CATEGORIES OF m-BOUNDED HAUSDORFF SPACES
D. W. Hajek and R. G. Wilson

In this paper we show that the m-bounded Hausdorff spaces and the m-bounded
T3-spaces form epireflective subcategories of the category s of Hausdorff spaces
with continuous functions. We introduce the concepts of m-normality and strong m-
normality, and we show that these are sufficient (but not necessary) conditions to in-
sure that the universal maps associated with the above epireflections be embeddings.
Moreover, for a strongly m-normal space we realize the universal object in the
category of m-bounded Tj3-spaces as a subspace of the Wallman compactification.

Throughout the paper, all spaces will be assumed to be T;-spaces, m will de-
note an infinite cardinal, and W(X) will denote the Wallman compactification of X.
If F is a closed subset of X, then F* will denote the set

{u: u is a closed ultrafilter on X and F € u}
(the notation is that of [5, p. 167]). The collection
{F* F is a closed subset of X}

is a base for the closed sets in W(X). The cardinality of a set A will be denoted by
|A|, and the closure of A in X by cly A. By S _,(X) we shall denote the subspace

{y e W(X):y € cl A for some A C X with |A| < m}
W(X) pund =

of W(X). As in [3], a topological space X will be called m-bounded if the closure
in X of every subset A of X with |A| < m is compact. All m-bounded spaces are
clearly countably compact. An example of a countably compact space that is not m-
bounded for any infinite cardinal m is given in [2, Section 9.15].

LEMMA 1. S, (X) is m-bounded.

Proof. Let A be a subset of S, ,(X) with cardinality less than or equal to m.
Since A C S,,(X), each y € A is such that y € cly(x) A, for some A, C X with
|A;| < m. Therefore

A - U (Clw(x) Ay) < clW(X)( U AY)’
v EA y €A

and this last set is a subset of S,,(X), since lUye A AYI < m. Hence C]‘Sm(X) A
is compact (being a closed subset of W(X)).

Similarly, it is easy to show that X = S,,(X) if and only if X is m-bounded, and
hence that S.,(S (X)) = S,(X).
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A space X will be called m-normal if disjoint closed subsets of an m-separable
closed subset of X have disjoint open neighborhoods in X. (A set is said to be m-
separable if it has a dense subset of cardinality less than or equal to m.) Clearly,
an m-separable, m-normal space is normal. The Tychonoff plank (see [2, Section
8.20]) is an example of an {g-normal space that is not normal.

The proof of the following lemma is quite easy, and we omit it.
LEMMA 2. An m-bounded Hausdorvff space is m-novmal.
THEOREM 1. S,,(X) is a Hausdovff space if and only if X is m-normal.

Proof. Suppose X is m-normal. Let u and v be distinct elements of Sm(X).
Then there exist subsets A, and A, of X with |A | <m and |A,| < m such that

u € CIW(X) Au + and V € CIW(X) AV'

Since u and v are distinct closed ultrafilters on X, there exist disjoint closed sub-
sets B, and B, of X such that B, € u and By € v. Clearly,

BynNececlxAyeu and ByNeclxAyev.

Furthermore, B, N clx Ay and By N clx Ay are disjoint closed subsets of the m-

separable set clx{A, U Ay); since X is m-normal, they have disjoint open neigh-

borhoods U and V in X. Consequently, (X - U)* and (X - V)* are closed subsets
of W(X) whose union is W(X) and suchthat u ¢ (X - U)* and v ¢ (X - V)*. Hence
SmX) - (X - U)* and S(X) - (X - V)* are disjoint open neighborhoods of u and v,
respectively. “

Conversely, suppose A and B are disjoint closed subsets of an m-separable
closed subset F of X. Since clyx) F is contained in S (X), it follows that
cly(x) A and cly(x) B are compact subsets of S,(X). Furthermore, since A and
B are disjoint, their closures in W(X) are also disjoint (see [5, p. 168]). If S, .(X)
is a Hausdorff space, cly(x)A and cly(x) B have disjoint open neighborhoods in
S.,(X); this implies that A and B have disjoint open neighborhoods in X.

A space X will be called strongly m-normal if disjoint closed subsets of X, one
of which is contained in an m-separable subset of X, have disjoint open neighbor-
hoods in X. Clearly, all strongly m-normal spaces are m-normal and regular. The
Tychonoff plank is an example of a completely regular space that is 8g-normal, but
neither R;-normal nor strongly ®j-normal. An example of a non-normal, strongly
8o-normal space is given in [2, Problem 8L].

