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1. INTRODUCTION

The importance of the Grunsky-Nehari inequalities [4] and their extension given
by M. Schiffer and O. Tammi [6] is well established in the theory of bounded univa-
lent functions. It is the purpose of this article to show that these inequalities also
contain sufficient information to prove classical results on analytic functions with
positive real part. In particular, we shall obtain the conditions that O. Toeplitz [7]
gave as an algebraic characterization of C. Carathéodory’s [1] geometric descrip-
tion of the coefficient region for functions with positive real part. In addition, we
shall show that the finite Toeplitz conditions are equivalent to a strengthened form
with fewer free variables.

2. GRUNSKY-NEHARI INEQUALITIES

Before deriving the Toeplitz conditions, we shall write the Grunsky-Nehari-
Schiffer-Tammi inequalities in a slightly different form, which for our purposes is

more convenient. Let S(b;) be the class of functions f(z) = Enzl b,z" that are

univalent in the unit disk, with |f(z)| £ 1, and normalized so that b; > 0. We first
state the inequalities as given by Schiffer and Tammi in [6].

Let xg, X1, **+, Xy be complex numbers, with the vestviction that x is veal.
Then, for £ € S(b,),

N N N |X |2
1 - m
(1) %N 2 A XXyt 2 BinEmZn ( < 2 e
m,n=0 m,n=1 m=1

wheve the coefficients A.,, and B.,, ave defined by the power series

(2) tog 2L-L8) - mio Amnz™¢"

and

(3) “log[1 - f(z)i(€)] = 2 B, z™E"
m,n=1

in the bicylinder |z| <1, |¢| <1.
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We now show that by changing slightly the generating functions (2) and (3), we
can remove the requirement that xg is real in (1).

LEMMA 1. Let f be in the class S(b,), and let A
the power series

and B_ , be defined by

mn

4) log b, f(ZZ) : fC’(C) = ) A’mnzmcn
m,n=0

and

) g Lo @I 28 _ ¥ §  men

1- ZE f(Z)-f—(E; m,n=0 wn

in the bicylinder |z| < 1, |¢t| < 1. Then

N
(6) 2 A nXmxn < 23 BmnXmXn V Xqg, X1, ", Xy € C.
m,n=0 m,n=0
Proof. Let xq, x;, ***, Xy be complex numbers. Applying the inequalities (1)
to 2R xg, x;, v, Xy, We find that
N
N Y 4Ag(Nx)Z+4(mzxg) 20 A_ox + Z) A X X,
m=1 m,n=1
(7) N o N
m -
_<. E m - Z; anxmxn°
m=1 m,n=1

Using the relations (%ix0)% = (|xq| %+ %x3)/2, %xg = (xo+ X()/2, and the fact that
Ay =log b, is real, we can write this inequality in the form

9n{A 2+EA

00%0 mnim%n
m,n=0
(8)
N |X |2 N N
< L= 20 B XX, - 20 2 A_X..%g.
m=1 m,n=1 m=0

But according to the definition of the coefficients Kmn and Emn, inequality (8) is
simply the relation

N N
(9) A E Kmnxmxn S E ﬁmnxmin
m,n=0 m’n:O
Since x4, ***, Xy are arb1trary, we obtain (6) from (9) by replacing each x_ by
i¢
x e'”, where ¢ = - Earg Em n=0 A anX¥mXn -
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Remark. The infinite matrices (A, ) and (B, ) remain symmetric and
Hermitean, respectively.
3. TOEPLITZ CONDITIONS

We now obtain the Toeplitz conditions [7] on the basis of Lemma 1.

<0
THEOREM 1. Let p(z) =1+ 2J__, ¢, z" be analytic in |z| < 1 and %p > 0.
Then

N N
(10) 2 Cm+nX¥mXn| < 2 Cm-n¥mZXn V Xg, """, XN € C,
m,n=0 m,n=0

where by definition ¢co =2 and c_,=¢Cp (n=1, 2, ***).

Proof. The function

(11) f(z) = = expS -l-z——a(%z—)dz
0

satisfies the condition %z f'(z)/f(z) > 0. Therefore f is a normalized univalent
mapping that is starlike with respect to the origin. Consequently, the function

(12) Fuz) =t-1[1-t)f(z)] = 1-tz+- (0<t<1)

belongs to the class S(1 - t). To apply Lemma 1 to the function F;, we introduce the
coefficients A (t) and B, (t) defined by the power series

o0

(13) log (1 - t)w = 2 K__(t)z™¢n
z-¢ m,n=0

and

(14) [1- Fz) F(©)]z8 _ 5B, ()zmEn,

(1-2D)F (D) FLE)  mon-0

Then, for arbitrary complex numbers Xgs **°, XN We have the inequality

N
(15) < 2 B (Wx, %, .

m,n=0

N ~
27 A t)x_ x
mn m n

m,n=0

Note that A (0) =0 and an(o) = 0, since Fy(z) = z. Moreover, the one-sided
derivatives A},,(0) and B!, (0) exist. Dividing (15) by t and letting t — 0, we find
that these derivatives satisfy the inequality

N
< 2 B _(0)x_x%_.

m,n=0

N
20 KO xpx,

m,n=0

(16)
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This inequality is precisely the inequality (10). Indeed, since

OF(z)
attz ) ff'((zz)) = -zpla),

(17)
t=0

we conclude by differentiating the generating functions (13) and (14) that

(18) -y - zple) - TR N P
m,n=0
and
p(Z) +m _ - =t m pn
(19) ik mio Brn(0) 2™ E7 .

