RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE
AND THE GROWTH FUNCTION OF SUBMANIFOLDS

Joseph Erbacher

1. Let M be a Riemannian C*-manifold, and let M be a compact c” -submam—
fold of codimension 1, possibly with boundary If there exists a globally defined C*
unit-normal field N on M, we say that M is relatively ovientable. If M is orienta-
ble, then M is relatively orientable if and only if M is orientable. We call a sub-
manifold of codiemnsion 1 a Aypersuvface.

Suppose M is relatively orientable, and let N be a C*” unit-normal field on M.
For m € M, let g,,(s) denote the geodesic (of M), parametrized by arc length s,
such that g, (0) = m and g,,(0) = N(m), where &, is the tangent vector to g,,. Let
M, be the set of points {g(s)| m € M}. For small s, the set M is a C™-sub-
rnamfold of M. Denote the volume of Mg by A(s). Following H. Wu and R. A.
Holzsager [3],[4], we call A(s) the g'rowth function of M. Let A(K) denote the kth
derivative of A with respect to s. Wu and Holzsager [3], [4] showed that the two-
dimensional Riemannian manifolds of constant curvature equal to ¢ are character-
ized by the equation A{2)+ ¢cA =0 for all M. Let L =d/ds, and let ¢ be a constant.
Let

(1) L, = (L%+¢) (L% +9¢) (L% + 25¢) --- (L% +(n - 1)%¢c)
if n is even, and
(2) | L, = L(L? +4c) (L2 + 16¢) -+ (L% +(n - 1)%c)

if n is odd. We shall prove the following four theorems.

THEOREM 1. Suppose M is an n-dimensional Riemannian manifold of con-
Stant cuvvature equal to c. Th_gzz the grvowth function A of each compact, velatively
ovientable hypersurface M of M satisfies the differential equation

L A=0.

Fuvthermore, this is the only differential equation of lowest ovder that A satisfies
for every M.

THEOREM 2. Suppose the_growtk Junction A of each compact, relatively
orientable hypersuvface M of M satisfies the diffevential equation

(3) A(3)+02A(2)+01A(1)+C0A = 0,

wheve cp , ¢y, and cq ave functions of s, and no lower-ovder differential equation
is satisfied by A jfor all M; then M is a three-dimensional Riemannian manifold of
constant cuvvatuve, say K, and thevefore, by Theovem 1, c, =cy =0 and ¢, = 4K.
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THEOREM 3. Suppose the growth function A of each compact, relatively
orientable hypersuvface M of M satisfies the differential equation

(4) AM 4 e AB) 4, AR ¢ AW ¢y = 0,

wheve c3, Cy,cy, and cqy are functions of s, and no lowev-ovder differential equa-
tion is satisfied by A for all M; then M has constant curvature on each of its con-
nected components. Thevefore, by Theovem 1, eithey dim M =4, and c3=c; = 0,
cp = 10K, cq = 9K?, wheve K is the curvatuve of M; ov dim M =2, M has pre-
cisely two connected components of curvatures Ky and K, (K; # K,), and
cp1=¢c3=0, c; =K; +Ky, co=K;K;.

THEOREM 4. If dim M=k and L, A =0 jfor each compact, relatively orienta-
ble hypersurface M of M, then k <n. Ifk=n, then M has constant curvatuyre
equal to c. If k=n -1, then M is an Einstein manifold.

Holzsager (see [1] and [2]) has recently obtained Theorems 1 and 4, together
with related results.

2. Proof of Theovem 1. Suppose M is an n-dimensional Riemannian manifold
of constant curvature equal to ¢c. Let M be a compact, relatively orientable hyper-
surface, and let N be a C* unit-normal field on M. Let £, be the volume element
for Mg, and set 2 = g . Since M and Mg are diffeomorphic by the mapping
m — gm(s), we may consider £, as defined on M. Let B denote the second funda-
mental form of M, considered as a tensor of type 1-1; that is, for each X tangent
to M, let BX = -Dx N, where D is the covariant differentiation in M. An easy cal-
culation will show that

(5) Qs={H(1—sbi)}Q if ¢c=0,
(6) Qs = { Il [cos (s/R) - Rb; sin (s/R)]} Q if 1/R®=¢c> 0,
(7) Qg = { II [cosh(s/R) - Rb;, sinh(s/R)]} Q if -1/R®=¢ <0,

where {bil 1<i<n-1} isthe set of eigenvalues of B.

