SEMIGROUPS WITH IDENTITY ON E3
Frank Knowles

Let M be a semigroup with identity on E3, and let G be the maximal connected
subgroup containing 1. It is well known that G is a three-dimensional Lie group and
an open subset of M. In this paper, we show that if G has a nontrivial compact sub-
group, then the boundary of G contains an idempotent. This result is a partial
answer to a question posed by P. Mostert and A. Shields [13].

Let L be the boundary of G, and let S be the closed subsemigroup G U L. Any
action of a subgroup of G on M, S, or L (an ideal of S) will be the obvious one via
the semigroup multiplication in M. We assume that G contains a nontrivial com-
pact subgroup C. It follows that C is isomorphic to the multiplicative group of
complex numbers of norm one [12]. Also, each of the sets

= {x e Ml xC = {x}} and F, = {x e M| Cx={x}}

is a closed subset of M that is homeomorphic to E! [10]. If x is a point of M not
in F;, then xC, the right C-orbit through x, is homeomorphic to C. A similar
statement is true regarding F, and left C-orbits. Because the closure of each G-
orbit in L is a one-sided ideal in S, we may assume that no G-orbitin L is
compact.

The following lemma implies that for each x in L,
dimxG=1 = x€ F; N L and dimGx=1 => x€ F, NL.

Thus x € L \ (F; U Fp) = dim Gx = dim xG = 2.

LEMMA 1. If xG is a one-dimensional G-ovbit in L that conlains a subset K
that is homeomovrphic to a civcle, then xG = K.

Proof. Let P be a one-parameter subgroup of G such that xP = xG, and let
h: P — xP be the map h(p) = xp. If h is not one-to-one, then h(P) = K. Suppose that
h is one-to-one, and that xP # K. We shall reach a contradiction. The inverse of K
under h cannot be compact. There exists a sequence {91} in P such that {p;} has
no convergent subsequence, such that for each i, h(p;) € K, and such that h(pl) -k
in K. Let h(p) =k, and let I be any finite closed interval about p in P. Clearly,
h(I) is an arc with k in its interior, and h(I) N K contains no subarc with k in its
interior.

The P-orbit xP is locally homeomorphic to Z X A, where Z is a zero-dimen-
sional subset of xP, and A is an arc [7]. Thus we may assume that Z X A isa
neighborhood of k in xP that contains an arc A; in K about k and an arc A; in
h(I) about k. For i =1, 2, the projection of A; onto Z is a connected subset of Z
containing k; hence A; and A, are both contalned in the same fibre {k} X A. This
implies that AI N A, is an arc about k, contrary to the results of the previous
paragraph.
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LEMMA 2. If L contains no idempotent, then no point of L is a fixed point
of C acting on the vight ov on the left in L. Thus for each X in L,
dim Gx = dim xG = 2.

Proof. Assume that L contains no idempotent. Since G(F; NL) c F; N L, it
follows that dim Gx =1 for each x in F; N L. The statement dual to Lemma 1
implies that F; N L C F, N L. A similar argument will show that
F,NLCF; NL. Thus F; "L =F, N L, and we let F denote this set. F is an
ideal in S; hence F is homeomorphic to a connected, closed subset of E!. Since F
cannot be compact, this implies that F is either a line, a half-line, or the empty set.
The argument of [13, pp. 386-387] shows that there is an idempotent in F if F isa
line or a half-line. Thus F is empty.

LEMMA 3. For each x in L, let P, denote the connected component contain-
ing 1 of G.(x), and assume that L contains no idempotent.

(1) If for each x and y in L, P, is conjugate to Py, then for each x in L,
Gx C xG, and G has a normal one-parameter subgroup.

(2) If there exist an x in L and a closed two-dimensional subgroup V of G
such that dim xV = 2, then Gx C xG, and G has a normal one-pavameter subgvoup.

Proof. If for each x and y in L, P, is conjugate to Py, then by [3, page 315,
Theorem 1.11], G has a local cross section at x. On the other hand, if there exists
a closed two-dimensional subgroup V of G such that dim xV = 2, then V has no
local isotropy at x, and by Theorem 1.8, page 312 (same reference), V has a local
cross section at x. Consequently, the argument below for (2) is identical to that
for (1).

There exist a neighborhood W of 1 in V and a closed subset D of L containing
X such that D X W is homeomorphic to a neighborhood of x in L via the action of V
on L. Since dim W =2 = dim L, we know that dim D =0 [5]. Thus D is totally dis-
connected. Let Gp, denote the subgroup {g € G| gx € xG} of G. If G, contains a
neighborhood of 1 in G, then Gj, = G, and Gx C xG. This in turn will imply that
G¢(x) is normal, and the proof will be complete. Therefore let B be a closed ball
about 1 in G such that Bx C DW. Since Bx is connected, it must be contained in a
single fibre of DW. Thus Bx C xW, and B C Gy, .

