STABILIZATION OF SELF-EQUIVALENCES OF THE PSEUDOPROJECTIVE SPACES

Allan J. Sieradski

1. INTRODUCTION

For a space X with basepoint, let $\mathcal{E}(X)$ denote the group of homotopy classes of homotopy equivalences of X into itself, the group operation being composition. We refer to $\mathcal{E}(X)$ as the self-equivalence group of X. The operation of suspending one homotopy equivalence to obtain another determines a sequence of homomorphisms

$$\mathcal{E}(\mathbf{X}) \xrightarrow{\Sigma} \mathcal{E}(\Sigma \mathbf{X}) \xrightarrow{\Sigma} \cdots \xrightarrow{\Sigma} \mathcal{E}(\Sigma^n \mathbf{X}) \xrightarrow{\Sigma} \cdots$$

connecting the self-equivalence groups of the iterated suspensions of X. When X is a finite CW complex, this sequence stabilizes at some stage $\mathcal{E}(\Sigma^n X)$ ($0 \le n \le \dim X$), in that it consists of isomorphisms thereafter.

We describe this stabilization process in the case where X is the pseudoprojective plane of order q, denoted by P_q^l . As a starting point we take P. Olum's description [6] of the rather rich structure of $\mathcal{E}(P_q^l)$. Let Γ_q denote the quotient of the integral polynomial ring $Z\left[x\right]$ modulo the ideal generated by $1+x+\cdots+x^{q-1}$, and let E_q denote the group whose elements are the units of Γ_q and whose multiplication \circ is defined by the formula

$$\left\{ \sum_{i} n_{i} x^{i} \right\} \circ \left\{ \sum_{i} m_{i} x^{i} \right\} = \left\{ \sum_{i} n_{i} x^{i} \right\} \left\{ \sum_{i} m_{i} x^{is} \right\},$$

where $s = \sum n_i \pmod{q}$ is called the augmentation of $\left\{\sum n_i x^i\right\}$.

THEOREM 1 ([6, Theorems 3.4 and 3.5, and Remark 3.6]). The self-equivalence group $\mathcal{E}(P_q^l)$ of the pseudoprojective plane P_q^l is isomorphic to the group E_q . Moreover, E_q is isomorphic to the semidirect product $U_q^l \times_\theta Z_q^*$ of the group U_q^l (of units of Γ_q of augmentation 1) and the multiplicative group Z_q^* (of reduced residues modulo q) whose operators $\theta\colon Z_q^*\to \operatorname{Aut} U_q^l$ are given by the relation $\theta(s)$ ($\left\{\sum n_i\,x^i\right\}$) = $\left\{\sum n_i\,x^{is}\right\}$.

Since the pseudoprojective plane P_q^l admits a two-dimensional cellular decomposition, namely, $S^1 \cup_q e^2$, the stabilization process takes at most two steps; hence the relevant suspensions are the pseudoprojective spaces $P_q^2 = S^2 \cup_q e^3$ and $P_q^3 = S^3 \cup_q e^4$. Our description of the stabilization process is summarized by the following two theorems.

THEOREM 2. The self-equivalence group $E(P_q^2)$ is isomorphic to the semidirect product $Z_q \times_{\varphi} Z_q^*$ of the cyclic group Z_q of order q and the group Z_q^* whose operators $\varphi\colon Z_q^* \to \operatorname{Aut} Z_q$ are given by the canonical isomorphism

Received November 12, 1970.

Michigan Math. J. 19 (1972).

$$\phi(s)(t \pmod{q}) = st \pmod{q}$$
.

The self-equivalence group $E(P_q^3)$ is isomorphic to the direct product $Z_{(2,q)} \times Z_q^*$ of the cyclic group $Z_{(2,q)}$ of order (2,q) with the group Z_q^* .

THEOREM 3. The first suspension homomorphism $\Sigma \colon \mathcal{E}(P_q^1) \to \mathcal{E}(P_q^2)$ can be identified with the product homomorphism

$$U_{\mathbf{q}}^{1} \times_{\theta} Z_{\mathbf{q}}^{*} \rightarrow Z_{\mathbf{q}} \times_{\phi} Z_{\mathbf{q}}^{*}$$

of the trivial homomorphism 0: $U_q^1 \to Z_q$ and the identity homomorphism 1: $Z_q^* \to Z_q^*$, while the second suspension homomorphism Σ : $E(P_q^2) \to E(P_q^3)$ can be identified with the product homomorphism

$$Z_q \times_{\phi} Z_q^* \rightarrow Z_{(2,q)} \times Z_q^*$$

of the unique epimorphism $Z_q \to Z_{(2,q)}$ and the identity homomorphism 1: $Z_q^* \to Z_q^*$.

In each of the identifications of Theorems 1 and 2, the factor $Z_q^* \approx \operatorname{Aut} Z_q$ of a self-equivalence reflects the automorphism it induces on the first nonvanishing homotopy group. Thus each automorphism can be realized by some self-equivalence, and the complementary factors U_q^l , Z_q , and $Z_{(2,q)}$ measure the possible variations, the dwindling of which constitutes the stabilization process.

