STABILIZATION OF SELF-EQUIVALENCES
OF THE PSEUDOPROJECTIVE SPACES

Allan J. Sieradski

1. INTRODUCTION

For a space X with basepoint, let &X) denote the group of homotopy classes of
homotopy equivalences of X into itself, the group operation being composition. We
refer to €(X) as the self-equivalence group of X. The operation of suspending one
homotopy equivalence to obtain another determines a sequence of homomorphisms

&%) 2 g(zx) & - 5 g(ztx) B

connecting the self-equivalence groups of the iterated suspensions of X. When X is
a finite CW complex, this sequence stabilizes at some stage £(Z"X)
(0 <n <L dim X), in that it consists of isomorphisms thereafter.

We describe this stabilization process in the case where X is the pseudoprojec-
tive plane of order q, denoted by Pl . As a starting point we take P. Olum’s de-
scription [6] of the rather rich structure of S(Pfll) Let 1" denote the quotlent of

the integral polynomial ring Z [x] modulo the ideal genera.ted by 1+ x4« +x9- 1
and let E; denote the group whose elements are the units of Ty and whose mu1t1-
plication o is defined by the formula

[ Tnxd} o {Tmx} = { D} { Smpad® |,

where s = 2J n; (mod q) is called the augmentation of {E n; xi} .

THEOREM 1 ([6, Theorems 3.4 and 3.5, and Remark 3.6]). The self-equiva-
lence group S(Pé) of the pseudoprojective plane Pq is zsomorphzc to the group Eq
Moveover, Eq is isomovrphic to the semidivect product U1 Xp Z of the group U1
(of units of Ty of augmentation 1) and the multiplicative gafoup Z (of reduced
residues modulo q) whose operators 0: Z* — Aut U1 are given by the velation

o) ({Dnxif) = { Dmxis ).

Since the pseudoprojective plane Pl admits a two-dimensional cellular decom-
position, namely, sl u Ug e2 the stab1hzat10n process takes at most two steps; hence
the relevant suspensions are the pseudoprojective spaces P2 s% Ug e3 and
P3 =g3 Ug et*. our description of the stabilization process is summarlz’ed by the
followmg two theorems.

THEOREM 2. The self-equivalence group S(P(?i) is isomorphic to the semi-
divect product Z ><¢ Z* of the cyclic group Z of order q and the group Z* whose
operators ¢: Z* — Aut Z ave given by the canomcal isomovphism
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110 ALLAN J. SIERADSKI
#(s) (t (mod q)) = st (mod q).

The self-equivalence group 8(P3) is isomovphic to the direct product Z,, q) X Z of
the cyclic group Z(2,q) of order (2, q) with the group Z*

THEOREM 3. The first suspension homomovphism Z: S(Pl) — S(PZ) can be
identified with the product homomovphism

1 * *

of the trivial homomorphism 0: U — Zq and the identity homomorphzsm
1: Z"< — Zq , While the second suspenszon homomorphism X: S(Pq) — S(Pq) can be
zdentzfzed with the product homomorphism

* *
Zq %X¢p Zq = Z(2,q) X Zq

of the unique epimovphism Zq — Z(2,q) and the identity homomovphism 1: Z§ — 7§ .

In each of the identifications of Theorems 1 and 2, the factor Zg ~ Aut Z, of a
self-equivalence reflects the automorphism it induces on the first nonvanishing
homotopy group. Thus each automorphism can be realized by some self-equivalence,

and the complementary factors Ué » g, and Z(, .y measure the possible variations,
the dwindling of which constitutes the stabilization process.

