RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE AND THE GROWTH FUNCTION OF SUBMANIFOLDS

Joseph Erbacher

1. Let \overline{M} be a Riemannian C^{∞} -manifold, and let M be a compact C^{∞} -submanifold of codimension 1, possibly with boundary. If there exists a globally defined C^{∞} unit-normal field N on M, we say that M is relatively orientable. If \overline{M} is orientable, then M is relatively orientable if and only if M is orientable. We call a submanifold of codiemnsion 1 a hypersurface.

Suppose M is relatively orientable, and let N be a C^{∞} unit-normal field on M. For m ϵ M, let $g_m(s)$ denote the geodesic (of \overline{M}), parametrized by arc length s, such that $g_m(0) = m$ and $\dot{g}_m(0) = N(m)$, where \dot{g}_m is the tangent vector to g_m . Let M_s be the set of points $\{g_m(s) \mid m \in M\}$. For small s, the set M_s is a C^{∞} -submanifold of \overline{M} . Denote the volume of M_s by A(s). Following H. Wu and R. A. Holzsager [3], [4], we call A(s) the *growth function* of M. Let $A^{(k)}$ denote the kth derivative of A with respect to s. Wu and Holzsager [3], [4] showed that the two-dimensional Riemannian manifolds of constant curvature equal to c are characterized by the equation $A^{(2)} + cA = 0$ for all M. Let L = d/ds, and let c be a constant. Let

(1)
$$L_n = (L^2 + c)(L^2 + 9c)(L^2 + 25c) \cdots (L^2 + (n-1)^2 c)$$

if n is even, and

(2)
$$L_n = L(L^2 + 4c)(L^2 + 16c) \cdots (L^2 + (n-1)^2c)$$

if n is odd. We shall prove the following four theorems.

THEOREM 1. Suppose \overline{M} is an n-dimensional Riemannian manifold of constant curvature equal to c. Then the growth function A of each compact, relatively orientable hypersurface M of \overline{M} satisfies the differential equation

$$L_n A = 0$$
.

Furthermore, this is the only differential equation of lowest order that A satisfies for every M.

THEOREM 2. Suppose the growth function A of each compact, relatively orientable hypersurface M of \overline{M} satisfies the differential equation

(3)
$$A^{(3)} + c_2 A^{(2)} + c_1 A^{(1)} + c_0 A = 0,$$

where c_2 , c_1 , and c_0 are functions of s, and no lower-order differential equation is satisfied by A for all M; then \overline{M} is a three-dimensional Riemannian manifold of constant curvature, say K, and therefore, by Theorem 1, $c_2 = c_0 = 0$ and $c_1 = 4K$.

Received August 20, 1971.

Michigan Math. J. 19 (1972).

THEOREM 3. Suppose the growth function A of each compact, relatively orientable hypersurface M of \overline{M} satisfies the differential equation

(4)
$$A^{(4)} + c_3 A^{(3)} + c_2 A^{(2)} + c_1 A^{(1)} + c_0 = 0,$$

where c_3 , c_2 , c_1 , and c_0 are functions of s, and no lower-order differential equation is satisfied by A for all M; then \overline{M} has constant curvature on each of its connected components. Therefore, by Theorem 1, either dim $\overline{M}=4$, and $c_3=c_1=0$, $c_2=10K$, $c_0=9K^2$, where K is the curvature of \overline{M} ; or dim $\overline{M}=2$, \overline{M} has precisely two connected components of curvatures K_1 and K_2 ($K_1 \neq K_2$), and $c_1=c_3=0$, $c_2=K_1+K_2$, $c_0=K_1K_2$.

THEOREM 4. If dim $\overline{M}=k$ and $L_nA=0$ for each compact, relatively orientable hypersurface M of \overline{M} , then $k \leq n$. If k=n, then \overline{M} has constant curvature equal to c. If k=n-1, then \overline{M} is an Einstein manifold.