The process under consideration is intimately connected with the more basic stabilization process

$$\pi_2(\mathbf{P}_{\mathsf{q}}^1) \ \xrightarrow{\Sigma} \ \pi_3(\mathbf{P}_{\mathsf{q}}^2) \ \xrightarrow{\Sigma} \ \pi_4(\mathbf{P}_{\mathsf{q}}^3)$$

involving the suspension homomorphisms connecting the second nontrivial homotopy groups of the pseudoprojective spaces. Section 2 contains an analysis of the latter stabilization process. Section 3 presents a description of the second suspension homomorphism $\Sigma \colon \mathcal{E}(P_q^2) \to \mathcal{E}(P_q^3)$. Section 4 begins with a formulation of the isomorphism $\mathcal{E}(P_q^1) \approx E_q$ of Theorem 1 in terms compatible with the description in Section 3 of $\mathcal{E}(P_q^2)$, and continues with the calculation of the first suspension homomorphism $\Sigma \colon \mathcal{E}(P_q^1) \to \mathcal{E}(P_q^2)$. Section 5 presents a self-contained proof of P. Olum's isomorphism $\mathcal{E}(P_q^1) \approx E_q$ quoted in Theorem 1.

2. STABILIZATION OF THE HOMOTOPY GROUPS

Since the pseudoprojective plane P_q^l is the two-dimensional space $S^l \cup_q e^2$ obtained from the 1-sphere S^l by attaching a 2-cell by a map of degree q, its fundamental group $\pi_1 = \pi_1(P_q^l)$ is cyclic of order q and is generated by some element a. If $C: (B^2, S^l) \to (P_q^l, S^l)$ is the characteristic map for the 2-cell, then the images $\rho^i[C]$ of the homotopy class [C] in $\pi_2(P_q^l, S^l)$ under the action of ρ^i in $\pi_1(S^l)$ satisfy the relation $\rho^i[C] = \rho^j[C]$ if and only if $i \equiv j \pmod q$, and they determine a basis

$$[C], \rho[C], \cdots, \rho^{q-1}[C]$$

for $\pi_2(P_q^1,S^1)$. Thus we can identify $\pi_2(P_q^1,S^1)$ with the integral group ring $Z[\pi_1]$ of the fundamental group π_1 , by mapping $\rho^i[C]$ to a^i . The exact homotopy sequence for the pair (P_q^1,S^1) shows that $\pi_2(P_q^1)$ can be identified with the ideal in $Z[\pi_1]$ generated by $\alpha=1$ - a, so that as an abelian group, $\pi_2(P_q^1)$ is free of rank q-1, and as a π_1 -module, $\pi_2(P_q^1)$ has a single generator α , subject solely to the relation $(1+a+\cdots+a^{q-1})\alpha=0$.

The cell structure for P_q^1 that consists of a 0-cell e^0 , a 1-cell e^1 , and a 2-cell e^2 determines a cell structure for its reduced product $J(P_q^1)$ (see [3]), in which the 2-skeleton consists of P_q^1 together with a new 2-cell $e^1 \Box e^1$ whose attaching map is inessential. Hence $J(P_q^1)^2 \cong P_q^1 \vee S^2$, and as a π_1 -module, the second homotopy group of $P_q^1 \vee S^2$ has two generators, α coming from P_q^1 and β coming from S^2 . Passage to the 3-skeleton of the reduced product $J(P_q^1)$ introduces three 3-cells $e^1 \Box e^1 \Box e^1$, $e^2 \Box e^1$, and $e^1 \Box e^2$ whose attaching maps represent the elements $a\beta - \beta$, $\alpha + \Big(\sum a^i\Big)\beta$, and $\alpha - \Big(\sum a^i\Big)\beta$, respectively, in $\pi_2(P_q^1 \vee S^2)$.

Thus, α and β are π_1 -generators of $\pi_2(J(P_q^1))$, and they are subject solely to the relations

$$a\beta = \beta$$
, $\alpha = -(\sum a^i)\beta$, $\alpha = (\sum a^i)\beta$, $(\sum a^i)\alpha = 0$.

It follows from the first three relations that the action of π_1 on $\pi_2(J(P_q^1))$ is trivial, that $\alpha = q\beta$, and that $2q\beta = 0$; therefore the fourth relation gives $q^2\beta = 0$. Thus, β serves as a single Z-generator of $\pi_2(J(P_q^1))$ of order $(2q, q^2)$.

Since the suspension homomorphism Σ : $\pi_n(X) \to \pi_{n+1}(\Sigma X)$ can be identified with the homomorphism $j_\#: \pi_n(X) \to \pi_n(J(X))$ induced by the inclusion $j: X \to J(X)$ of a connected finite CW complex into its reduced product, the previous calculations imply the following:

LEMMA 1. The group $\pi_3(P_q^2)$ is cyclic of order $(2q, q^2)$. Moreover, the suspension homomorphism Σ : $\pi_2(P_q^1) \to \pi_3(P_q^2)$ sends the π_1 -generator of $\pi_2(P_q^1)$ to q times a generator of $\pi_3(P_q^2)$.

