PIECEWISE LINEAR EMBEDDINGS OF
BOUNDED MANIFOLDS

C. H. Edwards, Jr.

1. INTRODUCTION

Let M™ and Q% (q > m + 3) be bounded piecewise linear (PL) manifolds (that
is, let M and Q be compact and have nonempty boundaries M and 2Q), and write
d=2m - q. Let f: M — Q be a proper PL mapping (that is, suppose £-1(3Q) = aM).
J. F. P. Hudson has proved (Theorem 8.2 of [3]) that f is homotopic, as a map of
pairs (M, dM) — (Q, 0Q), to a proper PL embedding, provided that (M, dM) is d-
connected and (Q, éQ) is (d + 1)-connected. This result is similar to the earlier
PL embedding theorem of Irwin [5], who assumes instead that £ | dM: oM — 9Q is an
embedding, M is d-connected, and Q is (d + 1)-connected, and proves that f is
homotopic to a proper embedding via a homotopy that is fixed on M. Thus Hudson’s
theorem deals with embedding modulo the boundary, and Irwin’s with embedding
velative to the boundary. (Section 5 contains a remark on the relation between the
two types of embedding problem.)

The purpose of this paper is to prove a generalization of Hudson’s theorem. We
replace the hypothesis that (Q, Q) is (d + 1)-connected with the weaker assumption
that (Q, 9Q) is d-comnected and f,: 74, ,(M, M) — 7,4.,(Q, Q) is an epimorphism.
This is Theorem 1 in Section 3; however the details of the proof require the hypothe-
sis that ¢ > m + 4 (rather than q > m + 3).

2. ENGULFING LEMMAS

The proof of Theorem 1 requires several engulfing lemmas. The first two are
elementary and well-known, and we omit their proofs.

First a remark on terminology: Suppose that the polyhedron X collapses to the
subpolyhedron Y in the bounded PL manifold M. Zeeman [6, Chapter 7] calls
X \NY an intevior collapse if X - Y is contained in int M. All collapses in this
paper will be interior collapses.

LEMMA 1 (see [3, Lemma 7.1] and [6, Lemma 37]). Let Xy, X, Y be poly-
hedra in the bounded PL manifold M such that Xg C X and X N (Y U 9M) C Xy, and
such that X collapses to Xy . If U is a neighborhood of Xy in M, then there exists
a PL homeowmorphism h: M — M such that X C h(U) and h| Xgp U Y U 2Q = identity.

LEMMA 2 [3, Lemma 7.3]. If X and Y ave subpolyhedva of the polyhedron Z
and 7 collapses to X, then theve exists a polyhedron T C Z such that
XUYcCXUT, ZMNXUTN\NX,

and dim T <dim Y + 1.
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The following formulation of the engulfing theorem of Stallings (see Corollary
7.6 of Hudson’s lecture notes [3]) will be useful.

Let Y C X be polyhedra in the bounded PL, manifold M™ with
dimX =k<m -3,

and let U be an open subset of M such that Y U (X Nn9M) C U. If (M, U) is k-con-
nected, then theve exists a PL. homeomovphism h: M — M such that X C h(U) and
h| Y U 9M = identity.

The proof of the following lemma is a standard application of the engulfing
theorem of Stallings.

LEMMA 3. Let M be a bounded PL m-manifold, and let R be a compact
(m - 1)-dimensional PL submanifold of 8M such that (M, R) is k-connected
(k <m - 3). Suppose C and X ave polyhedva in M such that C collapses to
CNoaMcCint R, X N9M C C, and dim(X - R) < k. Then theve exists a polyhedvon
C* in M that collapses to C* N M C int R, with C U X C C* and

dim (C* - C) < k+1.
Proof. Let Nj be a regular neighborhood of C UR in M, and write
R* = cl(8Np N int M) and M* = M - intp; Ng.

Since C U R collapses to R, the set Ng is a regular neighborhood of R in M, and it
follows that the pairs (M, R) and (M*, R*) are PL homeomorphic. Therefore
(M*, R*) is k-connected (since (M, R) is k-connected).

If N* is a regular neighborhood of R* in M*, and U* = int, N*, then (M* U*)

is k-connected. Therefore Stallings’ engulfing theorem gives a PL homeomorphism
h: M* — M* such that X N M* C h(U*) and h| aM* = identity.

If we extend h to M by the identity on Ng, then N = Ng U N* is a regular
neighborhood of C UR, and h: M —» M is a PL homeomorphism such that h(N) D X
and h | C U R = identity. Hence h(N) collapses to C U R, and therefore the desired
polyhedron C* is now provided by Lemma 2.

For the special case C = ¢, Lemma 3 reduces to the following proposition.

COROLLARY 1. Let R be a compact codimension-zevo PL submanifold of oM
such that (M, R) is k-connected (k < m - 3). If X is a k-dimensional polyhedvon in
M with X N 0M C int R, then theve exists a (k + 1)-dimensional polyhedron C*in M
that contains X and collapses to C N aM C int R.

In Zeeman’s terminology, the set C* - C in Lemma 3 is a feeler pushed out
from C to engulf the polyhedron X. Note that the dimension of this feeler is greater
by 1 than the dimension of X. We shall need a special case in which the dimension of
the feeler can be lowered by 1 (compare with Zeeman’s Corollary to Theorem 20
of [6]).

LEMMA 4. Let M, R, and C satisfy the conditions in Lemma 3. Let X be a
polyhedron in M that collapses to a polyhedvon Xg with
dim (Xp - R) < k < dim(X - R),
and suppose that
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XNoM=XgNaMcCNintR ad XNC=XyNnC.

