygy-ghy

It follows that

f1 g f1gp-1rg
a poohebn

2 82 282 282
and

f h fih> -f>5h
(12) i 1 _hihz-da2hy oy

f,  h; foh; fohy "

We shall construct & and ¥ so that, with the notation f =f; /f,,
(i) £; and f, are entire functions,

(ii) f and g have no common pole,

(iii) f and h have no common pole.

If this is done, then f avoids g and h since by (11), f and g are equal at no point
where they are both finite, and by (12), f and h are equal at no point where they are
both finite, and (ii) and (iii) exclude common poles as well. Let k=h;g, - g1 h,,
and let the distinct zeros of k be at a,, with multiplicity q,. For (i) to hold, it is
enough that A; = h; ¢ - g; ¥ and A, = h,¢ - g, each have a zero of order at least
d, at a,, for each n. Now, by the definition of f,, f, and g, cannot have a common
zero at a point a unless hy(a) = 0 also, in which case a = a,, for some n. We need
only guarantee, therefore, that at each a,, A, has a zero of order q,, and A; hasa
zero of order at least q,,. Now our conditions on ¢ and ¢ depend only on the first
q,, + 1 Taylor coefficients of ¢ and ¥ at a,. Discarding powers of (z - a,) higher

than the q,-th amounts to working in the ring R = C[z] /(z - a,n)anrl . We remark
that an element p of this ring is invertible if and only if p(a), # 0. The same con-
dition, p(a,) # 0, guarantees that there is an element P of R such that p =exp P. If
we can satisfy the requirements on ¢ and ¢ at a, with polynomials ¢, and ¥,
such that ¢_(a ) # 0 and ¥ (a,) # O, then we can find polynomials &, and ¥, for
which ¢, =exp &, and ¥, = exp ¥,,. Then, by the interpolation theorem for entire
functions [6, p. 298], we can find entire functions ® and ¥ for which &, and ¥, are
the truncated Taylor series of & and ¥, respectively, at the point a, .

We let
(13) k(z) = hy(2)g,(2) - g,(2) h,(2) = (z - a) "K(z),

so that K(a,) # 0. Remembering that we are now working in the ring R, we then let
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6 (z) = g2(2) P(z}){(-z)gl(z) Qlz) and () - h,(z) P(zl)q-z)hl(z) Qlz) ’

where P and Q will be chosen in a moment. It follows that

Az) = h(2)do(2) - gD V(2) = (2 - a,) " P(a)

n

and

A,(z) = hy(z)d,(2) - g2(z) ¥ (2) = (z - 2,) PQ(z).

m

A case-by-case analysis shows that we may choose P(z) and Q(z) to be constants
(recall that g,(a,) and g,(a,) are not both zero, and that h)(a,) and hy(a,) are not
both zero), so that ¢, (a ) # 0 and ¥, (a,) # 0. That does it.
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