RINGS OF TYPE 1II
Eben Matlis

1. INTRODUCTION
We define a ving of type II to be an integral domain R with the following proper-
ties:
(1) R is a complete, Noetherian local ring of Krull dimension one.
(2) Every ideal of R can be generated by two elements.

Of course, a complete discrete valuation ring is a ring of type II. But not all
rings of type II are valuation ring (example: the ring of all formal power series in
one variable over a field, with the linear term missing). It is the purpose of this
paper to characterize rings of type II in terms of a Hausdorff condition and the
structure of certain modules.

Definition. An integral domain R is said to have property D if every torsion-
free R-module of finite rank is a direct sum of R-modules of rank 1.

Definition. The Krull dimension of an integral domain is the maximal number
of terms in a chain of nonzero prime ideals.

In [4] we proved the following theorem.

THEOREM 1[4, Theorem 4). If R is an integral domain, the following state-
ments arve equivalent.

(1) R is a 7ing of type 1I.
(2) R is a Noetherian integral domain with property D.
The aim of this paper is to replace the Noetherian assumption with the weaker

Hausdorff assumption that n I" = 0 for every proper ideal I of R. We shall prove
the following theorem (see Section 4):

THEOREM 11. If R is an integral domain, the following statements are equiva-
lent.

(1) R is a 7ving of type 1II.

(2) R has property D, and ﬂ I" = 0 for every proper ideal 1 of R.

2. REVIEW

Definition. An integral domain R is said to have a vemofle quotient field Q if
there exists an R-module S such that R C S g Q and s-1 = 0, where

s-! = {x e Q| xSc R}.
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Definition. A ring R is called a local ring if it has a single maximal ideal (no
Noetherian conditions are assumed).

Definition. An integral domain R is said to be an h-local ving if every nonzero
ideal of R is contained in only a finite number of maximal ideals of R, and if every
nonzero prime ideal of R is contained in only one maximal ideal of R.

Definition. An integral domain R is said to be a ring of type 1 if it satisfies the
following conditions:

(1) R has exactly two maximal ideals M, and M, .
(2) M; N M, does not contain a nonzero prime ideal of R.

(3) Ry, and R,, are maximal valuation rings.
1 2

In earlier papers, we proved the following theorems:

THEOREM 2 [6, Theorem B]. Let R be an integral domain. Then the following
Statements are equivalent:

(1) R is a ving of type 1.
(2) R has property D and a remote quotient field.

THEOREM 3 [6, Theorem B']. Let R be an integral domain. Then the follow-
ing statements are equivalent:

(1) R is a 7ving of type 1.
(2) R has property D and is not complete (in the R-topology).

THEOREM 4 [4, Theorem 2]. A valuation ving has property D if and only if it
is a maximal valuation ving.

3. TECHNICAL LEMMAS

The following lemma is due to H. Bass [1, Proposition 7.5].

LEMMA 5. Let R be a local integral domain with property D. Then every
finitely genevated, tovsion-free R-module of vank 1 can be genevated by two ele-
ments.

Proof. Let M be the maximal ideal of R, and let I be a finitely generated,
torsion-free R-module of rank 1. Then I has a minimal generating set
{a,l , ***,a,}. We can assume that n > 2. Since I is isomorphic to an ideal of R,
we can assume without loss of generality that I is an ideal of R.

Let F be a direct sum of n copies of R; then x =(a;, ', an) € F. Let B be
the pure submodule of rank 1 of F that is generated by x. Then F/B=C isa
torsion-free R-module of rank n - 1. Because R has property D,

Cc=C, @® --- @Cn-l , where each C; is a torsion-free R-module of rank 1. By the
theory of projective covers of finitely generated modules over local rings, there
exist decompositions F=F; @ @ F,_; and B=B; ®-- @B, _;, where

B; C F;. Since B is indecomposable, we can assume that B = B, .

Now the coordinates of x relative to any free basis of F form a minimal gen-
erating set for I. Hence x is not contained in any proper direct summand of F.
Thus F = F; , and therefore n- 1=1. Hence n=2.
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LEMMA 6. Let R be an integral domain such that every finitely genevated
ideal of R can be genevated by two elements. Then the integrval closure of R iS a
Priifer ring.

Proof. Clearly, every finitely generated torsion-free R-module of rank 1 is
isomorphic to an ideal of R, and can thus be generated by two elements. This
property is obviously inherited by every ring between R and its quotient field.
Thus we may assume, without loss of generality, that R is an integrally closed
local ring, and we must prove that R is a valuation ring.

Let M be the maximal ideal of R, and let @ be the quotient field of R. Let V
be a valuation ring in Q that dominates R; that is, suppose R C V and
m(V) N R = M, where m(V) is the maximal ideal of V. We shall prove that R = V.

Suppose that R # V. If every unit of V is contained in R, then V = R. Hence
there exists a unit x of V that is not in R. Let A be the R-module generated by
1, x, and x2. By assumption, A can be generated by two elements. Since R is a
local ring, two of the elements 1, x, x% generate A. However, since R is integrally
closed, x is not integral over R, and thus 1 and x cannot generate A.