The process under consideration is intimately connected with the more basic
stabilization process

1, Z 2y Z 3

involving the suspension homomorphisms connecting the second nontrivial homotopy
groups of the pseudoprojective spaces. Section 2 contains an analysis of the latter
stabilization process. Section 3 presents a description of the second suspension

homomorphism X: S(Pz) — 8(P3) Section 4 begins with a formulation of the iso-
morphism S(Pq) ~ Eq of Theorem 1 in terms compatible with the description in
Section 3 of S(Pczl) and continues with the calculation of the first suspension homo-
morphism X: S(Pq) S(Pé). Section 5 presents a self-contained proof of P. Olum’s
isomorphism S(Pé) ~ E4 quoted in Theorem 1.

2. STABILIZATION OF THE HOMOTOPY GROUPS

Since the pseudoprojective plane P1 is the two-dimensional space st Ug e ob-
tained from the 1- sphere sl by attachmg a 2-cell by a map of degree q, its funda-
mental group 7; = ﬂl(P ) is cyclic of order q and is generated by some element a.
If C:(B%,8l)— (P}l scll) is the charactemstlc map for the 2-cell, then the 1mages
pi[C] of the homotopy class [C] in 772(P1 , S1) under the action of p! in 771(S )

satisfy the relation pi[C]=pJ[C] if and only if i =j (mod q), and they determine a
basis

[c], plC], -+, p271[C]
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for 7r2(P(1l , 81). Thus we can identify 7,(P, S!) with the integral group ring Z[m,]
of the fundamental group 7, , by mapping pi[C] to al. The exact homotopy sequence
for the pair (P, 8!) shows that 7,(P}) can be identified with the ideal in Z[m]
generated by o =1 - a, so that as an abelian group, 712(P1) is free of rank q - 1, and
as a 7;-module, nz(Pl) has a single generator «, sub]ect solely to the relation
1+a+ - +2a9 g = 0

The cell structure for Pl that consists of a 0-cell e ,a l-cell el , and a 2-

cell e determines a cell structure for its reduced product J(PL) (see [3]) in
which the 2-skeleton consists of Pq together with a new 2-cell el el whose at-

taching map is inessential. Hence J(Pl)2 = P1 Vv S2 and as a 7m;-module, the second
homotopy group of Pl \/ §2 has two generators a coming from P1 and B8 coming
from S%. Passage to the 3-skeleton of the reduced product J (Pcll) mtroduces three
3-cells el Del mel, e2Oe!l, and e! Oe? whose attaching maps represent the

elements ag - B, a + (E ai>ﬁ, and o - ( 27 al B, respectively, in 772(P1 V §2),

Thus, o« and B are 7;-generators of ﬁZ(J(Pl)) and they are subject solely to
the relat1ons

ag = 8, a=-(2ai)ﬁ, az(Eai)B, (Eai)a:().

It follows from the first three relations that the action of 7; on 7,(J (P(ll)) is trivial,
that a = qB, and that 29g = 0; therefore the fourth relation gives q28 = 0. Thus,
B serves as a single Z-generator of wZ(J(P}l)) of order (2q, q2).

Since the suspension homomorphism %: 7, (X) — 7,,;(X) can be identified with
the homomorphism j,: 7, (X) — 7 _(J(X)) induced by the inclusion j: X — J(X)} of a
connected finite CW complex into its reduced product, the previous calculations
imply the following:

LEMMA 1. The group 713(P2) is cyclic of order (2q, q 2). Moveover, the sus-
pension homomovphism %: ﬂZ(Pcll) — 173(P2) sends the m,-generator of nZ(Pl) fo q
times a genevatoy of T3 (PZ)

It follows directly from the exact homotopy sequence of the pair (P2 S2) that
one generator of 7r3(Pg) is the Hopf map S3 — S2 composed with the 1nclusmn map
$% — PZ. We call this the Hopf map generator, and we denote it by h: 83 — PZ

We now apply the same device to P2 with its cell structure consisting of a 0-
cell eO a 2-cell e2 and a 3-cell e3. The 3-skeleton of its reduced product J(Pz)
is merely PZ, and the 4-skeleton contains a single 4-cell e2 [ e? that attaches to
s2 c P2 via the Whitehead product [j, j] € 7r3(P2) of the inclusion map j: S% — P2
with 1tse1f This product [j, j] is known to be exactly twice the Hopf map generator
of 773(P ) [1, Chapter VI, Theorem 2.15]. Thus we have the following result:

LEMMA 2. The group 714(P3) is cyclic of order (2, q), and the suspension
homomorphism =: 773(P2) 714(P3) is the unique epimorphism from the cyclic group
of ovder (2q, q2) to the cyclzc group of ovder (2, q).
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3. THE SUSPENSION HOMOMORPHISM ZX: S(P(zl) - S(Pé)

We actually describe the suspension homomorphism =: £(M) — £(ZM) for a
Moore space M = M(G, n) (see [5]) whose single nonvanishing homology group G
occurs in dimension n 2> 2. Given the abelian group G as a quotient F/R of a free
abelian group F modulo a subgroup R, we can construct the Moore space M up to
homotopy type from a wedge N of n-spheres by attaching (n + 1)-cells so that the
boundary homomorphism 8: 7, (M, N) — 7,(N) coincides with the inclusion homo-
morphism i: R — F. Equivalently, M has the homotopy type of the mapping cone of
a map g: L - N between wedges of n-spheres for which the induced homomorphism
ga: m(L) — 7,(N) may be identified with the inclusion homomorphism i: R — F.
From this it follows that the exact sequence determined by the Puppe sequence of
the map g takes the form indicated in the diagram

% .*
Hom (F, 7 (X)) —> Hom (R, 1,,1(X))  Hom(F, 7 (X)) s Hom (R, 7,(X))

(1) [ I | [

# # F #
[N, X] —2> [5L, X] —> M, X] ——> [N, X] ——> [L, X]

Since n > 2, the entire Puppe sequence determined by the map g can be desus-
pended, and hence the exact sequence (1) involves additive groups and homomor-
phisms. By localizing the exactness of (1) at [M, X], we obtain the well-known
Universal Coefficient Sequence for homotopy groups with coefficients in G ([2,

p. 30]):

p_ o # #
0 —> coker zg" —> [M, X] —> ker g" —> 0

(2) [ I

Ext(G, 7 X)) Hom (G, TTn(X))

n+l(
Here the homomorphism w is induced by the quotient map k: M — M/N = ZL, and it
sends the coset {a} € coker Tg* associated with @ € [ZL, X] to a ok € [M, X],
while the homomorphism # is induced by the inclusion map j: N — M and sends

f e [M, X] to fu: G=my(M) — 7,(X).

For the special case in which X = M, the sequence (2) is more than just an
exact sequence of additive groups and homomorphisms. When n > 3 (1 = 2), the
multiplications induced by composition make the last two entries rings with unit
(near-rings with unit, possibly lacking commutativity of addition and right distribu-
tivity of multiplication over addition), and they make the intervening homomorphism
a (near-) ring homomorphism. It is precisely the units of this multiplication in
[M, M] in which we are interested, and therefore we note the following proposition.

LEMMA 3. Fov each integer n > 2, the modified sequence

‘w=w+1 #
0 —> Ext(G, 7, 1(M(G, n))) —> [M(G, n), M(G, n)] —> Hom (G, G) —> 1
is a short exact sequence of multiplicative semigroups with unit, provided the fivst
entry retains its oviginal additive opevation.

Proof. Since the function # sends the identity mapping to the identity homo-
morphism, it follows from the exactness of the original additive sequence (2) that an
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element in the multiplicative kernel of # differs from the identity mapping

1: M(G, n) — M(G, n) by an element in the image of w, and hence is itself in the
image of W = w + 1. It remains to prove that the injective function w =w +1 is a
homomorphism from the additive structure of Ext to the multiplicative structure of
[M(G, n), M(G, n)].

Assume that n > 3. We see that for a, 8 € [M/N, M],

({a})+ Do (w({g})+1) = w({a}) o w({s}) +w({a}) +w({s}) +1.