Since the calculation is local in nature, we may assume that M is the Euclidean
space R", the sphere S™(R), or the hyperbolic space H?(R). We consider S™(R) as
the sphere of radius R, contained in the Euclidean space R™*!  and with center at
the origin. We denote by E™*1 the Minkowski space with global coordinates
Xg, X}, **", X, and pseudo-Riemannian metric determined by the quadratic form

a(x,y) = -Xo¥o +X, Y1 + -+ ¥ ¥n s
and we consider H?(R) as the submanifold of EM*! defined by the equation
- x2 2.4 ... 2 - _Rr2
x&+x{+ e+ x5 R (xg> 0).
If M =R" and O is the origin in R, let Xs(m) = Og(s), and set X = Xog. Then

(8) Xg = X+sN.
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If M=S™R) and O is the origin in R**! | let X4(m) = Og,(s), and set X = Xo. Then
(9) Xs = (cos(s/R))X + (R sin(s/R))N.

If M =H™R) and O is the origin in E™™! | let x5(m) = Ogpm(s), and set x = X .

Then

(10) _}Zs = (cosh(s/R));c) + (R sinh(s/R))N.

Using (8), (9), and (10), we can easily obtain (5), (6), and (7).
Equations (5), (6), and (7) imply Theorem 1.

3. To prove Theorems 2 and 3, we must calculate the first four derivatives of A
with respect to s. Let Iy be the integrand for A(K); that is, let

S ?

Ak = S L Q
MS

where g is the volume element for Mg . Let S = g,,,(s); then S is a unit~normal
field on Mg . Let B denote the second fundamental form of My, considered as a
tensor of type 1-1; that is, for each X tangent to Mg, let BX = -Dx S, where D is
the covariant differentiation in M. In [4], it is shown that

(11) I, = -(tr B)
and
(12) I, = (tr BP - (tr BY) - { #(8),8),

where tr stands for trace, #’is the Ricci tensor of M (as in [4]), and < , > is the
inner product. Equation (11) implies that

(13) I, = -(tr B)I, + ST, .

It is a tedious but straightforward task to show that

I3 = -(tr B)3 + 3(tr B) (tr B®) - 2(tr B3)
(14)
+ 3{#(8),8) (tr B) - 2 2 (R(S, Ey)S, Ei ) By - {(DsA)S, s )
i,k
and
I, = (tr B)* - 6(tr B)?(tr B?) + 8(tr B) (tr B>) + 3(tr B®? - 6(tr BY)
- 6(2(S),8) (tr B)2+6{ #(S), S) (tr BY) +3{ #(S), S)?
) - {(DZ#)S,8) +4 ((Dg)S, S ) (tr B) - 2 2 (R(S, ES, By )
(15 i,k

+8 22 (R(S, Ey)S, Ex ) (tr B)By; - 8 2 (R(S, E;)S, Ex ) ByjBj;
i,k i,k,j

-2 2 {(DgR)(S, ES, Eyx Y By,
i,k
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where {E1| 1<i<n- 1} is an orthonormal basis of the tangent space of Mg at
each point of Mg, the symbols By; denote the components of B with respect to this
basis, and R is the curvature tensor of M (as in [4]).

LEMMA 1. Let B1J denote an (n - 1)-by-(n - 1) symmetvic matvix, let m be a
point of M, and let Ey, -+, E,_1, S constitute an orthonormal basis of the tangent
space of M at m. Then there exists a compact, relatively ovientable hypersurface
M of M, containing m, with normal S at m, and such that the second fundamental

Jorm of M at m, expressed with respect to El » ***y En-1, has the components By
Proof of Lemma 1. Let x;, '+, X, be normal coordinates around m with
(0, -+, 0) corresponding to m, and with

( 0 ) -E; for 1<i<n-1 and (i)
%3 / - — 0Xp
Define a hypersurface M by the equation x, =7 E B jXiXj, and restrict the
values of x; suitably. Then M has the de51red propertles.

Proof of Theorem 2. If equ;ai_:ion (3) is satisfied for all compact, relatively
orientable hypersurfaces M of M, then

(16) I3+0212+CIII+CO =0

for every compact, relatively orientable hypersurface M of M. By Lemma 1, the
sum of the terms on the left-hand side of (16) of a certain degree in the entries of B
must vanish. Let m € M, and let {El , >, E__1,S} be an orthonormal basis of
the tangent space of M at m.