Holzsager (see [1] and [2]) has recently obtained Theorems 1 and 4, together with related results.

2. Proof of Theorem 1. Suppose \overline{M} is an n-dimensional Riemannian manifold of constant curvature equal to c. Let M be a compact, relatively orientable hypersurface, and let N be a C^{∞} unit-normal field on M. Let Ω_s be the volume element for M_s , and set $\Omega = \Omega_0$. Since M and M_s are diffeomorphic by the mapping $m \to g_m(s)$, we may consider Ω_s as defined on M. Let B denote the second fundamental form of M, considered as a tensor of type 1-1; that is, for each X tangent to M, let $BX = -D_X N$, where D is the covariant differentiation in \overline{M} . An easy calculation will show that

(5)
$$\Omega_{s} = \left\{ \prod_{i} (1 - sb_{i}) \right\} \Omega \quad \text{if } c = 0,$$

(6)
$$\Omega_{s} = \left\{ \prod_{i} \left[\cos(s/R) - Rb_{i} \sin(s/R) \right] \right\} \Omega \quad \text{if } 1/R^{2} = c > 0,$$

(7)
$$\Omega_s = \left\{ \prod_i \left[\cosh(s/R) - Rb_i \sinh(s/R) \right] \right\} \Omega \quad \text{if } -1/R^2 = c < 0,$$

where $\{b_i | 1 \le i \le n-1\}$ is the set of eigenvalues of B.

Since the calculation is local in nature, we may assume that \overline{M} is the Euclidean space R^n , the sphere $S^n(R)$, or the hyperbolic space $H^n(R)$. We consider $S^n(R)$ as the sphere of radius R, contained in the Euclidean space R^{n+1} , and with center at the origin. We denote by E^{n+1} the Minkowski space with global coordinates x_0, x_1, \cdots, x_n and pseudo-Riemannian metric determined by the quadratic form

$$q(x, y) = -x_0 y_0 + x_1 y_1 + \cdots + y_n y_n$$
,

and we consider $H^n(R)$ as the submanifold of E^{n+1} defined by the equation

$$-x_0^2 + x_1^2 + \dots + x_n^2 = -R^2$$
 $(x_0 > 0)$.

If $\overline{M} = R^n$ and O is the origin in R^n , let $\overrightarrow{x}_s(m) = \overrightarrow{Og}_m(s)$, and set $\overrightarrow{x} = \overrightarrow{x}_0$. Then

$$\vec{x}_s = \vec{x} + sN.$$

If $\overline{M} = S^n(R)$ and O is the origin in R^{n+1} , let $\overrightarrow{x}_s(m) = \overrightarrow{Og}_m(s)$, and set $\overrightarrow{x} = \overrightarrow{x}_0$. Then

(9)
$$\vec{x}_{s} = (\cos(s/R))\vec{x} + (R \sin(s/R))N$$
.

If $\overline{M} = H^n(R)$ and O is the origin in E^{n+1} , let $\overrightarrow{x}_s(m) = \overrightarrow{Og}_m(s)$, and set $\overrightarrow{x} = \overrightarrow{x}_0$. Then

(10)
$$\vec{x}_s = (\cosh(s/R))\vec{x} + (R \sinh(s/R))N.$$

Using (8), (9), and (10), we can easily obtain (5), (6), and (7).

Equations (5), (6), and (7) imply Theorem 1.

