ALMOST SUFFICIENTLY LARGE SEIFERT FIBER SPACES

Woligang Heil

All the known examples of 3-manifolds that are not sufficiently large but are
almost sufficiently large are Seifert fiber spaces [14], [7]. The first explicit exam-
ple of this kind was constructed by H. Boehme [1]. In[14, p. 87], F. Waldhausen
conjectured that in fact all (orientable) irreducible Seifert fiber spaces with infinite
fundamental group are almost sufficiently large. We prove this in Section 4. In
Sections 2 and 3, we list the Seifert fiber spaces that are not P2-irreducible and not
sufficiently large. In Section 5, we describe the Seifert fiber spaces that contain
incompressible surfaces of negative Euler characteristic,

1. PRELIMINARIES

Let M be a 3-manifold, and let F denote a 2-sided surface embedded in M,
with F # S2, F# P2, and F N9M = 3F. Then F is incompressible in M provided
the mapping i, 7;(F) — 7;(M) induced by inclusion is injective. The manifold M
is sufficiently lavge if M contains a 2-sided incompressible surface F
(F # 82, P2), and M is almost sufficiently large if there exists a finite cover M
of M that is sufficiently large. We say that M is P2-irreducible if M contains no
2-sided projective planes and is irreducible (that is, if each 2-sphere in M bounds a
3-cell). M; # M, denotes a connected sum of the two 3-manifolds M; and M, .

For a discussion of Seifert fiber spaces, see [10].

2. NONIRREDUCIBLE SEIFERT FIBER SPACES

We denote by M the manifold obtained from M by capping off the 2-spheres of
oM with 3-balls.

PROPOSITION 1. Let M be a compact 3-manifold such that oM contains no
brojective planes. Suppose the universal cover of M embeds in S3. If m (M) con-

tains a nontvivial cyclic normal subgvoup, and if M is not P2-jrreducible, then
either

(@) M is an S2-bundle over S!,
(b) M =~ P2x8!, or
(c) M =~ P3 # P3 (a connected sum of two projective spaces).

Proof. (i) Suppose M is not irreducible. Then M contains an essential 2-
sphere S2. If S% separates 1\7[ then nl(lﬁ) is a nontrivial free product, and since
wl(M) has a cyclic normal subgroup, 71 (M) =~ Zy *Z> (see [10 p. 228]). Thus H;(M)
is finite, and therefore M is closed and orientable (since dM contains no P% and no
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S%). By Kneser’s conjecture [11], M=~ M # M, where m;(M;) =~ Z» . But M; is
irreducible (since 7,(M;) is not infinite cyclic and is not a free product), and its
universal cover embeds in S3. Therefore, by [8], M; ~ P3 (i = 1, 2), and we get
case (c) of the proposition.

Now assume that no essential 2-sphere in M separates. Then, since M is not
a nontrivial connected sum, M must be an S2-bundle over S!.

(ii) Suppose M is 1rreduc1b1e and suppose it contains a 2-sided projective
plane P%. Let p: M' — M be the 2-fold orientable cover. Then aM' contains no
S2 and hence M'=M'. The group wl(fd) is infinite; otherwise 171(19[) ~ Z,, and oM
contains two projective planes [2].

If N denotes the cyclic normal subgroup of m;(M), the group N' = p;l(N) isa
cyclic normal subgroup of 7;(M'). If N'=1, then N=12Z,, and since N is normal,
it is central in Wl(Ml If t is an element of infinite order of TTI(M) then Z(t) X Z,
is a subgroup of 7;(M). From [2, Theorem 9.5] and the fact that M is irreducible,
we deduce that ﬂrl(lffl) = Z(t) X Z, . It follows that 7,(M') = Z(t), and that
M ~ Mj # Z, where M) is prime and X is a homotopy 3-sphere. Since the univer-
sal cover of M’ embeds in S3, we see that M' ~ M = M; = S2xgsl. Therefore,
P2 lifts to a nonseparating S% in S% x S!, and it follows from [9] that M ~ P% x 8!,

If N' # 1, we can apply case (i) to M', because a 2-sided P2 in M lifts to an
essential g-sphere SZ in M'. The case where M' ~ S! X S% has been discussed
above; thus we assume M' =~ P3 # P3. The projective plane P2 of M lifts to a
sphere that separates the two summands of M'. Since P2 is 2-sided in M, the
covering translation could not interchange the two summands P> of M', and there
would exist a 3-manifold whose boundary is a P2, which is impossible.

The following Corollary was proved implicitly by F. Waldhausen [12] for the
case where the manifold M is orientable. If M is nonorientable we can also prove
it, by examining the invariants of the orientable double covers, as described by
Seifert [10].

COROLLARY. Let M be a Seifert fiber space.

(a) M is not irveducible if and only if M is either an S%-bundle over S! or the
manifold P3 # P3.

