CATEGORIES OF m-BOUNDED HAUSDORFF SPACES

D. W. Hajek and R. G. Wilson

In this paper we show that the m-bounded Hausdorff spaces and the m-bounded T_3 -spaces form epireflective subcategories of the category $\mathscr H$ of Hausdorff spaces with continuous functions. We introduce the concepts of m-normality and strong m-normality, and we show that these are sufficient (but not necessary) conditions to insure that the universal maps associated with the above epireflections be embeddings. Moreover, for a strongly m-normal space we realize the universal object in the category of m-bounded T_3 -spaces as a subspace of the Wallman compactification.

Throughout the paper, all spaces will be assumed to be T_1 -spaces, m will denote an infinite cardinal, and W(X) will denote the Wallman compactification of X. If F is a closed subset of X, then F^* will denote the set

{u: u is a closed ultrafilter on X and $F \in u$ }

(the notation is that of [5, p. 167]). The collection

$$\{F^*: F \text{ is a closed subset of } X\}$$

is a base for the closed sets in W(X). The cardinality of a set A will be denoted by |A|, and the closure of A in X by $cl_X A$. By $S_m(X)$ we shall denote the subspace

$$\{y \in W(X): y \in cl_{W(X)} A \text{ for some } A \subseteq X \text{ with } |A| \leq m\}$$

of W(X). As in [3], a topological space X will be called m-bounded if the closure in X of every subset A of X with $|A| \le m$ is compact. All m-bounded spaces are clearly countably compact. An example of a countably compact space that is not m-bounded for any infinite cardinal m is given in [2, Section 9.15].

LEMMA 1. $S_{m}(X)$ is m-bounded.

Proof. Let A be a subset of $S_m(X)$ with cardinality less than or equal to m. Since $A \subseteq S_m(X)$, each $y \in A$ is such that $y \in cl_{W(X)} A_y$ for some $A_y \subseteq X$ with $\left|A_y\right| \leq m$. Therefore

$$A \subseteq \bigcup_{y \in A} (cl_{W(X)} A_y) \subseteq cl_{W(X)} (\bigcup_{y \in A} A_y),$$

and this last set is a subset of $S_m(X)$, since $\left|\bigcup_{y\in A}A_y\right|\leq m$. Hence $cl_{S_m(X)}A$ is compact (being a closed subset of W(X)).

Similarly, it is easy to show that $X = S_m(X)$ if and only if X is m-bounded, and hence that $S_m(S_m(X)) = S_m(X)$.

Received May 1, 1972.

Michigan Math. J. 20 (1973).

A space X will be called m-normal if disjoint closed subsets of an m-separable closed subset of X have disjoint open neighborhoods in X. (A set is said to be m-separable if it has a dense subset of cardinality less than or equal to m.) Clearly, an m-separable, m-normal space is normal. The Tychonoff plank (see [2, Section 8.20]) is an example of an \aleph_0 -normal space that is not normal.

The proof of the following lemma is quite easy, and we omit it.

LEMMA 2. An m-bounded Hausdorff space is m-normal.

THEOREM 1. S_m(X) is a Hausdorff space if and only if X is m-normal.

Proof. Suppose X is m-normal. Let u and v be distinct elements of $S_m(X)$. Then there exist subsets A_u and A_v of X with $\left|A_u\right| \leq m$ and $\left|A_v\right| \leq m$ such that

$$u \in cl_{W(X)} A_u$$
 and $v \in cl_{W(X)} A_v$.

Since u and v are distinct closed ultrafilters on X, there exist disjoint closed subsets B_u and B_v of X such that $B_u \in u$ and $B_v \in v$. Clearly,

$$B_u \cap cl_X A_u \in u$$
 and $B_v \cap cl_X A_v \in v$.

Furthermore, $B_u \cap cl_X A_u$ and $B_v \cap cl_X A_v$ are disjoint closed subsets of the m-separable set $cl_X(A_u \cup A_v)$; since X is m-normal, they have disjoint open neighborhoods U and V in X. Consequently, $(X - U)^*$ and $(X - V)^*$ are closed subsets of W(X) whose union is W(X) and such that $u \notin (X - U)^*$ and $v \notin (X - V)^*$. Hence $S_m(X) - (X - U)^*$ and $S_m(X) - (X - V)^*$ are disjoint open neighborhoods of u and v, respectively.