LEMMA 4. If for each x in L, therve exist closed two-dimensional subgroups
Vg and Vi of G such that dim xVy =dim Vy x =2, then L coniains an idempotent.

Proof. Let D be a local cross section to the action in L of Vi at x2 , and let
N be a neighborhood of x in L such that NN C DW. There exista y in N and an
arc A in S such that the endpoints of A are 1 and y, and A NL = {y} [2, p. 362].
It follows that yA is a connected, locally connected subset of L [14, p. 89], and thus
there exists a connected subset U of DW containing some points in yG and the
point y2. The projection of U onto D is a connected subset of D containing y2.
Since D is totally disconnected (see the proof of Lemma 3), this implies that
y2 € yG. It follows from Lemma 3 and its dual for left orbits that yG = Gy. This
implies that yG is, algebraically, a group [4, p. 4]. Thus yG contains an idem-
potent.

THEOREM. Let M be a semigroup with identity on E3, and let G be the maxi-
mal connected subgroup containing 1. If G has a nontrivial compact subgroup, then
the boundary of G contains an idempotent.

Proof. Assume that L contains no idempotent. Then the conclusions of Lemma
2 hold. That is, for each x in L, dim Gx =dim xG =2, xC = {x}, and Cx = {x}.
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For each x in L, let Py denote an arbitrary noncompact one-parameter subgroup
of G that satisfies at least one of the two statements (1) xPy = {x}, (2) Pyx= {x}.

Let (G, p) be a simply connected covering group of G. We denote the connected
component containing 1 of p‘l(Px) by Py, and we denote the connected component
containing 1 of p~1(C) by C. The proof now proceeds in several steps that will,

after some preliminaries, deal with the various possibilities for G and arrive, in
each case, at a contradiction, thus showing that our assumption is untenable.

We shall use the notation of [8], in referring to the various Lie groups on E3.
Basic information about these groups may be found on pages 309-310 of [8] and on
pages 12-13 and 27-29 of [4]. There are two mistakes in these references that
should be noticed. Since, in both [4] and [8], the term “semidirect product” refers
only to those semidirect products on E3 that have no center of positive dimension,
the statement “a # 1” should be inserted beside the matrix (ii) on page 310 of [8].
(The semidirect product obtained by letting a = 1 is isomorphic to N.) On page 13
of [4] is a list of representations t — P(t) of the additive group of real numbers in
the group of nonsingular 2-by-2 real matrices. The list is meant to be complete, but
the possibility that t — P(t) might not be one-to-one is not treated. If t — P(t) is
not one-to-one, then there exist a basis for E2 and a nonzero real number ¢ such
that for all real t,

cos to sin té
P(t) =
-sin to6 cos to

The corresponding semidirect product on E3 is isomorphic to the group

f— cos to sin t6 0 X |
-sin to cos t6 0 y
0 0 1 t

|0 0 0o 1

(1) C is a closed one-parameter subgroup of G, and the intersection P, N C is
trivial.

Arvgument. Since p ] C:C—Cisa covering, the first statement is clear.
Similarly, P, is a closed one-parameter subgroup of G, and p| Py P, —» P, isan
isomorphism. Let H=P, N C. Then p(H) c P, N C={1}. Thus H= {1}.

(2) If G is a semidivect product V, R, then G (and hence G) has no novmal
one-pavameter subgroup.

Avgument. Suppose that (v, r) € ker p (which must be nontrivial). It is easy to
verify that since (v, r) is in the center of G, the element v must be fixed under all

inner automorphisms of G determined by elements of R, and the inner automor-
phism of G determined by r must fix all elements of V. An examination of the

possibilities for V, R shows that G must be isomorphic to the group mentioned just
above (1). Thus G has no normal one-parameter subgroup. The center of G is the
infinite.cyclic subgroup of R generated by t = 27/6, and C =R. Notice, for later
reference, that any two one-parameter subgroups of V, are conjugate by an inner

automorphism of G determined by an element of R.
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(3) If for each ?X, there exists a one-pawzmeter subgroup E) of G such that
(i) either Q or C is normal, and (ii) each element g in' G has a unique vepresen-
tation in the form g = pqc, wheve P € Px, §eQ and € e C then the hypotheses of
Lemma 4 ave satisfied.

Avgument. If Q= p(é) were not closed, then Q  would be a circle group, and
that would contradict the fact that p| Q is one-to-one. Thus Q is a closed one-
parameter subgroup of G such that Q N C is trivial. If either Q or C is normal,
then QC is a closed two-dimensional subgroup of G. The hypotheses imply that
each element g in G has a unique representation in the form g =c¢qp. Thus

xP, = {x} =2 xG = xQC and P .x = {x} = Gx = CQx = QCx.