It follows directly from the exact homotopy sequence of the pair $(P_q^2\,,\,S^2)$ that one generator of $\pi_3(P_q^2)$ is the Hopf map $S^3\to S^2$ composed with the inclusion map $S^2\to P_q^2$. We call this the Hopf map generator, and we denote it by h: $S^3\to P_q^2$.

We now apply the same device to P_q^2 with its cell structure consisting of a 0-cell e^0 , a 2-cell e^2 , and a 3-cell e^3 . The 3-skeleton of its reduced product $J(P_q^2)$ is merely P_q^2 , and the 4-skeleton contains a single 4-cell $e^2 \Box e^2$ that attaches to $S^2 \subset P_q^2$ via the Whitehead product $[j,j] \in \pi_3(P_q^2)$ of the inclusion map $j\colon S^2 \to P_q^2$ with itself. This product [j,j] is known to be exactly twice the Hopf map generator of $\pi_3(P_q^2)$ [1, Chapter VI, Theorem 2.15]. Thus we have the following result:

LEMMA 2. The group $\pi_4(P_q^3)$ is cyclic of order (2, q), and the suspension homomorphism $\Sigma \colon \pi_3(P_q^2) \to \pi_4(P_q^3)$ is the unique epimorphism from the cyclic group of order $(2q, q^2)$ to the cyclic group of order (2, q).

3. The suspension homomorphism
$$\Sigma: \mathcal{E}(\mathbf{P}_q^2) \to \mathcal{E}(\mathbf{P}_q^3)$$

We actually describe the suspension homomorphism $\Sigma \colon \mathcal{E}(M) \to \mathcal{E}(\Sigma M)$ for a Moore space M = M(G,n) (see [5]) whose single nonvanishing homology group G occurs in dimension $n \geq 2$. Given the abelian group G as a quotient F/R of a free abelian group G modulo a subgroup G, we can construct the Moore space G up to homotopy type from a wedge G of G n-spheres by attaching G with the inclusion homomorphism G: G is a fixed G in the homotopy type of the mapping cone of a map G: G is a fixed G is a fixed G in the induced homomorphism G is a follows that the exact sequence determined by the Puppe sequence of the map G takes the form indicated in the diagram

$$\operatorname{Hom}(F, \pi_{n+1}(X)) \xrightarrow{i^{*}} \operatorname{Hom}(R, \pi_{n+1}(X)) \quad \operatorname{Hom}(F, \pi_{n}(X)) \xrightarrow{i^{*}} \operatorname{Hom}(R, \pi_{n}(X))$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$[\Sigma N, X] \xrightarrow{\Sigma g^{\#}} [\Sigma L, X] \xrightarrow{k^{\#}} [M, X] \xrightarrow{j^{\#}} [N, X] \xrightarrow{g^{\#}} [L, X]$$

Since $n \ge 2$, the entire Puppe sequence determined by the map g can be desuspended, and hence the exact sequence (1) involves additive groups and homomorphisms. By localizing the exactness of (1) at [M, X], we obtain the well-known Universal Coefficient Sequence for homotopy groups with coefficients in G ([2, p. 30]):

$$0 \longrightarrow \operatorname{coker} \Sigma g^{\#} \xrightarrow{\omega} [M, X] \xrightarrow{\#} \ker g^{\#} \longrightarrow 0$$

$$(2) \qquad \qquad \| \qquad \qquad \|$$

$$\operatorname{Ext}(G, \pi_{n+1}(X)) \qquad \qquad \operatorname{Hom}(G, \pi_{n}(X))$$

Here the homomorphism ω is induced by the quotient map k: $M \to M/N = \Sigma L$, and it sends the coset $\{\alpha\}$ ϵ coker $\Sigma g^{\#}$ associated with α ϵ $[\Sigma L, X]$ to $\alpha \circ k \epsilon$ [M, X], while the homomorphism # is induced by the inclusion map j: $N \to M$ and sends $f \in [M, X]$ to $f_{\#}$: $G = \pi_n(M) \to \pi_n(X)$.

For the special case in which X=M, the sequence (2) is more than just an exact sequence of additive groups and homomorphisms. When $n \geq 3$ (n=2), the multiplications induced by composition make the last two entries rings with unit (near-rings with unit, possibly lacking commutativity of addition and right distributivity of multiplication over addition), and they make the intervening homomorphism a (near-) ring homomorphism. It is precisely the units of this multiplication in [M,M] in which we are interested, and therefore we note the following proposition.

LEMMA 3. For each integer $n \ge 2$, the modified sequence

$$0 \longrightarrow \operatorname{Ext}(G, \pi_{n+1}(M(G, n))) \xrightarrow{\overline{\omega} = \omega + 1} [M(G, n), M(G, n)] \xrightarrow{\#} \operatorname{Hom}(G, G) \longrightarrow 1$$

is a short exact sequence of multiplicative semigroups with unit, provided the first entry retains its original additive operation.

Proof. Since the function # sends the identity mapping to the identity homomorphism, it follows from the exactness of the original additive sequence (2) that an

element in the multiplicative kernel of # differs from the identity mapping 1: $M(G, n) \to M(G, n)$ by an element in the image of ω , and hence is itself in the image of $\overline{\omega} = \omega + 1$. It remains to prove that the injective function $\overline{\omega} = \omega + 1$ is a homomorphism from the additive structure of Ext to the multiplicative structure of [M(G, n), M(G, n)].