Step 1. The equation of degree 3 is
(17) ~(tr BY® + 3(tr B) (tr B?) - 2(tr B3) = 0.
Suppose dim M >4. Let Bj; = By =B33 =1 and B;;=0 if
4,3 # (1, 1), (2, 2), (3, 3).

Choose a hypersurface as in Lemma 1. Then, at m, the left-hand side of (17) is -6.
Thus, dim M < 3.

Step 2. Suppose dim M =2. Let B;; =1, and choose a hypersurface as in
Lemma 1. Then, at m, the equation of degree 1 implies that
K - Cl =0 ’
where K is the Gaussian curvature of M at m and c; is evaluated at s = 0. Since
m is arbitrary, we conclude that M has constant Gaussian curvature.
Step 3. Suppose dim M =3. Let B;j; =B,2 =1 and B, = 0. Choose a hyper-
surface as in Lemma 1. Then, at m, the equation of degree 1 implies that

4(#(8),8) - 2¢; = 0,

where c; is evaluated at s = 0. Since m is arbitrary and S is an arbitrary unit
vector at m, we conclude that M is an Einstein manifold. Since dim M =3, we
conclude that M has constant curvature.
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Proof of Theovem 3. If equation (4) is satisfied for all compact, relatively
orientable hypersurfaces M of M, then

(18) I4+C3I3+0212+Clll+00 =0

for every compact, relatively orientable hypersurface M of M. By Lemma 1, the
sum of the terms on the left-hand side of (18) of a certain degree in the entries of B
must vanish. Let m € M, and let {E;y, -, E,_1,S} be an orthonormal basis of
the tangent space of M at m.

Step 1. The equation of degree 4 is
(19) 0 = (tr B)* - 6(tr B)? (tr B2) + 8(tr B) (tr B3) + 3(tr B2)Z - 6(tr BY) .

Suppose dim M >5. Let Bj) = By, = B33 = Bygy =1, and let Bjj = 0 if
(i, ) # (1, 1), (2, 2), (3, 3), (4, 4). Choose a hypersurface as in Lemma 1. Then, at
m, the left-hand side of (19) is 24. Thus dim M < 4.

Step 2. Suppose dim M =2. Let By; = 1. Then, at m, the equation of degree 1
implies that

(20) 2D8K+C3K-Cl =0,
where c¢; and c; are evaluated at s =0 and K is the Gaussian curvature of M.

Since m is arbitrary and S is an arbitrary unit vector at m, it is not difficult to
see that equation (20) implies that K is constant on each connected component of M.

Step 3. Suppose dim M= 3. Let B;; =-B,, =1 and B;, = 0. Choose a hyper-
surface as in Lemma 1. Then, at m, the equation of degree 2 implies that

(21) 12{ #(8), ) - 8K(SAE,) - 8K(SAE,) - 2¢; = 0,

where ¢, is evaluated at s =0 and K(X AY) is the sectional curvature in M of the
plane spanned by X and Y. We may write equation (21) as

a{ ®(5),8) - 2¢, = 0.

Since m is arbitrary and S is an arbitrary unit vector at m, we conclude that M is

an Einstein manifold. Since dim M = 3, we conclude that M has constant curvature.
Step 4. Suppose dim M =4. Let By, = -B; =1 and Bjj = 0 if

(i, j) # (1, 1), (2, 2). Choose a hypersurface as in Lemma 1. Then, at m, the equa-

tion of degree 2 implies that (21) holds. Similarly, at m, we can obtain the relation

(22) 12{ #(S), S ) - 8K(S A E,) - 8K(SA E3) - 2¢; = 0.
Comparing (21) and (22), we obtain the equation
K(SAE]) = K(SAE;3).

Since {E;, E;, E3, S} is an arbitrary orthonormal frame at m and m is arbi-
trary, we conclude that M has constant curvature.

4. Let dim M =Kk, and let M be a compact, relatively orientable hypersurface.
Let N be a unit-normal field on M. Let Qg be the volume element of Mg, and set
2 =8Qp. Since M and M, are diffeomorphic by the mapping m — gm(s), we may
consider Qg as defined on M. Let f(s, m) be defined by the equation
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Qg = (s, m)Q .

If LoA =0 for all compact, relatively orientable hypersurfaces, then L,f = 0.

Let p € M, and let M(r) be the geodesic sphere of radius r with center p; that
is, let

M(r) = {q| q = exp, rX, <X,X> =1}.

