COHOMOLOGY OF COMPACT MINIMAL SUBMANIFOLDS

Edmund F. Kelly

1. INTRODUCTION

Let N be a Riemannian manifold, and let $f: M \to N$ be an immersion. M is said to be *minimal* in N if the mean curvature of M in N is identically zero. In [4], J. Simons studied minimal immersions by considering elliptic differential equations involving cross-sections of various Riemannian vector bundles. In view of his results and the classical relation between harmonic forms and the cohomology of a Riemannian manifold, it is perhaps natural to ask whether there is any connection between minimality and cohomology. In this note we prove the following proposition.

THEOREM. If N is a compact, connected, orientable Riemannian manifold with positive-semidefinite Ricci curvature and $f: M \to N$ is a minimal immersion of a compact, connected, orientable manifold M such that the image of M is not contained in a totally geodesic submanifold of N, then the natural map

$$f^*: H^1(N, \mathbb{R}) \to H^1(M, \mathbb{R})$$

is one-to-one and into.

This result should be compared with the work of T. T. Frankel [1] on minimal hypersurfaces in manifolds with positive-definite Ricci curvature.

2. NOTATION

Let N be a Riemannian manifold with connection $\overline{\nabla}$, and let $f\colon M\to N$ be an immersion; we shall not in general differentiate between a point p in M and its image in N. There is an orthogonal decomposition $N_p=M_p\bigoplus M_p^\perp$ with respect to the metric on N. If U is a vector field on N, we shall denote its component tangent to M by U^T , and its component normal to M by U^N . If ∇ is the connection on M with respect to the induced metric, then for tangential vector fields X and Y,

$$\nabla_{\mathbf{X}} \mathbf{Y} = (\overline{\nabla}_{\mathbf{X}} \mathbf{Y})^{\mathrm{T}}.$$

If ξ is a normal vector field on M and X is a tangential vector field, define

(2)
$$\mathbf{A}_{\xi} \mathbf{X} = -(\overline{\nabla}_{\mathbf{X}} \xi)^{\mathrm{T}}.$$

It is well known (see [3, p. 14]) that $(A_{\xi} X)_p$ depends only on X_p and ξ_p , so that A_{ξ_p} is well-defined and is a symmetric linear operator on M_p . We recall that M is minimal in N if and only if trace $A_{\xi_p} = 0$ for all normal vector fields ξ and all $p \in M$.

Received April 29, 1971.

This research was supported by N.R.C. Grant No. A7846.

Michigan Math. J. 19 (1972).

If U is a vector field on N, it gives rise to two vector fields on M, the tangential field V = \textbf{U}^T and the normal field $\overline{\textbf{V}}$ = \textbf{U}^N .

LEMMA 1. If X is a tangential field, then

$$\nabla_{\mathbf{X}} \mathbf{V} = (\overline{\nabla}_{\mathbf{X}} \mathbf{U})^{\mathrm{T}} + \mathbf{A}_{\overline{\mathbf{V}}} \mathbf{X}.$$

Proof. By (1), $\nabla_X V = (\overline{\nabla}_X V)^T$. Since the right-hand side is equal to $(\overline{\nabla}_X U)^T - (\overline{\nabla}_X \overline{V})^T$, the lemma follows from (2).

3. PROOF OF THE THEOREM

Throughout this section, we assume that N is compact, connected, and orientable with positive-semidefinite Ricci curvature, and that M is a compact, connected, and orientable manifold immersed in N.

LEMMA 2. If U is a harmonic vector field on N, and if M is immersed minimally in N, then V is harmonic on M.

Proof. It is well known that if N has positive-semidefinite Ricci curvature, then a harmonic vector field is covariant constant (see [2, p. 87]). Lemma 1 thus implies that $\nabla_X V = A_{\overline{V}} X$, for any vector field X on M.

Now div V = trace (X $\rightarrow \nabla_X V$). Hence div V = trace $A_{\overline{V}} \equiv 0$, by the assumption of minimality.

If w is the one-form on M given by w(X) = (V, X), then w is closed (since it is the pull-back of a closed form on N) and co-closed. Hence V is harmonic.

LEMMA 3. If U is a harmonic vector field on N such that $V \equiv 0$, then M is contained in a totally geodesic submanifold of N.

Proof. Since U is covariant constant on N, the distribution H on N given by $H_p = U_p^{\perp}$ is involutive. The maximal integral submanifolds of H are totally geodesic; for if c(t) is a geodesic and T = c'(t), then

$$T(U, T) = (\overline{\nabla}_T U, T) + (U, \overline{\nabla}_T T) = 0.$$

At each point of M, $M_p \subset H_p$; therefore, if r(t) is a curve in M, then $r'(t) \subset H_{r(t)}$ for all t; thus r(t) lies in a maximal integral submanifold of H. Thus, since M is path-wise connected, we see that if $p \in M$, then M must lie in the maximal integral submanifold of H through p.

The theorem now follows from Lemmas 2 and 3.

COROLLARY. If an immersion of the n-torus T^n in T^{n+p} is minimal with respect to the flat metric, then it is the standard immersion as a subtorus.

Proof. The corollary follows immediately from the fact that the torus is completely parallelisable.

REFERENCES

- 1. T. Frankel, On the fundamental group of a compact minimal submanifold. Ann. of Math. (2) 83 (1966), 68-73.
- 2. S. I. Goldberg, Curvature and homology. Academic Press, New York, 1962.
- 3. S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II. Interscience Publ., New York, 1969.
- 4. J. Simons, Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88 (1968), 62-105.

University of New Brunswick Fredericton, New Brunswick, Canada