Comparing coefficients, we find that A!, (0) = - ¢py4n and Bun(0) = cpyp -

Remark. We emphasize that the classical Toeplitz conditions

N
(20) 0< 2 CpnXm%, VX, ", xXy€C,

m,n=0

which follow as a corollary of Theorem 1, in their totality already characterize the
coefficients of a function with positive real part, so that from this point of view one
does not gain more by adding the symmetric form on the left side of (10). We should
mention that there are alternate proofs of (20) by E. Fischer [3], F. Riesz [5], and
others. It is not surprising that, in fact, Fischer’s proof can very easily be extended
to a proof of the inequality (10). Our point of view has been to establish the con-
nection with the Grunsky-Nehari-Schiffer-Tammi inequalities.

4. APPLICATIONS

For applications, the inequalities (10) are more useful if we take the extreme
with respect to x,. It is not difficult to see that the optimal choice is
x0=-(e; x; + - + ¢, x,)/2. The following is then an immediate consequence of
Theorem 1.

THEOREM 2. Under the assumptions of Theorem 1,

N
1
27 (Cm+n - 'é'crncn) Xm %n
m,n=1
21
(21) N
< 27 (cm_n—%cmén) XnX, VX, ,xXn€C.
m,n=1]
By choosing special values for x;, **, Xy in Theorem 2, we obtain some clas-

sical results for functions with positive real part. The choice x;, =1, x_ =0 (n # k)
gives the following proposition.
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COROLLARY 1. Let the function p(z) =1+ 2iy_, ¢, 2 be analytic in |z| < 1
and Rp > 0. Then

1 2

(22) 'CZk-—z‘Ck _S 2-%‘01{'2.

The inequality (22) actually defines the disk of values for c;y, for each preassigned
¢, - Indeed, the boundary functions are

1 +%(ck +ney) 2¥ + nz2k

(23) p(z) = for |n] = 1.

1 -

1-5ex - ney) 25 - 22k

Note that the inequality |c| < 2 is also a consequence of (22).
The choice x, =2z" in Theorem 2 gives the following, in the limit as N — o,
COROLLARY 2. Let p be analytic in |z| < 1 and $ip > 0. Then

2(y) - 2|zl % p(z) p(z) - 1|2
(24) pi(a) - =1 < 2 P - | i
z 1- |z 2 |z|
Inequality (24) defines the correct disk of values for p'(z), for each preassigned
p(z). Moreover, if we introduce the function p(z) =[1 + z F(z)]/[1 - z F(z)], where F

is an arbitrary analytic function in |z| < 1 bounded by 1, then the inequality (24)
transforms into

1- |F(z)|?
1- |z|2

H

(25) |F'(z)| <
the invariant form of Schwarz’s lemma.

5. REDUCTION OF FREE VARIABLES

For fixed N, the conditions (20) characterize the finite sequences ¢, *-+, ¢y
that are the leading coefficients of a function

ee]

(26) plz) = 1+ 2 ¢z (|z| <1)

n=1

with positive real part. Since the strengthened conditions (10) involve not only

€y, ***, ¢y but also cpy g, **°, Cpyy, it is natural to ask whether the inequalities (10)
for fixed N are actually equivalent to the Toeplitz conditions (20) with 2N in place
of N. The following theorem shows that they are, in fact, equivalent.

THEOREM 3. Lef cy, ", con € C, c_, =cC,, and cq =2. Then
N N
(27) cm+nxmxn S E Crn-nxm}—(n VXO’ ) XNE c
m,n=0 m,n=0




134 HEINZ LEUTWILER and GLENN SCHOBER

+f and only if
2N

(28) 0< 20 copnéméin Vo, , éxn€C.

m,n=0

Remark, Note that the conditions (27) reflect a substantial reduction in the
number of free variables over the equivalent conditions (28).

Proof. Denote by G,7 and £, the sets of points (¢, **, ean) € 4N gatis-

fying (27) and (28), respectively. It is then sufficient to show that G, = f,n. Ina
letter to Carathéodory, Toeplitz [7] proved that condition (28) is sufficient for

¢y, '+, c2N to be the leading coefficients of a function (26) with positive real part.
But then Theorem 1 implies that (27) is satisfied. Hence G2 f,1.

Carathéodory [1] observed that f,n 1is a closed convex body for which the
origin is an interior point, and he proved that each boundary point is of the form

2N ~-i0; -2i6: -2Nif:
Ej:l r;(2e 193, 2e 2193, ", 2e 2NIGJ) corresponding to the function

2N

iej "
(29) >3 )\je_.__z
i0: ’
j:]_ e J - Z,

2N
where A >0, 2j=12j=1,and 0< 0; < 6, <+ < Oy <27 If Gy - R2N con-
tains a point, it must therefore be of the form

2N
-i0: -2i0.
(30) a 2 A5(2e 163, 2e 193, -y

j=1

-2N1i8:
2e 10

J)

for some a > 1. Since this point belongs to ©,, (27) implies that
2

2N N .
20 2J Aj( 27 x e P j) +2(1 - a)x3
j=1 n=0
31
(31) 2N N _ 2 N
<20 2 A 2 xne_mej +2(1-a) 2 |xn|2
j=1 n=0 n=0

for all xy, --, Xy € €. The finite Fourier series
N

(32) $ 2 x e"ind
n=0

on [0, 27) may be used to interpolate 2N + 1 values (see [2], for example). We
choose x, ***, Xy So that (32) vanishes at the 2N points 6,, ***, 6,1, but is not
identically zero. Then

N
(33) 2 |x,|% > 0.
n=1
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Application of the triangle inequality to (31) yields the relation

N
(34) 20 - %8| <201-0) 2 |x,]°.

n=0

Since a > 1, (33) and (34) are incompatible. Consequently, €, = Son-

1

-3
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