3. To prove Theorems 2 and 3, we must calculate the first four derivatives of A with respect to s. Let I_k be the integrand for $A^{(k)}$; that is, let

$$A^{(k)} = \int_{M_s} I_k \Omega_s,$$

where Ω_s is the volume element for M_s . Let $S = \dot{g}_m(s)$; then S is a unit-normal field on M_s . Let B denote the second fundamental form of M_s , considered as a tensor of type 1-1; that is, for each X tangent to M_s , let $BX = -D_X S$, where D is the covariant differentiation in \overline{M} . In [4], it is shown that

(11)
$$I_1 = -(tr B)$$

and

(12)
$$I_2 = (\operatorname{tr} B)^2 - (\operatorname{tr} B^2) - \langle \mathscr{R}(S), S \rangle,$$

where tr stands for trace, \mathscr{R} is the Ricci tensor of \overline{M} (as in [4]), and \langle , \rangle is the inner product. Equation (11) implies that

(13)
$$I_{k+1} = -(tr B)I_k + SI_k$$
.

It is a tedious but straightforward task to show that

(14)
$$I_{3} = -(\text{tr B})^{3} + 3(\text{tr B})(\text{tr B}^{2}) - 2(\text{tr B}^{3}) + 3 \langle \mathcal{R}(S), S \rangle (\text{tr B}) - 2 \sum_{i,k} \langle R(S, E_{i})S, E_{k} \rangle B_{ki} - \langle (D_{S}\mathcal{R})S, S \rangle$$

and

$$I_{4} = (\operatorname{tr} B)^{4} - 6(\operatorname{tr} B)^{2} (\operatorname{tr} B^{2}) + 8(\operatorname{tr} B) (\operatorname{tr} B^{3}) + 3(\operatorname{tr} B^{2})^{2} - 6(\operatorname{tr} B^{4})$$

$$- 6 \langle \mathcal{R}(S), S \rangle (\operatorname{tr} B)^{2} + 6 \langle \mathcal{R}(S), S \rangle (\operatorname{tr} B^{2}) + 3 \langle \mathcal{R}(S), S \rangle^{2}$$

$$- \langle (D_{S}^{2} \mathcal{R}) S, S \rangle + 4 \langle (D_{S} \mathcal{R}) S, S \rangle (\operatorname{tr} B) - 2 \sum_{i,k} \langle R(S, E_{i}) S, E_{k} \rangle^{2}$$

$$+ 8 \sum_{i,k} \langle R(S, E_{i}) S, E_{k} \rangle (\operatorname{tr} B) B_{ki} - 8 \sum_{i,k,j} \langle R(S, E_{i}) S, E_{k} \rangle B_{kj} B_{ji}$$

$$- 2 \sum_{i,k} \langle (D_{S} R) (S, E_{i}) S, E_{k} \rangle B_{ki},$$

where $\{E_i \mid 1 \leq i \leq n-1\}$ is an orthonormal basis of the tangent space of M_s at each point of M_s , the symbols B_{ki} denote the components of B with respect to this basis, and R is the curvature tensor of \overline{M} (as in [4]).

LEMMA 1. Let B_{ij} denote an (n-1)-by-(n-1) symmetric matrix, let m be a point of $\overline{M},$ and let E_1 , \cdots , E_{n-1} , S constitute an orthonormal basis of the tangent space of \overline{M} at m. Then there exists a compact, relatively orientable hypersurface M of $\overline{M},$ containing m, with normal S at m, and such that the second fundamental form of M at m, expressed with respect to E_1 , \cdots , E_{n-1} , has the components B_{ij} .

Proof of Lemma 1. Let x_1 , \cdots , x_n be normal coordinates around m with $(0, \cdots, 0)$ corresponding to m, and with

$$\left(\frac{\partial}{\partial x_i}\right)_m = E_i \text{ for } 1 \le i \le n-1 \text{ and } \left(\frac{\partial}{\partial x_n}\right)_m = S.$$

Define a hypersurface M by the equation $x_n = \frac{1}{2} \sum_{i,j} B_{ij} x_i x_j$, and restrict the values of x_i suitably. Then M has the desired properties.