Assume that $n \ge 3$. We see that for α , $\beta \in [M/N, M]$,

$$(\omega(\lbrace \alpha \rbrace) + 1) \circ (\omega(\lbrace \beta \rbrace) + 1) = \omega(\lbrace \alpha \rbrace) \circ \omega(\lbrace \beta \rbrace) + \omega(\lbrace \alpha \rbrace) + \omega(\lbrace \beta \rbrace) + 1.$$

Hence we need merely show that $\omega(\{\alpha\}) \circ \omega(\{\beta\}) = 0$. In fact,

$$\omega(\{\alpha\}) \circ \omega(\{\beta\}) = \alpha \circ k \circ \beta \circ k,$$

and it is sufficient to show that $k \circ \beta$ is null-homotopic. Since

$$j_{\#}: \pi_{n+1}(N) \to \pi_{n+1}(M)$$

is surjective and M/N is a wedge of (n + 1)-spheres, the map

$$j_{\#}$$
: [M/N, N] \rightarrow [M/N, M]

is also surjective. Therefore β : $M/N \to M$ admits a factorization $\beta = j \circ \beta'$. Since $k \circ j$ is null-homotopic, $k \circ j \circ \beta' = k \circ \beta$ is null-homotopic. In the case n = 2, the right-hand distributive law is not available, and we require a slightly more elaborate argument involving the comultiplication for the pair (M, N).

Since a map $M(G, n) \to M(G, n)$ ($n \ge 2$) is a homotopy equivalence if and only if it induces an automorphism of $G = \pi_n(M(G, n))$, we have the following immediate conclusion from Lemma 3.

THEOREM 4. The group $E(M(G,\,n))$ of self-equivalences of a Moore space $M(G,\,n)$ associated with an abelian group G and an integer $n\geq 2$ is a group extension

$$0 \to \operatorname{Ext}(G, \pi_{n+1}(M(G, n))) \xrightarrow{\overline{\omega}} \mathcal{E}(M(G, n)) \xrightarrow{\#} \operatorname{Aut} G \to 1$$

of Ext by the automorphism group Aut G of G.

Because M(G, n) is (n - 1)-connected and admits an (n + 1)-dimensional cell structure, the suspension homomorphism Σ : $\mathcal{E}(M(G, n)) \to \mathcal{E}(M(G, n + 1))$ is an isomorphism if $n \geq 3$, and is an epimorphism if n = 2. One easily notes from the construction of the extensions in Theorem 4 that the suspension process induces a morphism $(\text{Ext}(1, \Sigma), \Sigma, 1)$ from the nth extension to the (n + 1)st extension. Thus, the following situation for the case n = 2 obtains.

COROLLARY 1. The suspension homomorphism $\Sigma \colon \mathcal{E}(M(G,2)) \to \mathcal{E}(M(G,3))$ is an epimorphism whose kernel is exactly that of the homomorphism

Ext (1,
$$\Sigma$$
): Ext (G, $\pi_3(M(G, 2))) \rightarrow Ext (G, $\pi_4(M(G, 3)))$.$

In the case where G is the cyclic group $\mathbf{Z}_{\mathbf{q}}$, we have available the calculations of the previous section. We find that

$$\text{Ext}(Z_q, \pi_3(P_q^2)) \approx Z_q$$
 and $\text{Ext}(Z_q, \pi_4(P_q^3)) \approx Z_{(2,q)}$.

Moreover, under these identifications $\operatorname{Ext}(1,\Sigma)$ corresponds to the unique epimorphism $Z_q \to Z_{(2,q)}$. From Corollary 1, we deduce that the kernel of the suspension homomorphism $\Sigma \colon \mathcal{E}(P_q^2) \to \mathcal{E}(P_q^3)$ is cyclic of order q/(2,q). A generator of this kernel is best described in terms of Puppe action, which we now consider.

If M is the mapping cone associated with a map g: L \rightarrow N, there is a co-operation c: M $\rightarrow \Sigma$ L \vee M. This map, which simply collapses the mid-belt of the cone in M, determines an action of $\alpha \in [\Sigma L, M]$ on $f \in [M, M]$, namely,

$$f^{\alpha} = \nabla \circ \alpha \vee f \circ c : M \to \Sigma L \vee M \to M \vee M \to M$$
.

If g: L \rightarrow N can be desuspended, then the mapping cone M inherits a suspension comultiplication $\mu \colon M \to M \vee M$ for which $c \cong k \vee 1 \circ \mu \colon M \to \Sigma L \vee M$, where k: M \rightarrow M/N = ΣL is the indicated quotient map. In this case, $f^{\alpha} \cong \alpha \circ k + f$.