Hence we need merely show that w({a})o w({B}) =0. In fact,

w({a}) o w({p}) = aokopok,
and it is sufficient to show that k o g is null-homotopic. Since
jgr Trp1(N) = (M)
is surjective and M/N is a wedge of (n + 1)-spheres, the map
it [M/N, N] — [M/N, M]

is also surjective. Therefore B: M/N — M admits a factorization g =jo g'. Since
k o j is null-homotopic, k o j o 8' =k o 8 is null-homotopic. In the case n = 2, the
right-hand distributive law is not available, and we require a slightly more elaborate
argument involving the comultiplication for the pair (M, N).

Since a map M(G, n) — M(G, n) (n > 2) is a homotopy equivalence if and only if
it induces an automorphism of G = 7,(M(G, n)), we have the following immediate con-
clusion from Lemma 3.

THEOREM 4. The group €(M(G, n)) of self-equivalences of a Moore space
M(G, n) associated with an abelian group G and an integey n > 2 is a group exten-
sion

. W #
0 — Ext(G, n_, ,(M(G, n))) = &(M(G, n)) > Aut G —1

of Ext by the automovphism group Aut G of G.

Because M(G, n) is (n - 1)-connected and admits an (n + 1)-dimensional cell
structure, the suspension homomorphism : £(M (G, n)}) — £€(M(G, n + 1)) is an iso-
morphism if n > 3, and is an epimorphism if n = 2. One easily notes from the con-
struction of the extensions in Theorem 4 that the suspension process induces a mor-
phism (Ext(1, %), =, 1) from the nth extension to the (n + 1)st extension. Thus, the
following situation for the case n = 2 obtains.

COROLLARY 1. The suspension homomovphism =: &(M(G, 2)) — €(M(G, 3)) is
an epimorvphism whose kernel is exactly that of the homomovrphism

Ext (1, £): Ext(G, 75(M(G, 2))) — Ext(G, 74(M(G, 3))).

In the case where G is the cyclic group Zq4, we have available the calculations
of the previous section. We find that

Ext(Zq, 13(PY) ~ Zq and  Ext(Zg, 14(PY) ~ Z(pq)-
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Moreover, under these identifications Ext(l, %) corresponds to the unique epimor-
phism Zq — Z(2,q). From Corollary 1, we deduce that the kernel of the suspension

homomorphism X: S(PZ) — 8(P3) is cychc of order q/(2, q). A generator of this
kernel is best descrlbed in terms of Puppe action, which we now consider.

If M is the maipping cone associated with a map g: L. — N, there is a co-opera-
tion ¢: M — ZL V M. This map, which simply collapses the m1d belt of the cone in
M, determines an action of @ € [=L, M] on f € [M, M], namely,

f* =VoaVfoe:M—3IILVM—MVM — M.

If gt L » N can be desuspended, then the mapping cone M inherits a suspension co-
multiplication u: M — M VM for which ¢cSkV 1o yu:M— ZL V M where
k: M — M/N = ZL is the indicated quotient map. In this case, £ = a ok +f.

It follows that for n > 2, the homomorphism
w: Ext(Zg, m,41(Pg)) — €(PY)

is given by the correspondence {oz} — 1% for o:Sntl — Pn Since one generator
of the cyclic group Ext(Z 7)'3(P )) is the coset of the Hopf map h: 83 — P2
generator of the kernel of the suspension homomorphism X: S(PZ) — 8(P3) is given
by 1" when g is odd, and by 12h = 1th o 1h when q is even.

A similar description of the suspension homomorphism
=: S(M(G, 2)) — £(M(G, 3))

for a noncyclic group G requires knowledge of the crucial homomorphism

Z: m13(M(G, 2)) — m4(M(G, 3)). Undoubtedly, this information could be obtained for
finitely generated abelian groups G by means of I. M. James’s reduced-product
construction, which we used in the previous section. We are content to mention that
714(M(G, 3)) = Z, ® G ([1, Chapter VIII, Theorem 2.4]), so that we can draw the
following conclusion from Theorem 4.