Proof of Theorem 2. If equation (3) is satisfied for all compact, relatively orientable hypersurfaces M of \overline{M} , then

(16)
$$I_3 + c_2 I_2 + c_1 I_1 + c_0 = 0$$

for every compact, relatively orientable hypersurface M of \overline{M} . By Lemma 1, the sum of the terms on the left-hand side of (16) of a certain degree in the entries of B must vanish. Let $m \in \overline{M}$, and let $\{E_1, \cdots, E_{n-1}, S\}$ be an orthonormal basis of the tangent space of \overline{M} at m.

Step 1. The equation of degree 3 is

(17)
$$-(\operatorname{tr} B)^3 + 3(\operatorname{tr} B)(\operatorname{tr} B^2) - 2(\operatorname{tr} B^3) = 0.$$

Suppose dim $\overline{M} \ge 4$. Let $B_{11} = B_{22} = B_{33} = 1$ and $B_{ij} = 0$ if

$$(i, j) \neq (1, 1), (2, 2), (3, 3).$$

Choose a hypersurface as in Lemma 1. Then, at m, the left-hand side of (17) is -6. Thus, dim $\overline{M} < 3$.

Step 2. Suppose dim $\overline{M} = 2$. Let $B_{11} = 1$, and choose a hypersurface as in Lemma 1. Then, at m, the equation of degree 1 implies that

$$K - c_1 = 0,$$

where K is the Gaussian curvature of \overline{M} at m and c_1 is evaluated at s = 0. Since m is arbitrary, we conclude that \overline{M} has constant Gaussian curvature.

Step 3. Suppose dim \overline{M} = 3. Let B_{11} = B_{22} = 1 and B_{12} = 0. Choose a hypersurface as in Lemma 1. Then, at m, the equation of degree 1 implies that

$$4\langle \mathcal{R}(S), S \rangle - 2c_1 = 0$$
,

where c_1 is evaluated at s=0. Since m is arbitrary and S is an arbitrary unit vector at m, we conclude that \overline{M} is an Einstein manifold. Since dim $\overline{M}=3$, we conclude that \overline{M} has constant curvature.

Proof of Theorem 3. If equation (4) is satisfied for all compact, relatively orientable hypersurfaces M of \overline{M} , then

(18)
$$I_4 + c_3 I_3 + c_2 I_2 + c_1 I_1 + c_0 = 0$$

for every compact, relatively orientable hypersurface M of \overline{M} . By Lemma 1, the sum of the terms on the left-hand side of (18) of a certain degree in the entries of B must vanish. Let $m \in \overline{M}$, and let $\{E_1, \cdots, E_{n-1}, S\}$ be an orthonormal basis of the tangent space of \overline{M} at m.

Step 1. The equation of degree 4 is

(19)
$$0 = (\operatorname{tr} B)^4 - 6(\operatorname{tr} B)^2 (\operatorname{tr} B^2) + 8(\operatorname{tr} B) (\operatorname{tr} B^3) + 3(\operatorname{tr} B^2)^2 - 6(\operatorname{tr} B^4).$$

Suppose dim $\overline{M} \geq 5$. Let $B_{11} = B_{22} = B_{33} = B_{44} = 1$, and let $B_{ij} = 0$ if $(i,j) \neq (1,1), (2,2), (3,3), (4,4)$. Choose a hypersurface as in Lemma 1. Then, at m, the left-hand side of (19) is 24. Thus dim $\overline{M} \leq 4$.

Step 2. Suppose dim $\overline{M} = 2$. Let $B_{11} = 1$. Then, at m, the equation of degree 1 implies that

(20)
$$2 D_S K + c_3 K - c_1 = 0,$$

where c_1 and c_3 are evaluated at s=0 and K is the Gaussian curvature of \overline{M} . Since m is arbitrary and S is an arbitrary unit vector at m, it is not difficult to see that equation (20) implies that K is constant on each connected component of \overline{M} .