Conversely, suppose A and B are disjoint closed subsets of an m-separable closed subset F of X. Since $\operatorname{cl}_{W(X)} F$ is contained in $\operatorname{S}_m(X)$, it follows that $\operatorname{cl}_{W(X)} A$ and $\operatorname{cl}_{W(X)} B$ are compact subsets of $\operatorname{S}_m(X)$. Furthermore, since A and B are disjoint, their closures in W(X) are also disjoint (see [5, p. 168]). If $\operatorname{S}_m(X)$ is a Hausdorff space, $\operatorname{cl}_{W(X)} A$ and $\operatorname{cl}_{W(X)} B$ have disjoint open neighborhoods in $\operatorname{S}_m(X)$; this implies that A and B have disjoint open neighborhoods in X.

A space X will be called *strongly* m-normal if disjoint closed subsets of X, one of which is contained in an m-separable subset of X, have disjoint open neighborhoods in X. Clearly, all strongly m-normal spaces are m-normal and regular. The Tychonoff plank is an example of a completely regular space that is \aleph_0 -normal, but neither \aleph_1 -normal nor strongly \aleph_0 -normal. An example of a non-normal, strongly \aleph_0 -normal space is given in [2, Problem 8L].

LEMMA 3. An m-bounded T₃-space is strongly m-normal.

THEOREM 2. $S_m(X)$ is a T_3 -space if and only if X is strongly m-normal.

The proofs of these results are similar to the proofs of Lemma 2 and Theorem 1, and we omit them.

In the following theorem, \mathcal{A}_{m} (respectively, \mathcal{B}_{m}) denotes the category of mbounded Hausdorff spaces (respectively, m-bounded T_3 -spaces).

THEOREM 3. \mathcal{A}_{m} and \mathcal{B}_{m} are epireflective subcategories of the category \mathcal{H} of Hausdorff spaces. Furthermore, for m-normal spaces the universal maps associated with \mathcal{A}_{m} are embeddings, and for a strongly m-normal space X the embedding of X in $S_{\mathrm{m}}(X)$ is the universal map associated with \mathcal{B}_{m} .

Proof. It is clear that \mathscr{A}_m and \mathscr{B}_m are full subcategories of \mathscr{H} . In [3] it is shown that a product of m-bounded spaces is m-bounded, and it is clear that a closed subspace of an m-bounded space is m-bounded. That \mathscr{A}_m and \mathscr{B}_m are epireflective subcategories of \mathscr{H} now follows from [4, Theorem 1.2.1].

Suppose now that X is an m-normal space. Lemma 1 and Theorem 1 imply that $S_m(X)$ is in \mathscr{A}_m . Since X can be embedded in an object of \mathscr{A}_m , it is clear that the universal map for X associated with \mathscr{A}_m is an embedding.

Suppose that $f: X \to Y$ is a continuous function into an m-bounded T_3 -space Y. We show that f has a continuous extension to $S_m(X)$. For each $u \in S_m(X)$, the collection

$$\mathcal{F}_{\mathbf{u}} = \{ \mathbf{cl}_{\mathbf{Y}}(\mathbf{f}[\mathbf{A}]) : \mathbf{A} \in \mathbf{u} \}$$

has the finite-intersection property, and hence it is contained in some closed ultrafilter on Y. Since u ϵ S_m(X), we know that u ϵ cl_{W(X)} B for some B \subseteq X with $|B| \leq m$. Because $|f[B]| \leq m$ and Y is m-bounded, cl_Y(f[B]) is compact. Since u ϵ cl_{W(X)} B, it follows that cl_X B ϵ u; therefore, because cl_X B \subseteq f⁻¹[cl_Y(f[B])], each closed ultrafilter containing \mathscr{F}_u contains a compact set, and hence converges to some point of Y. If \mathscr{F}_u is contained in two distinct closed ultrafilters v and w on Y, then, since v and w must converge to distinct points y and z of Y, and since Y is a Hausdorff space, there exist disjoint open sets U and V of Y such that y ϵ U and z ϵ V. If f⁻¹[Y - U] ϵ u, then cl_Y(f[f⁻¹[Y - U]]) ϵ \mathscr{F}_u . However, cl_Y(f[f⁻¹[Y - U]]) ϵ Y - U; therefore no closed ultrafilter that contains \mathscr{F}_u converges to the point y. Conversely, if f⁻¹[Y - U] ϵ u, there exists C ϵ u such that C ϵ f⁻¹[Y - U] = ϵ ; that is to say, C ϵ f⁻¹[U], and therefore f⁻¹[Y - V] ϵ u. However, this implies that no ultrafilter containing \mathscr{F}_u converges to z. Hence there is a unique closed ultrafilter v_u in Y that contains \mathscr{F}_u . Since Y is a Hausdorff space, there is a unique element y_u ϵ Y to which v_u converges.