COROLLARY 2. For a finitely generated abelian group G, each automovphism

of G admits exactly 2rlz distinct vealizations by a self-equivalence
M(G, 3) — M(G, 3), where n is the length of the 2-primary component of G. In
parvticular, #: E(M(G, 3)) ~ Aut G if and only if G has no 2-tovsion.

4. THE SUSPENSION HOMOMORPHISM >: S(Pcll) - S(Pé‘)

To take advantage of Olum’s isomorphism S(Pq) ~ Eq, we first formulate it in
terms compatible with our previous description of S(Pz) For this we need the fol-
lowing data.

In Section 2 we saw that the 7;-module nZ(Pl) can be identified with the ideal
in Z[m;] generated by 1 - a. Moreover, if the ideal of Z[m] generated by
1+a+..-+a%"! is denoted by I, and if the quotient ring Z[m,]/I is denoted by Iy
then 7T2(P1) can be further 1dent1f1ed with the ideal in I‘q generated by the coset

{1-a}. This ideal consists of the cosets 27 n;al } of Ty for which

2 n; =0 (mod q). Therefore there is an exact sequence
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1 A
0 WZ(Pq) Pq Zq 03

where the augmentation ring homomorphism A is given by

A(12nai}) = 2oy tmoa .
We have the following important consequence:

(3) Each element y of the group Uq of units of I'q can be written uniquely in
the form {s + a}, where s belongs to the group Z of units of Z4 ,and a belongs

to ﬂZ(Pl) In fact, s = A(y) and a =y - A(y).

A second fact we need is that the Puppe action of a € [S2, Pé] on f e [Pé, Pé]
has the following crucial property ([2, Theorem 15.4]):

(4) Two maps {, g: Pl — P1 induce the same homomorphism fy = gu: 7} — 7
if and only if there exists an o € [S2, Pl] with (¥ = g.

Finally, for each integer s with 0 < s < q and (s, q) = 1, the map of the unit
disc determined by the correspondence (r, 6) — (r, sf) passes under the identifica~

tions (1, 6) = (1, 6 +27/q) to give a map f;: Pl — Pl with £ 4(a) =as on 7,. We
give the suspensions of these maps the same labels.

Within this framework we now formulate the isomorphism between & Pé) and

Eq , considered as the group of units of the ring I‘q with the modified multiplication

y oy =vy0_(y') for s=A(y), where 6 ({Eniai}> = { Eniais } .
THEOREM 5. The correspondence of v = {s + oz} € Eq with fgz Pé — Pé

deteymines an isomovphism V: E — S(Pl) Moveover,V is compatible with the
homomorphisms

. —_— * . 1 —_
ArEqg—Zg and #: S(Pq) Aut 7,

and the canonical isomorphism Zg ~ Aut Zg

To save the reader the effort of translating this theorem of [6] into the current
notation, we give a self-contained proof in the next section. Olum points out that the
two multiplications on the group U of units of P coincide on the subgroup Ucl1 of

units of augmentation 1, so that U1 may be regarded as a subgroup of E . More-
over, Olum gives the followmg description of E

THEOREM 6. The group Eq is a split extenszon

L i A,
1- U, > E,— Zp — 1,

wheve i and A denote injection and augmentation, and where the vesult of the opeva-

tion of s € Z’('i on u € U}l is 04(u). A splitting is provided by the mapping
B: Z* — E defined by B(s) =1+a+ --- +as-1,

Notice that the suspension homomorphism Z: S(Pl) — S(Pz) determines a
morphism
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1
S(Pq) —> Aut Zq

5 l
Y @ Y

#
> §(P) —> Aut Zg —> 1.

0 > Zg

To show the triviality of the homomorphism U}l — Zq, consider in Ucll an arbitrary
element ¥y = {1+ a} as in (3). We see that

V() = 2(1%) = 129 = g({za}),

where {Za} € n; PZ)/qn3 PZ) = Ext(Zq, m3( q)) Since ~ maps ‘n’z(Pq) into
q113(Pq) by Lemma 1, it follows that {za} = 0. Therefore =(V(y)) =0 for y € Ul

Note that since Ué is the kernel of ZV, two self-equivalences of Pé have the
same suspension if and only if they induce the same automorphism of =, .