Step 3. Suppose dim $\overline{M} = 3$. Let $B_{11} = -B_{22} = 1$ and $B_{12} = 0$. Choose a hypersurface as in Lemma 1. Then, at m, the equation of degree 2 implies that

(21)
$$12 \langle \mathcal{R}(S), S \rangle - 8K(S \wedge E_1) - 8K(S \wedge E_2) - 2c_2 = 0$$
,

where c_2 is evaluated at s=0 and $K(X \wedge Y)$ is the sectional curvature in \overline{M} of the plane spanned by X and Y. We may write equation (21) as

$$4\langle \mathcal{R}(S), S \rangle - 2c_2 = 0$$
.

Since m is arbitrary and S is an arbitrary unit vector at m, we conclude that \overline{M} is an Einstein manifold. Since dim $\overline{M} = 3$, we conclude that \overline{M} has constant curvature.

Step 4. Suppose dim $\overline{M}=4$. Let $B_{11}=-B_{22}=1$ and $B_{ij}=0$ if $(i,j)\neq (1,1),(2,2)$. Choose a hypersurface as in Lemma 1. Then, at m, the equation of degree 2 implies that (21) holds. Similarly, at m, we can obtain the relation

(22)
$$12 \langle \mathcal{R}(S), S \rangle - 8K(S \wedge E_2) - 8K(S \wedge E_3) - 2c_2 = 0$$
.

Comparing (21) and (22), we obtain the equation

$$K(S \wedge E_1) = K(S \wedge E_3)$$
.

Since $\{E_1, E_2, E_3, S\}$ is an arbitrary orthonormal frame at m and m is arbitrary, we conclude that \overline{M} has constant curvature.

4. Let dim $\overline{M}=k$, and let M be a compact, relatively orientable hypersurface. Let N be a unit-normal field on M. Let Ω_s be the volume element of M_s , and set $\Omega=\Omega_0$. Since M and M_s are diffeomorphic by the mapping $m\to g_m(s)$, we may consider Ω_s as defined on M. Let f(s,m) be defined by the equation

$$\Omega_{\rm s} = f(s, m) \Omega$$
.

If $L_n A = 0$ for all compact, relatively orientable hypersurfaces, then $L_n f = 0$.

Let $p \in \overline{M}$, and let M(r) be the geodesic sphere of radius r with center p; that is, let

$$M(r) = \{q \mid q = \exp_{D} rX, \langle X, X \rangle = 1\}.$$

For small, positive r, M(r) is a smooth, compact hypersurface. For a fixed, small $\epsilon > 0$, write $M = M(\epsilon)$. Let N be the inward-pointing unit normal on M; that is, if $m = \exp_p \epsilon X$, $\langle X, X \rangle = 1$, and $\alpha(t) = \exp_p t X$, let $N(m) = -\dot{\alpha}(\epsilon)$, where $\dot{\alpha}(t)$ is the tangent vector to $\alpha(t)$. It is not difficult to see that the radial geodesics $\exp_p t X$ intersect M(r) orthogonally. Thus, $M_s = M(\epsilon - s)$. Let $\Omega(r)$ be the volume element of M(r), and consider $\Omega(r)$ as defined on M(\epsilon). Then $\Omega_s = \Omega(\epsilon - s)$. Thus

$$\Omega(\mathbf{r}) = \widetilde{\mathbf{f}}(\mathbf{r}, \mathbf{m}) \Omega$$

where $\tilde{f}(r, m) = f(\epsilon - r, m)$. Set $r = \epsilon - s$, and write $\tilde{L} = \frac{d}{dr}$. Let \tilde{L}_n be defined by the right-hand side of (1) or (2), according as n is even or odd, with L replaced by \tilde{L} . Since $\frac{d}{dr} = -\frac{d}{ds}$, the equation $L_n f = 0$ implies the equation $\tilde{L}_n \tilde{f} = 0$. Note that $\tilde{L}_n \tilde{f} = 0$ implies that

(23)
$$\tilde{f}(r, m) = \sum_{i=1}^{n} a_i(m) \sin^{n-i}(r/R) \cos^{i-1}(r/R)$$
 if $0 < c = 1/R^2$,