It follows that for $n \geq 2$, the homomorphism

$$\overline{\omega}$$
: Ext $(Z_q, \pi_{n+1}(P_q^n)) \rightarrow \mathcal{E}(P_q^n)$

is given by the correspondence $\left\{\alpha\right\}\to 1^{\mathcal{Q}}$ for $\alpha\colon S^{n+1}\to P_q^n$. Since one generator of the cyclic group $\operatorname{Ext}(Z_q$, $\pi_3(P_q^2))$ is the coset of the Hopf map $h\colon S^3\to P_q^2$, a generator of the kernel of the suspension homomorphism $\Sigma\colon \mathcal{E}(P_q^2)\to \mathcal{E}(P_q^3)$ is given by 1^h when q is odd, and by $1^{2h}=1^h\circ 1^h$ when q is even.

A similar description of the suspension homomorphism

$$\Sigma$$
: $\mathcal{E}(M(G, 2)) \rightarrow \mathcal{E}(M(G, 3))$

for a noncyclic group G requires knowledge of the crucial homomorphism $\Sigma\colon \pi_3(M(G,2))\to \pi_4(M(G,3))$. Undoubtedly, this information could be obtained for finitely generated abelian groups G by means of I. M. James's reduced-product construction, which we used in the previous section. We are content to mention that $\pi_4(M(G,3))\approx Z_2\otimes G$ ([1, Chapter VIII, Theorem 2.4]), so that we can draw the following conclusion from Theorem 4.

COROLLARY 2. For a finitely generated abelian group G, each automorphism of G admits exactly 2^{n^2} distinct realizations by a self-equivalence $M(G,3) \to M(G,3)$, where n is the length of the 2-primary component of G. In particular, #: $E(M(G,3)) \approx Aut \ G$ if and only if G has no 2-torsion.

4. The suspension homomorphism $\Sigma \colon E(P_q^1) \to E(P_q^2)$

To take advantage of Olum's isomorphism $\mathcal{E}(P_q^1)\approx E_q$, we first formulate it in terms compatible with our previous description of $\mathcal{E}(P_q^2)$. For this we need the following data.

In Section 2 we saw that the $\pi_1\text{-module }\pi_2(P_q^1)$ can be identified with the ideal in $Z\left[\pi_1\right]$ generated by 1 - a. Moreover, if the ideal of $Z\left[\pi_1\right]$ generated by $1+a+\cdots+a^{q-1}$ is denoted by I, and if the quotient ring $Z\left[\pi_1\right]/I$ is denoted by Γ_q , then $\pi_2(P_q^1)$ can be further identified with the ideal in Γ_q generated by the coset $\left\{1-a\right\}$. This ideal consists of the cosets $\left\{\sum n_i a^i\right\}$ of Γ_q for which $\sum n_i\equiv 0\ (\text{mod }q)$. Therefore there is an exact sequence

$$0 \rightarrow \pi_2(P_q^1) \rightarrow \Gamma_q \xrightarrow{A} Z_q \rightarrow 0$$
,

where the augmentation ring homomorphism A is given by

$$A\left(\left\{\sum_{i} n_{i} a^{i}\right\}\right) = \sum_{i} n_{i} \pmod{q}.$$

We have the following important consequence:

(3) Each element γ of the group U_q of units of Γ_q can be written uniquely in the form $\left\{s+\alpha\right\}$, where s belongs to the group Z_q^* of units of Z_q , and α belongs to $\pi_2(P_q^1)$. In fact, $s=A(\gamma)$ and $\alpha=\gamma-A(\gamma)$.

A second fact we need is that the Puppe action of $\alpha \in [S^2, P_q^1]$ on $f \in [P_q^1, P_q^1]$ has the following crucial property ([2, Theorem 15.4]):

(4) Two maps f, g: $P_q^1 \to P_q^1$ induce the same homomorphism $f_\# = g_\# \colon \pi_1 \to \pi_1$ if and only if there exists an $\alpha \in [S^2, P_q^1]$ with $f^\alpha \cong g$.

Finally, for each integer s with 0 < s < q and (s,q) = 1, the map of the unit disc determined by the correspondence $(r,\theta) \to (r,s\theta)$ passes under the identifications $(1,\theta) \equiv (1,\theta+2\pi/q)$ to give a map $f_s\colon P_q^1 \to P_q^1$ with $f_{s\#}(a) = a^s$ on π_1 . We give the suspensions of these maps the same labels.

Within this framework we now formulate the isomorphism between $\mathcal{E}(P_q^1)$ and E_q , considered as the group of units of the ring Γ_q with the modified multiplication

$$\gamma \circ \gamma' = \gamma \theta_s(\gamma')$$
 for $s = A(\gamma)$, where $\theta_s\left(\left\{\sum n_i a^i\right\}\right) = \left\{\sum n_i a^{is}\right\}$.

THEOREM 5. The correspondence of $\gamma = \{s + \alpha\} \in E_q \text{ with } f_s^\alpha \colon P_q^1 \to P_q^1 \text{ determines an isomorphism } V \colon E_q \to E(P_q^1). \text{ Moreover, } V \text{ is compatible with the homomorphisms}$

A:
$$E_q \to Z_q^*$$
 and #: $\mathcal{E}(P_q^l) \to \text{Aut } Z_q$

and the canonical isomorphism $Z_q^* \approx Aut Z_q$.