In fact, 1 and x2 generate A. For if x and x2 generate A, then there exist
elements a and b in R such that 1 = ax +bx?. If both a and b are in M, then
1 € VM € m(V), and this is a contradiction. Hence either a ¢ M or b ¢ M. If b is
not in M, then x is integral over R, which is impossible. Thus a is not in M, and
hence we see that 1 and x? generate A.

Thus we have shown that there exist elements ¢ and d in R such that
x=c+dx%. We see that d € M, since x is not integral over R. However, ¢ ¢ M,
since x is a unit in V. But then 1/x is integral over R, and hence 1/x € M.
Therefore 1 =x +1/x € VM C m(V). This contradiction shows that R = V.

COROLLARY 7. Let R be an integral domain with property D. Then the inte-
gral closuve of R is a Prufer ving.

Proof. This is an immediate consequence of Lemmas 5 and 6.
LEMMA 8. Let R be an integral domain whose quotient field Q (Q #R) is not

rvemote, and suppose that n 1" = 0 for every proper principal ideal 1 of R. Then R
is a local ving of Kvull dimension 1.

Proof. Suppose that R has two distinct nonzero prime ideals P; and P,. We
can assume that P) ¢ P,. Choose an element a € P, such that a ¢ P,, and let

S = {a™} be the multiplicatively closed set generated by a. Now Rél = ﬂ Ra", and

therefore R§1 = 0, by assumption. Since Q is not remote from R, we conclude that
Rg = Q. However, P, NS is empty, and thus RgP, is a nonzero, proper, prime
ideal of Rg. Therefore, Rg cannot be a field. This contradiction shows that R has
only one nonzero prime ideal.

LEMMA 9. Let R be an integral domain with property D whose quotient field Q

(Q #+ R) is not remote. Suppose that n I" = 0 for every propey principal ideal 1 of
R. Then the integral closure of R is a maximal valuation ving of Kvull dimension 1.

Proof. Let F be the integral closure of R. By Lemma 8, R is a local ring of
Krull dimension 1. Thus F also has Krull dimension 1. By Corollary 7, F is a
Priifer ring. Suppose that F has two distinct maximal ideals N; and N,. Then
FNl and FN2 are valuation rings. FN1 and FNZ have property D, by [3, Lemma
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6.2], and thus FN1 and FN‘2 are maximal valuation rings, by Theorem 4. Let
S = FN1 N FNZ; then S has Krull dimension 1, and hence S is a ring of type I.

Hence, by Theorem 2, S has a remote quotient field. But since Q is not remote
from R, it is certainly not remote from S. This contradiction shows that F is a
local ring. A local Priifer ring is a valuation ring. Therefore F is a maximal valu-
ation ring, by Theorem 4.

4., THE MAIN THEOREMS

THEOREM 10. Let R be an integvally closed domain. Then the following
statements ave equivalent:

(1) R has property D, and n 1" = 0 for every proper principal ideal 1 of R.

(2) R has Krull dimension 1, and R is eithev a maximal valuation ving ov a
ving of type 1.

Proof. (1) = (2): Suppose that R has property D, and ﬂ I® =0 for every
proper principal ideal I of R. If R has a remote quotient field, then R is a ring of
type I, by Theorem 2. If R does not have a remote quotient field, then R is a maxi-

mal valuation ring, by Lemma 9. Thus R is either a maximal valuation ring or a
ring of type I. We must prove that R has Krull dimension 1.

Suppose that R does not have Krull dimension 1. Then some nonzero prime
ideal P of R is not a maximal ideal. Suppose that R is a valuation ring. Then
there exists a nonunit a € R such that a ¢ P. It follows that P C Ra™ for all n.

Thus P C n Ra™ = 0. This contradiction shows that R is a ring of type I.

Let M; and M, be the two maximal ideals of R. Since R is an h-local ring,
we can assume that P g M, and PZ£ M,. If (M, - P) C M, , then PC M,. Hence

there exists an element b € M, such that b¢d P and b ¢ M2 .

Now, if I is any ideal of R that is contained in M, , but not in M, , then
RMIIﬂ R=1. Forif x e RMlI N R, then x=c¢/s, where c € I and se R - M,.

Since neither M; nor M, contains I + Rs, there exist elements d € I and t € R
such that 1 =d +ts. Hence, x=dx+tsx=dx+tc € L.

Thus, for any integer n > 0, we have the relations lebn N R = Rb™ and
Ry, PN R=P. Since b" ¢ P and Ry, is a valuation ring, Ryy P C Ry b”. Thus

P = (RMlPﬂ R) C (RMlbnﬂ R) = Rb™

for all n > 0, Therefore P C n Rb™ = 0. This contradiction shows that R has
Krull dimension 1.

(2) = (1): Assume that R is either a maximal valuation ring or a ring of type I.
By Theorem 4 or by Theorem 2, R has property D. We now assume that R also has

Krull dimension 1, and we must show that ﬂ 17 = 0 for every proper principal ideal
I of R.