For small, positive r, M(r) is a smooth, compact hypersurface. For a fixed, small
£>0, wr1te M = M(S) Let N be the inward- -pointing unit normal on M; that is, if

= expp £X, <X X> =1, and aft) = expp tX, let N(m) = -a&(e), where a(t) is the
tangent vector to a(t). It is not difficult to see that the radial geodesics expp tX
intersect M(r) orthogonally. Thus, Mg = M(e - s). Let £(r) be the volume element
of M(r), and consider Q(r) as defmed on M(e). Then Qg = Q(¢ - s). Thus

Ar) = 'f(r, m) 2,

where f(r, m) =f(¢ - r, m). Set r =¢ - s, and write I, = 4 ret L, be defined by

dr’
the right-hand side of (1) or (2), according as n is even or odd, with L replaced by
L. Since (?—r = c‘ijs the equation L_f = 0 implies the equation L f=0. Note that
f,nf = 0 implies that

n

(23) &f'(r, m) = 22 a,(m) sin® }(r/R) cosi ! (r/R) if 0 < c =1/RZ ,
i=1
n
(24) 'f(r, m) = 27 a;(m) sinhn'i(r/R) cosh'™! (r/R) if 0>c=-1/R? ,
i=1
n-1
(25) (r, m) = 2. ai(m)ri if e=0.
i=0
PROPOSITION 1. Let {E;, -+, E} be an orthonormal frame at p,and let

m = expp, £Ey . Then

~ (Kix + Ko+ -+ Ky 1 1)
(26) f(r, m) = a(m) {rk—l _ 1k 2k k-1,k rk+l+0(rk+2) ’

6

wheve K;y is the sectional curvatuve of M at p of the plane spanned by E; and Ey.
We postpone the proof of Proposition 1 to Section 6.

We shall now prove the first statement in Theorem 4. Suppose 1/R2=c > 0.
Expand the right-hand side of (23) in a Taylor series about r = 0, and compare the
result with (26). We conclude that k < n. A similar argument holds if ¢ < 0 or
c=0.

PROPOSITION 2. Suppose k =n. Let Ey, **-, B, , and m be as in Proposition
1. Then, with the assumptions of Theovem 4,

(27) K1n+KZn+"'+Kn_l,n: (l‘l-l)c.
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Pyoof. Suppose 0 >c=1/ RZ. Expand the right-hand side of (23) in a Taylor
series about r = 0, and compare the result with (26). We conclude that a; = 0 for
i>1. Thus

(28) T, m) = a,(m) { (%)n'1 R (-’?ﬁ)n”1 + 0(rn+2)} .

Comparing (28) with (26), we conclude that
Kin+Kpn+ " +Ky 1 n= (n-1)/R%.

A similar argument holds if ¢ < 0 or ¢ =0.

Since {E1 , Tt E,} is an arbitrary orthonormal frame at p and p is arbi-
trary, we conclude that M is an Einstein manifold.

In a similar way we can prove the following result.

PROPOSITION 3. Suppose k=n-1. Let Ey, .-+, E,_1, and m be as in
Proposition 1. Then, with the assumptions of Theorvem 4,

Kl,n_l +K2,n—l 4 e +K11_2'n_1 = (n-i—l)C.

Since {Ej, -, En-1} is an arbitrary orthonormal frame at p and p is arbi-
trary, we conclude that M is an Einstein manifold.

5. Suppose dim M=n. Let p € M, and let {Ej, -*-, En} be an orthonormal
frame at p. Let y{u) = exp, uE] (-6 <u<§). Let <EEl(u), -+, Ep(u)} be a paral-
lel, orthonormal frame field along y with E;(u) = #(u), where #(u) is the tangent

vector to y(u). Let M(r) be the geodesic cylinder of radius r about y; that is, let

M(r) = {q| q= exXpy(y) X, <X, X> =1, <X, E1> =0}.

For small positive r and 6, M(r) is a smooth, compact hypersurface with boundary.
For a fixed small € >0, let M = M(e). Let N be the inward-pointing unit normal on

M, so that if m = exp,(,) £X, (X, X ) =1, (X, E;) =0, and a(t) = exp, () tX, then
N(m) = -é&(e). It is not difficult to see that the radial geodesics a(t) = exp,(y) tX
(<X, E1> = 0) intersect M(r) orthogonally. Thus, Mg = M(e - s). Let f(r, m) and
in be defined as in Section 4.