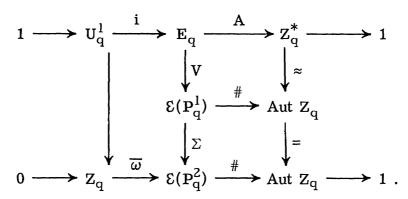
To save the reader the effort of translating this theorem of [6] into the current notation, we give a self-contained proof in the next section. Olum points out that the two multiplications on the group U_q of units of Γ_q coincide on the subgroup U_q^l of units of augmentation 1, so that U_q^l may be regarded as a subgroup of E_q . Moreover, Olum gives the following description of E_q .

THEOREM 6. The group E_q is a split extension

$$1 \rightarrow U_q^1 \xrightarrow{i} E_q \xrightarrow{A} Z_q^* \rightarrow 1,$$

where i and A denote injection and augmentation, and where the result of the operation of $s \in Z_q^*$ on $u \in U_q^1$ is $\theta_s(u)$. A splitting is provided by the mapping $B: Z_q^* \to E_q$ defined by $B(s) = 1 + a + \cdots + a^{s-1}$.

Notice that the suspension homomorphism $\Sigma \colon \mathcal{E}(\mathbf{P}_q^1) \to \mathcal{E}(\mathbf{P}_q^2)$ determines a morphism



To show the triviality of the homomorphism $U_q^1 \to Z_q$, consider in U_q^1 an arbitrary element $\gamma = \{1+\alpha\}$ as in (3). We see that

$$\Sigma(V(\gamma)) = \Sigma(1^{\alpha}) = 1^{\sum \alpha} = \overline{\omega}(\{ \sum \alpha \}),$$

where $\{\Sigma\alpha\}$ $\in \pi_3(\mathbf{P}_q^2)/g\pi_3(\mathbf{P}_q^2) = \operatorname{Ext}(\mathbf{Z}_q,\pi_3(\mathbf{P}_q^2))$. Since Σ maps $\pi_2(\mathbf{P}_q^1)$ into $q\pi_3(\mathbf{P}_q^2)$, by Lemma 1, it follows that $\{\Sigma\alpha\} = 0$. Therefore $\Sigma(V(\gamma)) = 0$ for $\gamma \in U_q^1$.

Note that since U_q^l is the kernel of ΣV , two self-equivalences of P_q^l have the same suspension if and only if they induce the same automorphism of π_1 .

The splitting B: $Z_q^* \to E_q$ given in Theorem 6 provides splittings

$$B^{n}: Z_{q}^{*} \to \mathcal{E}(P_{q}^{n}) \quad (n = 1, 2, 3)$$

defined by the relations

$$B^{1}(s) = V(B(s)) = f_{s}^{B(s)-s}, \quad B^{2}(s) = \Sigma(B^{1}(s)) = f_{s}, \quad B^{3}(s) = \Sigma(B^{2}(s)) = f_{s}.$$

By Theorem 6, the group extension

$$1 \rightarrow U_{\mathbf{q}}^{\mathbf{l}} \rightarrow E(P_{\mathbf{q}}^{\mathbf{l}}) \xrightarrow{\#} Z_{\mathbf{q}}^{*} \rightarrow 1$$

for $\mathcal{E}(\mathbf{P}_q^1)$ has operators $\theta \colon \mathbf{Z}_q^* \to \mathrm{Aut}\ \mathbf{U}_q^1$, given by the relation

$$\theta(s) \left(\left\{ \sum_{n_i} a^i \right\} \right) = \left\{ \sum_{n_i} a^{is} \right\}.$$

Hence, the splitting $B^1 \colon Z_q^* \to \mathcal{E}(P_q^1)$ provides an isomorphism of $\mathcal{E}(P_q^1)$ with the semidirect product $U_q^1 \times_{\theta} Z_q$.

The splitting B^2 : $Z_q^* \to \mathcal{E}(P_q^2)$ yields an isomorphism of $\mathcal{E}(P_q^2)$ with the semi-direct product $Z_q \times_{\phi} Z_q$, where ϕ : $Z_q^* \to Aut \ Z_q$ denotes the operators in the group extension

$$0 \to Z_q \xrightarrow{\overline{\omega}} \mathcal{E}(P_q^2) \xrightarrow{\#} Z_q^* \to 1.$$

To verify that the homomorphism $\phi \colon \mathbb{Z}_q^* \to \operatorname{Aut} \mathbb{Z}_q$ is the canonical isomorphism, we observe that the definition of operators ([4, p. 108]) implies the relation

$$\overline{\omega}(\phi(s)\{\alpha\}) = f_s \circ \overline{\omega}(\{\alpha\}) \circ f_s^{-1}$$

for $\{\alpha\} \in \pi_3(P_q^2)/q\pi_3(P_q^2) \approx Z_q$. Moreover, the triple composite on the right can be written as $f_s \circ \alpha \circ k \circ f_s^{-1} + 1$, since $\overline{\omega}(\{\alpha\}) = \alpha \circ k + 1$, and both distributive

laws hold for suspended maps. Now, calculations employing the Hopf invariant show that if the maps $d_s\colon S^3\to S^3$ and $e_s\colon S^2\to S^2$ are of degree s, and if $\alpha\in\pi_3(S^2),$ then $e_s\circ\alpha\cong s\alpha\circ d_s$. Consequently, for $\alpha\in\pi_3(P_q^2),$ we have the relation $f_s\circ\alpha\circ k\cong s\alpha\circ k\circ f_s$, or equivalently, $f_s\circ\alpha\circ k\circ f_s^{-1}\cong s\alpha\circ k.$ Thus, $\overline{\omega}(\phi(s)\{\alpha\})=s\alpha\circ k+1=\overline{\omega}(s\{\alpha\});$ hence, $\phi(s)\{\alpha\}=s\{\alpha\},$ as we claimed.