(24)
$$\tilde{f}(r, m) = \sum_{i=1}^{n} a_i(m) \sinh^{n-i}(r/R) \cosh^{i-1}(r/R)$$
 if $0 > c = -1/R^2$,

(25)
$$\tilde{f}(\mathbf{r}, m) = \sum_{i=0}^{n-1} a_i(m) r^i \quad \text{if } c = 0.$$

PROPOSITION 1. Let $\{E_1\,,\,\cdots,\,E_k\}$ be an orthonormal frame at $\,p,$ and let $m=\exp_p\,\epsilon E_k\,.$ Then

(26)
$$\tilde{f}(\mathbf{r}, \mathbf{m}) = a(\mathbf{m}) \left\{ \mathbf{r}^{k-1} - \frac{(K_{1k} + K_{2k} + \cdots + K_{k-1,k})}{6} \mathbf{r}^{k+1} + o(\mathbf{r}^{k+2}) \right\},$$

where K_{ik} is the sectional curvature of \overline{M} at p of the plane spanned by E_i and E_k . We postpone the proof of Proposition 1 to Section 6.

We shall now prove the first statement in Theorem 4. Suppose $1/R^2=c>0$. Expand the right-hand side of (23) in a Taylor series about r=0, and compare the result with (26). We conclude that $k\leq n$. A similar argument holds if c<0 or c=0.

PROPOSITION 2. Suppose k = n. Let E_1, \dots, E_n , and m be as in Proposition 1. Then, with the assumptions of Theorem 4,

(27)
$$K_{1n} + K_{2n} + \cdots + K_{n-1,n} = (n-1)c.$$

Proof. Suppose $0>c=1/R^2$. Expand the right-hand side of (23) in a Taylor series about r=0, and compare the result with (26). We conclude that $a_i=0$ for i>1. Thus

(28)
$$\widetilde{f}(r, m) = a_1(m) \left\{ \left(\frac{r}{R} \right)^{n-1} - \frac{(n-1)}{6} \left(\frac{r}{R} \right)^{n-1} + o(r^{n+2}) \right\}.$$

Comparing (28) with (26), we conclude that

$$K_{1n} + K_{2n} + \cdots + K_{n-1,n} = (n-1)/R^2$$
.

A similar argument holds if c < 0 or c = 0.

Since $\{E_1, \dots, E_n\}$ is an arbitrary orthonormal frame at p and p is arbitrary, we conclude that \overline{M} is an Einstein manifold.

In a similar way we can prove the following result.

PROPOSITION 3. Suppose k = n - 1. Let E_1 , \cdots , E_{n-1} , and m be as in Proposition 1. Then, with the assumptions of Theorem 4,

$$K_{1,n-1} + K_{2,n-1} + \cdots + K_{n-2,n-1} = (n+1)c$$
.

Since $\{E_1, \dots, E_{n-1}\}$ is an arbitrary orthonormal frame at p and p is arbitrary, we conclude that \overline{M} is an Einstein manifold.

5. Suppose dim \overline{M} = n. Let p ϵ M, and let $\{E_1, \dots, E_n\}$ be an orthonormal frame at p. Let $\gamma(u) = \exp_p uE_1 \ (-\delta < u < \delta)$. Let $\{E_1(u), \dots, E_n(u)\}$ be a parallel, orthonormal frame field along γ with $E_1(u) = \dot{\gamma}(u)$, where $\dot{\gamma}(u)$ is the tangent vector to $\gamma(u)$. Let M(r) be the geodesic cylinder of radius r about γ ; that is, let

$$M(r) = \{q \mid q = \exp_{\gamma(u)} rX, \langle X, X \rangle = 1, \langle X, E_1 \rangle = 0\}.$$