Define the mapping $\hat{\mathbf{f}}\colon S_m(X)\to Y$ by $\hat{\mathbf{f}}(u)=y_u$. Clearly, the restriction of $\hat{\mathbf{f}}$ to X is \mathbf{f} . Let A be a closed subset of Y. We shall show that $\hat{\mathbf{f}}^{-1}[A]$ is closed. Suppose that $u\in S_m(X)-\hat{\mathbf{f}}^{-1}[A]$. Then, since Y is regular, there exist disjoint open subsets U_u and V_u of Y such that $A\subseteq U_u$ and $\hat{\mathbf{f}}(u)\in V_u$. Furthermore, there exists $B\in u$ such that $B\subseteq f^{-1}[V_u]$; for otherwise, $f^{-1}[Y-V_u]\in u$, and hence $\hat{\mathbf{f}}(u)\in Y-V_u$. Thus $u\notin (X-f^{-1}[V_u])^*$. Conversely, if $v\notin (X-f^{-1}[V_u])^*$, then there exists $D\subseteq f^{-1}[V_u]$ such that $D\in v$, and hence $\hat{\mathbf{f}}(v)\notin A$. Thus

$$\hat{f}^{-1}[A] = S_m(X) \cap \left(\bigcap \{ (X - f^{-1}[V_u])^* : \hat{f}(u) \notin A \} \right);$$

clearly, this is a closed subset of $S_m(X)$.

It follows from Lemma 1 and Theorem 2 that if X is strongly m-normal, then $S_m(X)$ is in \mathscr{B}_m and is therefore the universal object for X associated with \mathscr{B}_m .

Remarks. 1. We note that in our proof, the existence and continuity of the extension $\hat{\mathbf{f}}$ depend only on X being a T_1 -space. It is easy to show that a continuous Hausdorff image of an m-bounded space is m-bounded. It follows immediately that if X is a Hausdorff space, the universal object for X in \mathcal{B}_m is the universal object in the category of T_0 -spaces for the "regularization" (see [6]) of $S_m(X)$.

2. Results for completely regular spaces, analogous to those above, appear in [7]. Thus it is worth noting that not all strongly m-normal T_1 -spaces are completely regular. An example of a strongly \aleph_0 -normal space that is not completely

regular can be constructed along the lines of Example 2.4.4 of [1], the only change being the replacement of the space Z of the example by the space Ω of problem 8L of [2].

3. Since each $T_{3\frac{1}{2}}$ -space X can be embedded in the m-bounded T_3 -space βX , the universal maps for X associated with \mathcal{A}_m and \mathcal{B}_m must be embeddings. It would be interesting to find necessary and sufficient conditions for these universal maps to be embeddings.

REFERENCES

- 1. R. Engelking, *Outline of general topology*. Translated from the Polish by K. Sieklucki. North Holland, Amsterdam, 1968.
- 2. L. Gillman and M. Jerison, *Rings of continuous functions*. Van Nostrand, New York, 1960.
- 3. S. L. Gulden, W. M. Fleischmann, and J. H. Weston, *Linearly ordered topological spaces*. Proc. Amer. Math. Soc. 24 (1970), 197-203.
- 4. H. Herrlich, On the concept of reflections in general topology. Contributions to Extension Theory of Topological Structures (Proc. Sympos., Berlin, 1967), pp. 105-114. Deutsch. Verlag Wissensch., Berlin, 1969.
- 5. J. L. Kelley, General topology. Van Nostrand, New York, 1955.
- 6. J. P. Thomas, Associated regular spaces. Canad. J. Math. 20 (1968), 1087-1092.
- 7. R. G. Woods, Some *0-bounded subsets of Stone-Čech compactifications. Israel J. Math. 9 (1971), 250-256.

University of Puerto Rico Mayaguez, Puerto Rico 00708