Finally, since the automorphism group of $Z_{(2,q)}$ is trivial, the group extension

$$0 \to Z_{(2,q)} \xrightarrow{\overline{\omega}} \mathcal{E}(P_q^2) \xrightarrow{\#} Z_q^* \to 1$$

for $\mathcal{E}(P_q^3)$ has trivial operators, and therefore the splitting $B^3\colon Z_q^*\to \mathcal{E}(P_q^3)$ provides an isomorphism of $\mathcal{E}(P_q^3)$ with the direct product $Z_{(2,q)}\times Z_q$.

Since the suspension morphisms relating the three group extensions are compatible with the three splittings, it follows that the suspension homomorphisms

$$\Sigma \colon \mathcal{E}(\mathbf{P}_q^1) \to \mathcal{E}(\mathbf{P}_q^2)$$
 and $\Sigma \colon \mathcal{E}(\mathbf{P}_q^2) \to \mathcal{E}(\mathbf{P}_q^3)$

can be described in terms of the (semi)direct products, as in Theorem 3.

5. A PROOF OF THEOREM 5

Throughout this section, we consider only maps $f\colon P_q^l\to P_q^l$ for which $f_\#\colon \pi_1\to\pi_1$ is an automorphism, say, $f_\#(a)=a^s$ with (s,g)=1. If

$$N: (P_q^l, S^l) \rightarrow (P_q^l, S^l)$$

is a representation of $f \colon P_q^1 \to P_q^1$, then the diagram

$$0 \longrightarrow \pi_{2}(P_{q}^{1}) \longrightarrow \pi_{2}(P_{q}^{1}, S^{1}) \xrightarrow{\partial} \pi_{1}(S^{1}) \longrightarrow \pi_{1}(P_{q}^{1}) \longrightarrow 1$$

$$f_{\#} \downarrow \qquad N_{\#} \downarrow \qquad N_{\#} \downarrow \qquad f_{\#} \downarrow$$

$$0 \longrightarrow \pi_{2}(P_{q}^{1}) \longrightarrow \pi_{2}(P_{q}^{1}, S^{1}) \xrightarrow{\partial} \pi_{1}(S^{1}) \longrightarrow \pi_{1}(P_{q}^{1}) \longrightarrow 1$$

is a commutative ladder of homomorphisms with the last three rungs given by, say

$$N_{\#}(1) = \sum_{i=1}^{n} n_{i} a^{i}, \quad N_{\#}(\rho) = \rho^{t}, \quad f_{\#}(a) = a^{s},$$

respectively. One can easily verify the relations

(6)
$$t \equiv s \pmod{q}, \quad t = \sum n_i, \quad N_{\#}(a^j) = a^{js} N_{\#}(1).$$

The ideal I in $Z[\pi_1]$ generated by the element $1+a+\cdots+a^{q-1}$ consists of the elements $\sum m_i a^i$ with equal coefficients $m_0=m_1=\cdots=m_{q-1}$. Since the element $N_\#\left(\sum a^i\right)=\sum a^{is}N_\#(1)$ belongs to the ideal I as (s,q)=1, the homomorphism $N_\#\colon Z[\pi_1]\to Z[\pi_1]$ passes to the quotient ring $\Gamma_q=Z[\pi_1]/I$ to determine the middle rung of the short commutative ladder

(7)
$$0 \longrightarrow \pi_{2}(P_{q}^{1}) \longrightarrow \Gamma_{q} \xrightarrow{A} Z_{q} \longrightarrow 0$$

$$\downarrow^{f_{\#}} \qquad \downarrow^{f_{*}} \qquad \downarrow^{f_{\#}}$$

$$0 \longrightarrow \pi_{2}(P_{q}^{1}) \longrightarrow \Gamma_{q} \xrightarrow{A} Z_{q} \longrightarrow 0$$

in which commutativity is guaranteed by (5) and (6).

If $M: (P_q^1, S^1) \to (P_q^1, S^1)$ is another representation of $f: P_q^1 \to P_q^1$, then the endomorphisms $N_\#$ and $M_\#$ of $\pi_2(P_q^1, S^1)$ need coincide only on the subgroup $\pi_2(P_q^1)$. Nevertheless, they determine the same homomorphism $f_*: \Gamma_q \to \Gamma_q$, since the elements $N_\#(1)$ and $M_\#(1)$ of $Z[\pi_1]$ determine the same coset in Γ_q . To prove this, let $M_\#(1) = \sum m_i \, a^i$. Since $1 - a^j$ is in the image of the map

$$\pi_2(P_q^1) \to \pi_2(P_q^1, S^1),$$

we see that $M_{\#}(1 - a^{j}) = N_{\#}(1 - a^{j})$. Choose j so that $sj \equiv 1 \pmod{q}$. Then

$$(1 - a) \sum_{i=1}^{n} a^{i} = (1 - a^{js}) N_{\#}(1) = N_{\#}(1 - a^{j}) = M_{\#}(1 - a^{j})$$

= $(1 - a^{js}) M_{\#}(1) = (1 - a) \sum_{i=1}^{n} m_{i} a^{i}$.