For small positive r and δ , M(r) is a smooth, compact hypersurface with boundary. For a fixed small $\epsilon > 0$, let $M = M(\epsilon)$. Let N be the inward-pointing unit normal on M, so that if $m = \exp_{\gamma(u)} \epsilon X$, $\left\langle X, X \right\rangle = 1$, $\left\langle X, E_1 \right\rangle = 0$, and $\alpha(t) = \exp_{\gamma(u)} t X$, then $N(m) = -\dot{\alpha}(\epsilon)$. It is not difficult to see that the radial geodesics $\alpha(t) = \exp_{\gamma(u)} t X$ ($\left\langle X, E_1 \right\rangle = 0$) intersect M(r) orthogonally. Thus, $M_s = M(\epsilon - s)$. Let $\widetilde{f}(r, m)$ and \widetilde{L}_n be defined as in Section 4.

PROPOSITION 4. Let E_1 , \cdots , E_n be as above, and let $m = \exp_p \epsilon E_n$. Then

(29)
$$\widetilde{f}(\mathbf{r}, \mathbf{m}) = a(\mathbf{m}) \left\{ \mathbf{r}^{n-2} - \frac{(K_{2n} + \cdots + K_{n-1,n} + 3K_{1n})}{6} \mathbf{r}^n + o(\mathbf{r}^{n+1}) \right\},$$

where $K_{\rm in}$ is the sectional curvature of \overline{M} at $\,p$ of the plane spanned by $E_{\rm i}$ and $E_{\rm n}$.

We postpone the proof of Proposition 4 to Section 6.

PROPOSITION 5. Let E_1 , \cdots , E_n , and m be as in Proposition 4. Then, with the assumptions of Theorem 4,

(30)
$$K_{2n} + \cdots + K_{n-1,n} + 3K_{1n} = (n+1)c$$
.

Proof. Suppose $0 < c = 1/R^2$. The assumptions of Theorem 4 imply that $\widetilde{L}_n \, \widetilde{f} = 0$. Thus equation (23) holds. Expanding the right-hand side of (23) in a Taylor

series about r=0, and comparing the result with (29), we conclude that $a_i=0$ if $i\neq 2$. Thus

(31)
$$\widetilde{f}(r, m) = a_2(m) \left\{ \left(\frac{r}{R}\right)^{n-2} - \frac{n+1}{6} \left(\frac{r}{R}\right)^n + o(r^{n+1}) \right\}.$$

Comparing (29) and (31), we conclude that

$$K_{2n} + \cdots + K_{n-1,n} + 3K_{1n} = (n+1)/R^2$$
.

A similar argument holds if c < 0 or c = 0.

To prove the second statement in Theorem 4, note that equations (27) and (30) imply the equation $K_{In} = c$. Since this is true for each orthonormal frame at p and p is arbitrary, we conclude that \overline{M} has constant curvature equal to c.

6. We shall now prove Propositions 1 and 4. Let M(r) be the geodesic sphere of Section 4. Let E_1 , \cdots , E_k , and m be as in Proposition 1. Let $\alpha(t)$ be the geodesic $\alpha(t) = \exp_p tE_k$, and let $T = \dot{\alpha}(t)$. Consider the Jacobi fields V_1 , \cdots , V_{k-1} defined along $\alpha(t)$ by the initial conditions $V_i(0) = 0$ and $(D_T V_i)(0) = E_i$, where D is the covariant differentiation in \overline{M} . The Jacobi field V_i is induced by the geodesic variation

$$\phi(t, u) = \exp_{D} t(E_k \cos u + E_i \sin u) .$$

From this, it is not difficult to see that the vector fields V_1 , \cdots , V_{k-1} span the tangent space of M(r) at $\alpha(r)$, for small r>0. Furthermore, the mapping $M(\epsilon)\to M(r)$ given by the rule $\exp_p\epsilon X\to \exp_prX$ maps $V_i(\epsilon)$ to $V_i(r)$. Thus