(b) M contains a 2-sided projective plane P2 if and only if M ~ P2 x Sl

Proof. If M + S3, then a fiber of M generates a nontrivial cyclic normal sub-
group. In order to apply the proposition, we have to show that the universal cover
M of M embeds in S3. First assume M is closed. We can assume that no multiple
of a fiber of M lifts to a closed curve in M, for otherwise it follows from [10, Sitze
19 and 11] that M ~ S3. Let q: M — f be the projection of M onto its orbit surface
f. Let M, be the Sl-pundle over the surface f,, obtained by drilling out fibered
neighborhoods of the exceptional fibers and disk neighborhoods of the exceptional
points from M and f, respectively (see [10]). Let T be the universal cover of f, and
let T, be the part of T that lies over f,. Then M, ~ T xRl covers M,, and M is
obtained from 1\71* by filling in copies of D2 X R! (that cover the drilled-out excep-
tional fibers of M) along aD2 X R! . Hence M~ TxX Rl. If f ~ S2 or f ~ P2, then
M ~ S2 x R! € 83. In every other case, M ~ R2 xRl ¢ 83.

If M is not closed, we can assume that M is not a solid torus and not a solid
Klein bottle. Therefore, dM is incompressible (see the proof of Proposition 2
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below), and if D(M) is the double of M (obtained by identifying two copies of M
along boundary components), an inclusion i: M — D(M) induces an injection

w M1 (M) — 7 (D(M)). Therefore M is a submanifold of the universal cover D(M)
of D(M), which embeds in S3, by the first part of the proof.

3. SUFFICIENTLY LARGE SEIFERT FIBER SPACES

A Seifert fiber space is uniquely determined by its “class” and a system of in-
variants [10]. For example, the notation

= (OO;OIb; al)ﬁl;“.;ar, BI‘)

means that M is orientable, that the orbit surface is S2, and that M has r excep-
tional fibers of orders a;, ***, o, with fibered neighborhoods of type

V(al , B1), -+, V(a,, B.), respectively. The invariant b specifies the type of the
S! -bundle one obtalns by drilling out the exceptional fibers and replacing them by
ordinary fibers.

PROPOSITION 2. A Seifert fiber space M is sufficiently lavge, except in the
following cases:

(1) M is a lens space.

(2) M is an S%-bundle or P2-bundle over S!.

(3) M ~ P> # P23,

(4) M = (Oo; 0| b; a1, B1; @z, B2; @3, B3), where

baya,as + pyazaz +pa; a3 +B3ay 0 # 0.

Proof. By Proposition 1, we can assume that M is P2-irreducible (otherwise,
we get case (2) or (3)). If oM # @, or M is nonorientable, or H; (M) is infinite, then
M is sufficiently large [14], [4]. Therefore assume that M is closed and orientable
and that H;(M) is finite. Since p,: H) (M) — H,(f) is surjective, it follows that the
orbit surface f is S2 or P2. If f ~ P2, and if in addition M has at least two ex-
ceptional fibers, let D be a disk on { containing all the exceptional points of f. Then
p-1(aD) is an incompressible torus in p-1(D), since the latter is not a solid torus. If
B = cl(P2 - D), then p-1(B) is the orientable S!-bundle over the Moebius band, and
p-1(dB) is incompressible in p-1(B). It follows that p-1(aD) = p-1(8B) is an incom-
pressible torus in M. If f ~ P2 and M has at most one exceptional fiber, then M
is homeomorphic to a Seifert fiber space with orbit surface S2 and with three ex-
ceptional fibers [12, p. 114].

Therefore assume f ~ S2. If M has at least four exceptional fibers, let
Q1, ', Qr be simple closed curves, each encircling one of the r exceptional points
Py, ---, P, on f, such that Q; N Q; is the base point of 71(f'), where
fr=cl \f - U U(Pi)) , and such that the curves Q;, ***, Q.. generate 7,(f'). Let

£ be a simple closed curve on f' suchthat £ ~ Q; Q, on f'. Then 71(M) has a
presentation [10]

n) ={Q, -, Q, H: [Q;, H] = 1, Q¥inPi= 1, @, - Q, =HP},
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and 7,(M)/{ H) is a free product with amalgamation (over Q; Q, = (Q; -+ Q.)"1).
Here <H> denotes the smallest normal subgroup of 7)(M) containing H. There-
fore Q; Q> has infinite order in 7;(M)/ { H), and since H is an element of the cen-
ter of m{(M), it follows that Q; Q2 and H generate a free abelian subgroup of rank 2
in ﬁl(Mi. This subgroup is carried by the torus T =p-!(£) in M. Hence M is
sufficiently large.

If =52 and M has at most two exceptional fibers, then M is either a lens
space or S! X 82 (cases (1) and (2), respectively).

If =82 and M has three exceptional fibers, then M is not sufficiently large if
and only if H; (M) is finite [13, p. 511]. The determinant of the relation matrix for
H;(M) is given by

A=ba,a,a; +pya,as +B,0 03 +B30; 0,
(see [10, p. 208]). H;(M) is finite if and only if the normal form of this matrix has
no 0 in the main diagonal, that is, if and only if A # O.
4, ALMOST SUFFICIENTLY LARGE SEIFERT FIBER SPACES
Suppose M is a Seifert fiber space whose orbit surface f is a closed orientable
surface of genus g > 0, and with n exceptional fibers of orders oy, -, a,
(@; > 2). Then 7;(M) has generators
A]_ ’ Bl y T Ag) Bg) Ql s T Qn) H

and relations
_-l )

A;HA;,  =H i B-HB{1 = Hni, where €;,71; =x1,

1

Q?iHB i =1 for some relatively prime exponents «; and B;, and

g

Q; ' Qy II [Ai, Bi] = Hb, where b denotes an integer.

i=1
It follows that m;(M)/ ( H) has generators
Al: By, =, Ag: Bg: Q1, ", Qn

and relations

g
Q QI [A, B = 1.