Let r be any nonzero element of the Jacobson radical of R, and let S denote the
multiplicatively closed subset {r"} generated by r. Since every nonzero prime
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ideal of R meets S, we see that Rg is the quotient field Q of R. Let J = nan,
and suppose J # 0. If a is a nonzero element of J, then, because Rg = Q, there

exist b € R and an integer n > 0 such that é=—%. But a = cr™! for some ¢ € R,

r
and hence cbr = 1. Thus r is a unit in R, and this is a contradiction. Therefore

n Rr™ = 0.

This disposes of the case where R is a valuation ring, and hence we may as-
sume that R is a ring of type I with two maximal ideals M; and M, . In the light of
the preceding paragraph, it will be sufficient to show that if b € M; and b ¢ M,

then ﬂ Rb"” = 0. Now RM1 is a local ring of Krull dimension 1, and hence, by the
preceding paragraph, ﬂ RM1 b" = 0. As in the proof that (1) = (2), we see that
Ry, b® N R=Rb®. Thus [ 1Rp™=0.

We are now ready to prove the main theorem of this paper.

THEOREM 11. Let R be an integrval domain, but not a field. Then the following
statements ave equivalent:

(1) R is a ring of type 1I.

(2) R has property D, and ﬂ 1" = 0 for every ideal 1 of R.
Pyroof. If R is a ring of type II, then R has property D, by Theorem 1. Since
R is a Noetherian ring, ﬂ I" = 0 for every ideal I of R. Conversely, assume that

R has property D and that n I" = 0 for every ideal I of R. We shall prove that R
is a ring of type II.

First we show that R does not have a remote quotient field. Suppose that R has
a remote quotient field. Then, by Theorem 2, R is a ring of type I. Let M; and M,
be the maximal ideals of R. Then

n(RMlMl)n = n(RMlM’I’) = RMl(ﬂ M’f) = 0.

Since RM1 is a maximal valuation ring, this implies that R, is a complete dis-
1
crete valuation ring. Similarly, RM2 is a complete discrete valuation ring. Since R

is an h-local ring, we deduce from [5, Lemma, p. 258] that R is a Noetherian ring.
But Noetherian rings of type I do not exist, as was proved by F. K. Schmidt [7]. This
contradiction shows that R does not have a remote quotient field.

We now see by Lemma 8 that R is a local ring of Krull dimension 1 and with
maximal ideal M. Let F be the integral closure of R. Then, by Lemma 9, F is a
maximal valuation ring of Krull dimension 1, with maximal ideal N. We assert that
N is a principal ideal of F.

Suppose that N is not a principal ideal of F. By Lemma 5, dimg /s F/FM < 2.
If FM # N, then there exists an element x € N - FM, and therefore FM g Fx C N.

But dimg /g N/FM =1, in this case, and thus N = Fx is a principal ideal of F.
Thus we can assume that FM = N. Suppose I = F-1. Since R does not have a
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remote quotient field, I # 0. Since I is an ideal of F, we see that
Nk = (FM)X = (FMY) = MK ¢ MF

for every integer k > 0. Therefore,

I(n'Nk) c Tmxc M- =o.

Hence, ﬂ NX = 0. But since F is a valuation ring, this implies that N is a prin-
cipal ideal of F. Thus N is a principal ideal of F, in all cases, and since F has

Krull dimension 1, we see that ﬂ NK = 0. From this it follows immediately that F
is a complete discrete valuation ring.

Let x be an element of F such that N = Fx. Every ideal of F is a power of N.
Now dimpg,;y F/N < dimp/; F/FM < 2. Since Fx'/Fx'*! 2 F/Fx = F/N, it follows
that if J is any nonzero ideal of F, then F/J is an R-module of finite length. Let
I =F-1; since R does not have a remote quotient field, I is a nonzero ideal of F
that is contained in R. We have just seen that F/I is an R-module of finite length.
Since F/I maps onto F/R, we see that F/R is an R-module of finite length. Thus
F is a finitely generated R-module.

Since every ideal of F is isomorphic to F, every ideal of F is a finitely gen-
erated R-module. Thus I is a finitely generated ideal of R. Now M/I is an R-
submodule of F/I. Thus M/I is an R-module of finite length. Therefore, M is a
finitely generated ideal of R. Since M is the only nonzero prime ideal of R, it fol-
lows from a theorem of I. S. Cohen [2, Chapter I, Theorem 3.4] that R is a Noether-
ian ring.

By Lemma 5, every ideal of R can be generated by two elements. We have al-
ready seen that R is a local ring of Krull dimension 1. By Theorem 3, R is com-
plete in the R-topology. But for a Noetherian local domain of Krull dimension 1,
the R-topology and the M-adic topology are the same. Hence R is a ring of type II.
This completes the proof of the theorem.

Remark. 1t is interesting to compare Theorem 11 with the main theorem of [5],
where we proved that every ideal of an integral domain R can be generated by two
elements if and only if R is a Noetherian ring such that for every maximal ideal M,
R, has property D for finitely generated torsion-iree modules.
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