PROPOSITION 4. Let E;, -+, E, be as above, and let m = exp, €E,,. Then

(KZn + et Kn—l,n + 3Kln)

(29) 'f(r, m) = a(m) {rn'z 5

r® + o(rntl) } ,

where K, is the sectional cuvvature of M at p of the plane spanned by E; and E .
We postpone the proof of Proposition 4 to Section 6.

PROPOSITION 5. Let Ey, -*+, E,, and m be as in Proposition 4. Then, with
the assumptions of Theorem 4,

(30) Kont - +K, | n+3K, = (n+1)c.

n

o Proof. Suppose 0 <c =1/R%. The assumptions of Theorem 4 imply that
L,f = 0. Thus equation (23) holds. Expanding the right-hand side of (23) in a Taylor
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series about r = 0, and comparing the result with (29), we conclude that a; = 0 if
i# 2. Thus

(31) 'E(r, m) = a,(m) {'(%)n-z _n -g 1 (%)n + o(rn+1)} .

Comparing (29) and (31), we conclude that
Kzn + e +Kn-l,n + 3K1n = (n + 1)/RZ .

A similar argument holds if ¢ <0 or ¢ = 0.

To prove the second statement in Theorem 4, note that equations (27) and (30)
imply the equation K, = c¢. Since this is true for each orthonormal frame at p and
p is arbitrary, we conclude that M has constant curvature equal to c.

6. We shall now prove Propositions 1 and 4. Let M(r) be the geodesic sphere
of Section 4. Let E;, -+, Ex, and m be as in Proposition 1. Let «a(t) be the geo-
desic a(t) = expp tEx, and let T = a(t). Consider the Jacobi fields V;, «*+, Vi _;
defined along «(t) by the initial conditions V;(0) = 0 and (D7 V;)(0) = E;, where D
is the covariant differentiation in M. The Jacobi field V; is induced by the geodesic
variation

¢(t, u) = expp t(Ex cos u + Ej sin u) .
From this, it is not difficult to see that the vector fields V;, ---, Vi _] span the

tangent space of M(r) at a(r), for small r > 0. Furthermore, the mapping
M(e) — M(r) given by the rule expp X — exp, rX maps Vi(e) to Vi(r). Thus

. , 1/2
(32) f(r, m) = (Det | {V,(r), VJ(r)>|)1/2 .
(Det | { Vy(e), Vi(e) ) |)

LEMMA 2. Let V,, -, Vy_; be as above. Then

(33) (v, V;) =r2- (KSk) r4 + o(r5)

and

(34) (Vi,Vj) =orh  iFiz+i.
We can easily prove Lemma 2 by using the Jacobi equation D%Vi = R(Vi , T)T.
Lemma 2, equation (32), and the equation

(35) (1+x)12 = 1+x/2 +0(x?)

immediately imply Proposition 1.

Alternatively, one may use the Jacobi equation to show that

(36) Vi = Byr + 2 (R(EL0), E(O)EL0), E0)) E; X+ oY)
J

where E,, -°*, Ex have been extended to parallel vector fields along «. One may
then evaluate (Det | <Vi , V J-> I)l/ 2 py using the equation
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1/2
(37) Vi A AV = (et | (v, Vi) DYPE A ABy .
Let M(r) be the geodesic cylinder of radius r about y, as in Section 5. Let
E,, -, E,, and m be as in Proposition 4. Let a(t) be the geodesic
a(t) = expp tE,, and let T = &(t). Consider the Jacobi fields Vy, -, V) defined

along a(t) by the initial conditions V1(0) = E;, (DTV)(0) =0, Vi(0) =0, and
(Dt V;)(0) = E; (i >2). The Jacobi field V, is induced by the geodesic variation

¢(t, U) = expy(u) tEn .

(Recall that E,, is parallel along y.) As in the case of the geodesic sphere, we
again obtain equation (32).
LEMMA 3. LetV;, -+, V,_, be as above. Then, for i,j > 1 and i # j, equa-
tions (33) and (34) ave satisfied; also,
<V1 , V1> =1- Ky, r2+o(r3)
and
Vi, V) =od) i j>1.
We can easily prove Lemma 3 by using the Jacobi equation.
Lemma 3 and equations (32) and (35) imply Proposition 4.

Alternatively, one may use the Jacobi equation to show that

2
V) = E; + 2 (R(E,(0), E,(0) E,(0), E(0)) E; =+ 0o(r),
J

where E;, -+, E, have been extended to parallel vector fields along a. If i > 1,
then V. satisfies (36). One then uses (37) with k = n.
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