The group 7;(M)/ ( H> is infinite if and only if either
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i) g >0,

(ii) n > 3, or

a0 ne 1.1 1 - s
(iii) g =0, n = 3, and a + = + o <1 (see [10, p. 203]). In either case, it is

a Fuchsian group. If 7 ,(M)/ < H> has no elements of finite order, then n = 0, and
M has no exceptional fibers.

THEOREM 1. A closed, P2%-irreducible Seifert fibev space M with infinite

Sundamental group has a covering M that is an S'-bundie over a (closed) orientable
suvface ¥ of genus g> 1.

Proof. If the orbit surface f of M is nonorientable, we can construct a 2-fold
covering of M associated with the orientable cover of f (see [10, p. 198]). There-
fore assume that f is orientable. The fiber H of M generates a cyclic normal sub-
group <H > of m(M), and G = 7;(M)/ < H> is a Fuchsian group. It is well known
(see for example [16, p. 85]) that such a group has a normal subgroup N of finite
index that contains no elements of finite order. Let C: M — M be the covering as-
sociated with ker ¢, where ¢: 7;(M) — G/N is the composition 71(M) - G — G/N.
Since H € ker ¢ = ﬂl(M) the fiber lifts to the fiber H of M. But the group

ﬂl(ﬁ)/<ﬁ> =~ ker ¢/<H> ~

has no elements of finite order; hence M has no exceptional fibers and is an sl-
bundle over the orbit surface F. The manifold M is PZ2-irreducible, and F is a
branched covering of f. It follows that F is a closed, orientable surface of genus
g=>1.

COROLLARY. A P2-irveducible Seifert fiber space with infinite fundamental
group is almost sufficiently large.

Proof. An Sl-bundle over a surface of genus at least 1 is sufficiently large, by
the proof of Proposition 2.

Remark. After this paper was submitted, I learned that J. Hempel also has a
proof of Theorem 1.

5. INCOMPRESSIBLE SURFACES IN SEIFERT FIBER SPACES

If the orbit surface f of a Seifert fiber space M is not SZ, PZ, or a disk, then
p“l(ﬂ) is an incompressible torus or Klein bottle, where { is any 2-sided, noncon-
tractible, simple closed curve on f. The following theorem describes the structure
of M, in the case where M contains other closed incompressible surfaces.

THEOREM 2. Suppose M is a Seifevt fiberv space that contains an incompres-

sible surface F different from S%, P2, torus, Klein bottle, disk, annulus, and
Moebius band.

(a) If ¥ separvates M, then the two components ave twisted I-bundles over a
compact surface G, wheve F is the corrvesponding 0-spheve bundle.

(b) If F does not sepavate M, then M is a fiber bundle over S! with fiber F.

Proof. By Proposition 1, we can assume that M is P2-irreducible. First as-
sume that M is orientable. Then nl(M) has an infinite cyclic normal subgroup
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<H>, generated by the fiber H. Hence M has a 2-fold covering M such that 7 (M)
has nontrivial center. Let ¥ be a component of p~1(F), where p: M — M is the
covering map. Then HI(F) does not contain the center of 771(1\71). Hence it follows
from Waldhausen’s proof of Satz 4.1 in [12] that M is a fiber bundle over S! with
fiber F. If f‘l is another component of p-!(F), then f‘l is parallel to F (see [3,
lemma on p. 91]). Thus M' = ¢1(M - U(p~1(F))) (where U(-*-) is a small product
neighborhood) is homeomorphic to F X I or consists of two components, each home-
omorphic to F X I. Now the theorem follows if we apply [5, Theorem 2] and [6,
Theorem 3.2] to the covering M' — M' = c1(M - U(F)).

If M is not orientable, then the 2-fold orientable cover is as in the theorem,
and the theorem follows again by the same arguments.

Remarks. 1. The proof shows that the hypothesis *“M is a Seifert fiber space”
can be replaced by “m;(M) has a cyclic normal subgroup”. Generalizing [13], C.
McA. Gordon and Heil have shown that if M is a sufficiently large orientable 3-
manifold and ﬂl(M) contains a cyclic normal subgroup, then M is either a Seifert
fiber space or a union of two twisted I-bundles over a closed surface G (see also

[15]).

2. For the case where M is orientable, the Seifert fibering in case (b) of Theo-
rem 2 is described in [13, p. 515]. The fibering in case (a) can be constructed in the
same way (the fibers are composed of finitely many lines of the two line bundles).
This shows again that an incompressible surface F of negative Euler characteristic
is isotopic to one for which p I F: F —1{ is a branched covering of the orbit surface
[12, p. 116].
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