The splitting B: Za — Eq given in Theorem 6 provides splittings

n, % _, n =

B™ z% — £(P2) (n=1,2,3)
defined by the relations
Bl(s) = V(B(s)) = £25)-5  B%(s) = 5(BUs)) = 1,, B3(s) = =(BXs)) = 1.
By Theorem 6, the group extension
1 I
1- UL — &Py — 25— 1

for S(Pé) has operators 6: ZE — Aut Ué , given by the relation

e(s)({Z)niai}) = { Z)niaiS}.

Hence, the splitting B1 Z — S(Pl) provides an isomorphism of S(Pq) with the
semidirect product Uq X Z
The splitting B2: Zg — S(Pé) yields an isomorphism of S(Pé) with the semi-

direct product Zq X Zq4, where ¢: Z’('i — Aut Z, denotes the operators in the group
extension

@ 4
2 x
0 Zq — &(P2 — 2§ — 1.

To verify that the homomorphism ¢: ZE — Aut Z4 is the canonical isomorphism, we
observe that the definition of operators ([4, p. 108]) implies the relation

w(p(s){a}) = i, od({a}) ot}

for {a} € n3(PZ)/q1r3(P ) ~ Zq. Moreover, the triple composite on the right can
be written as fg o o ok o f 1 + 1, since w({a}) = @ ok + 1, and both distributive
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laws hold for suspended maps. Now, calculations employing the Hopf invariant show
that if the maps dg: S3 — S3 and eg: S2 — S2 are of degree s, and if o € 73(S?),
then e, © @ = sa o dg. Consequently, for a € 173(P3), we have the relation

fs 0 @ ok T sa ok of,, or equivalently, fo © @ ok o f;! = sa o k. Thus,
o(p(s){a}) =sa ok+1=w(s{a}); hence, ¢(s){a} =s{a}, as we claimed.

Finally, since the automorphism group of Z (2,9) is trivial, the group extension

@ T
0 — Z(Z,q) — S(Pq) i Zq - 1

for S(Pg) has trivial operators, and therefore the splitting B3: Zé — S(Pa) pro-
vides an isomorphism of S(P(?i) with the direct product Z(3 q) X Zq .

Since the suspension morphisms relating the three group extensions are com-
patible with the three splittings, it follows that the suspension homomorphisms

5 6(P) - £(PY)  and  z: £(PY) — £(PY)

can be described in terms of the (semi)direct products, as in Theorem 3.

5. A PROOF OF THEOREM 5

Throughout this section, we consider only maps f: Pé - P}l for which
fy: m) — 7y is an automorphism, say, fu(a) = as with (s, ¢) = 1. If
ol oy o, (pl !
N.(Pq,S) (Pq,S)

is a representation of f: Pcll — P(I1 , then the diagram

)
0 —> m,(Py) —> my(P}, 81) — 7y(8!) —> my(P)) —>1

(5) f# ' N#l N#l f#l
Y

8
0 —> m,(Py) —> m,(PL, 81) — > my(sh) > 1 (PL) —> 1

2

is a commutative ladder of homomorphisms with the last three rungs given by, say

Nu(1) = 27 n; al, Nu(p) = pt, fu(a) = aS,

respectively. One can easily verify the relations

(6) t =s(modq), t=27n;, Nylal)=alsNyQ1).