Since P, N QC is trivial, the corresponding QC-orbit must be a two-dimensional
subset of L.

Suppose A, B, and C are subgroups of a group D. In what follows, we shall
write “D = ABC” in place of “each element d of D has a unique representation in
the form d = abc, where a € A, be B, and c € C.”

(4) G cannot be abelian or isomorphic to R x Af(1).

Avgument. We shall show that the hypotheses of (3) are satisfied. This is clear
if G is abelian; therefore we assume that G is isomorphic to R X Af(1). Let T be
the normal one-parameter subgroup of Af(1). If @ is any one-parameter subgroup
of G different from T and from R, then G = QTR = TQR. The center of G is R;
therefore R = C. The hypotheses of (3) are satisfied.

(5) G cannot be isomorphic to the nonabelian nilpotent group N.

Avgument. As in (4), we shall show that N = f’xéﬁ. A representation of N is
the group

1 X y
0 1 Z
0 0 1

1 0 y
0 1 0
0 0 1

Let t — P(t) be a parametrization of P « - Then
1 x(t) y)
Pt) =] 0 1 z(t)

0 0 1
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It is easily verified that there exist real numbers a and b, not both zero, such that
for all real t, x(t) =a-t and y(t) =b-t. Suppose a # 0. (An argument similar to
what follows will work if a =0 and b # 0.) Given x, y, z, let t = x/a. There exists
a unique y such that

1 x  yt) 1 0 0 1 0 ¥ 1 x y
0 1 bt -1 0 1 z-bt |-] O 1 0{=|0 1 Z
0 0 1 0 0 1 0 0 1 0 0 1

It follows immediately that G = TDXQ'E, where (NQ is the subgroup

1 0 0
0 1 Z
0 0 1

(6) G cannot be a semidirect product V,R.
Arvgument. We have already seen that G is isomorphic to the group

[~ cos t6 sin t6 0 x|
-sin t@ cos t4 0 y

0 0 1 t

0 0 0 1

L -

and that C is the subgroup

— . ]
cos té sintfé- O 0
-sin t@ cos tf 0 0

0 0 1 t

0 0 0 0

. -

If some '13 is not contained in V,, then the dimension of the corresponding p(VZ)—
orbit through x is two. This and part (2) of Lemma 3 yield a contradiction. If

P C V, for each x in L, then P is conjugate to P , for all x and y in L. This
and part (1) of Lemma 3 y1e1d a contradlctlon

(7) G cannot be isomorphic to the simply connected coverving group SL2) of the
group sl(2) of 2-by-2 real matvices of detevminant one.

Avgument. Let q: G — s£(2) be the covering map. Let K be the rotation group

cos 6 sin 6
-sin 8 cos 6
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and let W be the nonabelian planar subgroup of s£(2) consisting of matrices of the

form
t b
0o 1/t |

where t > 0. It is easily verified directly that s¢(2) = KW, and this implies that

G = KW where K is any one-parameter subgroup of G that contams the center, and
q | W:W — W isan isomorphism. We may assume that K= C, therefore G = CV,
where p I W:W — V isan isomorphism. Since G is a simple group, V is not nor-
mal; hence there exists a g in G such that g‘1 Vg=1U # V. There exists at most a
single one-parameter subgroup T of G suchthat TCc VN U. If P, is conjugate to
T for each x in L, then Lemma 3 yields a contradiction. If Py is not contained in
V, for some x in L, then dim xV =2, and Lemma 3 yields a contradiction. Suppose
that P, C V, for each x € L, and that P, is not conjugate to T. If xo Py = {x0},
then P_ %8 =g-1 P, 08 is in U, but not in V, contrary to our assumption. A similar
contradiction is reached it P o¥o0 = {xo}

We have considered each of the possibilities for G. In each case, the assump-
tion that L contains no idempotent yields a contradiction. The proof is complete.

Comment. The theorem above is a partial answer, for the case n =3, toa
question posed by P. Mostert and A. Shields [13]. If M is a semigroup with identity
on a connected (separable, metric) two-dimensional manifold, and G is the maximal
connected subgroup containing 1, then, topologically, G~ is either (i) M, (ii) a plane,
(iii) a half-plane, or (iv) the cartesian product of a half-line and a circle. This re-
sult, which answers completely the question referred to above for n = 2, does not (to
my knowledge) appear in the literature, but it focllows in a direct way if one exploits
fully the following information: (a) the description above is valid for G° if M isa
plane [11], (b) the techniques and results in [6], (¢) the simply connected covering
space of a separable metric manifold is a separable metric manifold [9, page 181],
and (d) the only simply connected (separable metric), noncompact, two-dimensional
manifold is the plane [1, page 104]. The author is indebted to David Kahn, who was
kind enough to point out that an arduous proof of this result was unnecessary.
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