(32)
$$\widetilde{f}(\mathbf{r}, \mathbf{m}) = \frac{(\text{Det} | \langle V_i(\mathbf{r}), V_j(\mathbf{r}) \rangle |)^{1/2}}{(\text{Det} | \langle V_i(\epsilon), V_i(\epsilon) \rangle |)^{1/2}}.$$

LEMMA 2. Let V_1 , \cdots , V_{k-1} be as above. Then

(33)
$$\langle V_i, V_i \rangle = r^2 - \left(\frac{K_{ik}}{3}\right) r^4 + o(r^5)$$

and

(34)
$$\langle V_i, V_j \rangle = o(r^4)$$
 if $i \neq j$.

We can easily prove Lemma 2 by using the Jacobi equation $D_T^2 V_i = R(V_i, T) T$. Lemma 2, equation (32), and the equation

(35)
$$(1+x)^{1/2} = 1 + x/2 + o(x^2)$$

immediately imply Proposition 1.

Alternatively, one may use the Jacobi equation to show that

(36)
$$V_i = E_i r + \sum_j \langle R(E_i(0), E_k(0)) E_k(0), E_j(0) \rangle E_j \frac{r^3}{6} + o(r^4),$$

where E_1 , ..., E_k have been extended to parallel vector fields along α . One may then evaluate (Det $|\langle V_i, V_j \rangle|$)^{1/2} by using the equation

(37)
$$V_1 \wedge \cdots \wedge V_{k-1} = (\text{Det} | \langle V_i, V_j \rangle |)^{1/2} E_1 \wedge \cdots \wedge E_{k-1}.$$

Let M(r) be the geodesic cylinder of radius r about γ , as in Section 5. Let E_1 , ..., E_n , and m be as in Proposition 4. Let $\alpha(t)$ be the geodesic $\alpha(t) = \exp_p t E_n$, and let $T = \dot{\alpha}(t)$. Consider the Jacobi fields V_1 , ..., V_{n-1} defined along $\alpha(t)$ by the initial conditions $V_1(0) = E_1$, $(D_T V_1)(0) = 0$, $V_i(0) = 0$, and $(D_T V_i)(0) = E_i$ ($i \geq 2$). The Jacobi field V_1 is induced by the geodesic variation

$$\phi(t, u) = \exp_{\gamma(u)} tE_n$$
.

(Recall that E_n is parallel along γ .) As in the case of the geodesic sphere, we again obtain equation (32).

LEMMA 3. Let V_1 , \cdots , V_{n-1} be as above. Then, for i, j > 1 and $i \neq j$, equations (33) and (34) are satisfied; also,

$$\langle V_1, V_1 \rangle = 1 - K_{1n} r^2 + o(r^3)$$

and

$$\langle v_1, v_j \rangle = o(r^2)$$
 if $j > 1$.

We can easily prove Lemma 3 by using the Jacobi equation.

Lemma 3 and equations (32) and (35) imply Proposition 4.

Alternatively, one may use the Jacobi equation to show that

$$V_1 = E_1 + \sum_j \langle R(E_1(0), E_n(0)) E_n(0), E_j(0) \rangle E_j \frac{r^2}{2} + o(r^3),$$

where E_1 , ..., E_n have been extended to parallel vector fields along α . If i > 1, then V_i satisfies (36). One then uses (37) with k = n.

REFERENCES

- 1. R. A. Holzsager, Riemannian manifolds of finite order. Bull. Amer. Math. Soc. (to appear).
- 2. ——, A characterization of Riemannian manifolds of constant sectional curvature (to appear).
- 3. R. A. Holzsager and H. Wu, A characterization of two-dimensional Riemannian manifolds of constant curvature. Michigan Math. J. 17 (1970), 297-299.
- 4. H. Wu, A characteristic property of the Euclidean plane. Michigan Math. J. 16 (1969), 141-148.

University of Southern California University Park, Los Angeles, California 90007