LEMMA 3. An m-bounded Ts-space is strongly m-normal.
THEOREM 2. S_(X) is a T3-space if and only if X is strongly m-normal.

The proofs of these results are similar to the proofs of Lemma 2 and Theorem
1, and we omit them.

In the following theorem, .«,, (respectively, #,,) denotes the category of m-
bounded Hausdorff spaces (respectively, m-bounded T3-spaces).

THEOREM 3. &, and &, ave epiveflective subcategovies of the category H
of Hausdovff spaces. Furthermore, for m-novmal spaces the universal maps asso-
ciated with « , are embeddings, and for a stvongly m-normal space X the embed-
ding of X in S, (X) is the universal map associated with &, .
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Proof. 1t is clear that . and &, are full subcategories of . In[3]itis
shown that a product of m-bounded spaces is m-bounded, and it is clear that a
closed subspace of an m-bounded space is m-bounded. That ., and &£, are epi-
reflective subcategories of & now follows from [4, Theorem 1.2.1].

Suppose now that X is an m-normal space. Lemma 1 and Theorem 1 imply that
S(X) isin . Since X can be embedded in an object of « , it is clear that
the universal map for X associated with ,, is an embedding.

Suppose that f: X — Y is a continuous function into an m-bounded T3-space Y.
We show that f has a continuous extension to S,,(X). For each u € S (X), the col-
lection

F, = {ciy(f[A]): A € u}

has the finite-intersection property, and hence it is contained in some closed ultra-
filter on Y. Since u € $,,(X), we know that u € cly(x) B for some B & X with

|B| < m. Because |[f[B]| <m and Y is m-bounded, cly (f[B]) is compact. Since
u € cly(x) B, it follows that clx B € u; therefore, because clx B C f-1{cly (£[B])],
each closed ultrafilter containing &, contains a compact set, and hence converges
to some point of Y. If ¥, is contained in two distinct closed ultrafilters v and w
on Y, then, since v and w must converge to distinct points y and z of Y, and since
Y is a Hausdorff space, there exist disjoint open sets U and V of Y such that
yeUand ze V. If f-1[Y - U] € u, then cly(f[f-1[Y - U]]) ¢ #,. However,

cly (f[f-1[Y - U]]) € Y - U; therefore no closed ultrafilter that contains &, con-
verges to the point y. Conversely, if f-1[Y - U] ¢ u, there exists C € u such that
C N f-1[Y - U] = @; that is to say, C € £-![U], and therefore £ 1[Y - V] € u. How-
ever, this implies that no ultrafilter containing %, converges to z. Hence there is
a unique closed ultrafilter v, in Y that contains &%, . Since Y is a Hausdorff space,
there is a unique element y, € Y to which v,, converges.

Define the mapping f: S;(X) — Y by f(u) = yu. Clearly, the restriction of f to X
is f. Let A be a closed subset of Y. We shall show that f-1[A] is closed. Suppose

that u € S, (X) - f-l[A]. Then, since Y is regular, there exist disjoint open subsets
U, and V, of Y such that A € U, and f(u) € V,,. Furthermore, there exists B € u
such that B C £-1[v,]; for otherwise, f-![Y - V] € u, and hence f(u) € Y - V.
Thus u ¢ (X - £-1[V_])*. Conversely, if v ¢ (X - £-1[V_])¥ then there exists

D C £-1{v,] such that D € v, and hence f(v) ¢ A. Thus

f-1[A] = s, (X) n (ﬂ {x - £V ])* f(w) ¢A}) ;

clearly, this is a closed subset of S,,(X).

It follows from Lemma 1 and Theorem 2 that if X is strongly m-normal, then
S, ,(X) is in B, and is therefore the universal object for X associated with %, .

Remavks. 1. We note that in our proof, the existence and continuity of the
extension depend only on X being a T;-space. It is easy to show that a continuous
Hausdorff image of an m-bounded space is m-bounded. It follows immediately that
if X is a Hausdorff space, the universal object for X in %#,, is the universal object
in the category of T,-spaces for the “regularization” (see [6]) of S _ (X).

2. Results for completely regular spaces, analogous to those above, appear in
[7]. Thus it is worth noting that not all strongly m-normal T,-spaces are com-
pletely regular. An example of a strongly &,-normal space that is not completely
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regular can be constructed along the lines of Example 2.4.4 of [1], the only change
being the replacement of the space Z of the example by the space € of problem 8L
of [2].

3. Since each T3%—space X can be embedded in the m-bounded T ;-space BX,

the universal maps for X associated with /., and &%, must be embeddings. It
would be interesting to find necessary and sufficient conditions for these universal
maps to be embeddings.
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