The ideal I in Z[w;] generated by the element 1+a + -+ a9~ consists of the
elements 27 mia.i with equal coefficients mg =m) = - =mgq_) . Since the element
Ny (E ai) = 27als N4(1) belongs to the ideal I as (s, q) = 1, the homomorphism

Ny: Z[m1]— Z[m] passes to the quotient ring T'q = Z[7;]/I to determine the mid-
dle rung of the short commutative ladder
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A
0 —> 73(Pl) —> Tq —> 24 —> 0

(7 lf# l fy lf#
A

1
0 —> my(Py) —> Ty —> Zqy —> 0,

in which commutativity is guaranteed by (5) and (6).

If M: (Pg, S Ly (Pq , 81 is another representation of f: P1 — Pé, then the
endomorphlsms Ny and My of ’ITZ(P 1) need coincide only on the subgroup
ﬁz(Pl) Nevertheless, they determine the same homomorphism f_: Iy — Iy, since
the elements Ny(1) and M#(l) of Z[m;] determine the same coset in I‘ To prove

this, let Ma(1) = 2 m;al. Since 1 - a) is in the image of the map
1 1
m2(Pg) = mx(Pg, S,

we see that My(1 - ad) = Na(1 - ad). Choose j so that sj =1 (mod q). Then
(1-a)2rngal = (1 - als)Nu(1) = Ny(1 - a) = My(1 - aj)

= (1 - ai$)My(1) = (1 - a) 22 m;al.

Hence n; - n;_; =mj - my_;, that is, n; -m; =n;_; -m;_; for i € Zy. Therefore
Nu(1) - M#(l) =2 (n; - m;) al belongs to the ideal I.

For a map f: Pé — Pé inducing an automorphism on 7}, we define the invariant
y =f(1) € I'y, which we assert has the following properties:

(8) Alyg) =s if fg(a) =as on 7.

(9) f£: P1 - P1 is a homotopy equivalence if and only if the invariant y; € Ty
a unit.

(10) If (s, q) =1 and «a € ﬁz(Pé), then the map fZ: Pcl1 — Pcl1 has invariant
{s+a} e Ty . Therefore, for each y € Ty with (A(y), q) = 1, there is a map
f: Pé — Pé with invariant y. = y.

(11) £ = g: Pcll — Pé if and only if yf=7v,.

(12) ygg = v 05(vg), where s = A(ys) and 6 ({E m-ai}) = {Em-ais} .

It follows easily from these properties that the mapping W: S(P ) — Eq, given
by W(f) = y¢, and the mapping V: Eq — S(Pl) given by V({s +a}) =%, are in-
verse functions preserving the group structures We complete the proof of Theorem
5 by establishing properties (8) to (12).

Property (8) follows directly from (6). Property (9) requires use of the short
commutative ladder (7), which shows that a map f: Pé — P}l induces isomorphisms
of the homotopy groups if and only if the invariant y, € I‘q is a unit. It is clear
from the geometry of the construction of the Puppe action that the map £%: Pé — P(l1
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is a map of pairs for which fg#: WZ(P1 ,sl) — ﬂz(Pé , 81) has value
£2,(1) = f (1) +a = s+a € Z[n,].

This proves (10).

The implication f =g = vy, =y, follows from the definition of the invariant y.
To prove the converse half of (11) suppose that y¢ = v, , with Ay =s = Aly,).
Then the maps f, g, and f, induce the same automorpmsm of 7y, so that the crucial
property (4) of the Puppe actmn provides two elements o, 8 € nz(Pl) for which
f=f2 and g = 8. From (10) and the first half of (11), we deduce that
{s+a} {s+3} in I'y; hence, @ = 8 in TIZ(P ). Therefore f =% = {;’:5

Finally, let f, g: Pcl1 — Pé be represented by M, N: (P}:1 ,sh) - (Pq , S1), re-
spectively. Let fuy(a) =a®. Using (6), we find that

NpMy(D) = Ny (D mya') = Doy Nylah) = 2 myal® Ny(D) = Ny(1) 0,(My(1)) .

This establishes (12).
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