Hence $n_i - n_{i-1} = m_i - m_{i-1}$, that is, $n_i - m_i = n_{i-1} - m_{i-1}$ for $i \in Z_q$. Therefore $N_\#(1) - M_\#(1) = \sum (n_i - m_i) a^i$ belongs to the ideal I.

For a map $f\colon P_q^1\to P_q^1$ inducing an automorphism on π_1 , we define the invariant $\gamma=f_*(1)\in \Gamma_q$, which we assert has the following properties:

- (8) $A(\gamma_f) = s$ if $f_{\#}(a) = a^s$ on π_1 .
- (9) f: $P_q^1 \to P_q^1$ is a homotopy equivalence if and only if the invariant $\gamma_f \in \Gamma_q$ is a unit.
- (10) If (s,q)=1 and $\alpha \in \pi_2(P_q^1)$, then the map $f_s^\alpha \colon P_q^1 \to P_q^1$ has invariant $\{s+\alpha\} \in \Gamma_q$. Therefore, for each $\gamma \in \Gamma_q$ with $(A(\gamma),q)=1$, there is a map $f\colon P_q^1 \to P_q^1$ with invariant $\gamma_f = \gamma$.
 - (11) $f \cong g: P_q^1 \to P_q^1$ if and only if $\gamma_f = \gamma_g$.

(12)
$$\gamma_{fg} = \gamma_f \theta_s(\gamma_g)$$
, where $s = A(\gamma_f)$ and $\theta_s \left(\left\{ \sum m_i a^i \right\} \right) = \left\{ \sum m_i a^{is} \right\}$.

It follows easily from these properties that the mapping W: $\mathcal{E}(P_q^l) \to E_q$, given by W(f) = γ_f , and the mapping V: $E_q \to \mathcal{E}(P_q^l)$, given by V($\{s + \alpha\}$) = f_s^α , are inverse functions preserving the group structures. We complete the proof of Theorem 5 by establishing properties (8) to (12).

Property (8) follows directly from (6). Property (9) requires use of the short commutative ladder (7), which shows that a map $f\colon P_q^l\to P_q^l$ induces isomorphisms of the homotopy groups if and only if the invariant $\gamma_f\in\Gamma_q$ is a unit. It is clear from the geometry of the construction of the Puppe action that the map $f_s^\alpha\colon P_q^l\to P_q^l$

is a map of pairs for which $f_{s\#}^{\alpha}$: $\pi_2(P_q^1, S^1) \to \pi_2(P_q^1, S^1)$ has value

$$f_{s\#}^{\alpha}(1) = f_{s\#}(1) + \alpha = s + \alpha \in Z[\pi_1].$$

This proves (10).

The implication $f \cong g \Rightarrow \gamma_f = \gamma_g$ follows from the definition of the invariant γ . To prove the converse half of (11), suppose that $\gamma_f = \gamma_g$, with $A(\gamma_f) = s = A(\gamma_g)$. Then the maps f, g, and f_s induce the same automorphism of π_1 , so that the crucial property (4) of the Puppe action provides two elements α , $\beta \in \pi_2(P_q^1)$ for which $f \cong f_s^{\alpha}$ and $g \cong f_s^{\beta}$. From (10) and the first half of (11), we deduce that $\{s + \alpha\} = \{s + \beta\}$ in Γ_q ; hence, $\alpha = \beta$ in $\pi_2(P_q^1)$. Therefore $f \cong f_s^{\alpha} \cong f_s^{\beta} \cong g$.

Finally, let f, g: $P_q^1 \to P_q^1$ be represented by M, N: $(P_q^1, S^1) \to (P_q^1, S^1)$, respectively. Let $f_\#(a) = a^s$. Using (6), we find that

$$N_{\#}(M_{\#}(1)) = N_{\#}(\sum m_i a^i) = \sum m_i N_{\#}(a^i) = \sum m_i a^{is} N_{\#}(1) = N_{\#}(1) \theta_s(M_{\#}(1))$$
.

This establishes (12).

REFERENCES

- 1. P. J. Hilton, *An introduction to homotopy theory*. Cambridge University Press, Cambridge, 1953.
- 2. ——, Homotopy theory and duality. Gordon and Breach, New York, 1965.
- 3. I. M. James, Reduced product spaces. Ann. of Math. (2) 62 (1955), 170-197.
- 4. S. MacLane, Homology. Academic Press, New York, 1963.
- 5. J. C. Moore, On homotopy groups of spaces with a single non-vanishing homology group. Ann. of Math. (2) 59 (1954), 549-557.
- 6. P. Olum, Self-equivalences of pseudo-projective planes. Topology 4 (1965), 109-127.

The University of Oregon Eugene, Oregon 97403