Then some polyhedvon C* in M collapses to C* N M C int R, with C U X C C* and
dim (C* - C) < dim X.

Proof. Since dim (Xg - R) <k, Lemma 3 provides a polyhedron C' that col-
lapses to C' NgM C int R, with C U X3 C C' and dim(C' - C) <k +1 < dim X. The
only problem is that C' and X may intersect in such a way that C' U X does not
collapse to C'.

But C U X collapsesto C U Xy C C', because CN X =C N Xp. We can there-
fore use the (interior) elementary expansions from C U Xy to C U X to push C' to
a polyhedron C" such that (C U X) U C" collapses to C", the push being an ambient
isotopy of M that is fixed on C U Xy U aM (this is the proof of Lemma 42 of [6], and
it is a slight generalization of the elementary construction for the proof of Lemma 1
above).

If C*=(CU X) UC", then C* collapses to C* N 3M C int R, because C* col-
lapses to C" and the pa1rs (C",Cc" N aM) and (C', C' N aM) are PL homeomorphic.
Since C* - C C (X - X,) U C", it is clear that dim (C* - C) < dim X.

LEMMA 5. Let f: M™ — QY pe a nondegenevate PL mapping of bounded PL
manifolds. Let R and S be compact, codimension-zero PL submanifolds of oM and
0Q, vespectively, such that (M, R) is k-connected and (Q, S) is (k + 1)-connected,
wheve Kk <m - 3 and m < q-3. Let C and D be polyhedra in M and Q that col-
lapse to C N oM C int R and D N 9Q C int S, respectively. Finally, let X and Y be
polyhedra in M, with dim X =k and -1(D) = C U X.

Then there exist polyhedva C* and D* in M and Q that collapse to
C* N dM C int R and D* N 3Q C int S, respectively, and such that
CUX c C* = {Y(D¥*), dim(C*-C)<k+1, dim(D*-D)<k+2,

and C* - (C U X) is in geneval position with vespect to Y.

Proof. This lemma is essentially the same as Lemma 5 of [2], except that col-
lapsible polyhedra are here replaced by polyhedra that collapse to their intersec-
tions with the boundary. The proof is basically the inductive process used originally
in the proof of Irwin’s embedding theorem [5].

Starting with Cp = C, Dy = D, and X = X, we define inductively polyhedra C;,
D;, and X; such that

CUXCC, VMC, NOM C int R, D Uf(C;) € D; \ D; N 3Q C int S,
dimX; < k-i, dim(C; - C) < k+1, dim(D; - D) < k+2,
(C; U X;) - (C U X) is in general position with respect to Y, and f- I(D,) = C; U X;
for i > 0 The 1nduct1on stops when i =k + 1, for then Xk+1 D, s0 that the poly-
hedra C* = Cy,; and D* = = Dy 4+ satisfy the de51red conditions. We omit the details
of this construction, since they are identical with those in Hudson’s proof, with the
conditions C; \ 0 and D; N 0 replaced throughout by
C; ¥ C;NaM C intR and D; v D; N2Q C intS,

and with our Lemma 3 playing the role of Hudson’s Lemma 4.
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Finally, we quote for reference the following elementary result on the collapsing
of the image of a product P X I to the image of a vertical cylinder through the singu-
lar set.

LEMMA 6. Let P be a polyhedrvon, M a bounded PL wmanifold, and
h: PxI— M a PL map such that h-1(aM) = P x {1}. Let Q be a subpolyhedron of
P X 1 that contains the singular set S(h), and denote by J the union of all vertical
line segments in P X 1 through points of Q. Then h(P X I) collapses to
h(P x {1}) U h(J).

See, for example, Lemma 38 and Corollary 2 to Lemma 45 of [6].

3. EMBEDDING MODULO THE BOUNDARY

Recall that a mapping f: X — Y is said to be k-connected if the pair (Cr, X) is
k-connected, that is, if 7,(C;, X) = 0 for r <k, where C; denotes the mapping cylin-
der of the mapping f. We formulate a similar definition of connectivity for maps of
pairs.

Let (X; A, B) be a triad; that is, let A and B be subsets of X with A N B # @.
Recall that the Blakers-Massey triad homotopy group 7.(X; A, B) is the set of all
homotopy classes of maps of triples (D ,DY~',Dr-1l) — (X, A, B), where D* is the
standard unit r-ball in E¥ , and where DY ~! and D*-! are the upper and lower
hemispheres of ST-1 = 3D .

Now let f: (X, A) — (Y, B) be a map of pairs, and write af = f | A: A —» B. We
then say that f is ‘k-comnected if and only if 7.(Cf; Cp¢, X) =0 for r <k.

LEMMA 7. The map of pairs f: (X, A) — (Y, B) is k-connected if and only if
the induced homomorphism f,: 1 (X, A) — 7,.(Y, B) is an isomoyphism for r <k and
an epimovphism for r =K.

Proof. Noting that Cz N X = A and that the pair (C;, Cy;) deformation re-

tracts to the pair (Y, B), we deduce the lemma immediately from the exact homotopy
sequence [1, p. 176]

— 7p41(Cr; Cot , X) — m(X, Cyr N X) — 7 (Cg, Cy¢) — 7.(Cg; Cy, X) —

of the triad (C;; Cy¢ » X).

We are now ready to prove that if, in Hudson’s theorem on embedding modulo
the boundary, the (d + 1)-connectivity of (Q, 0Q) is relaxed to d-connectivity
(d = 2m - q), then we can still obtain the conclusion on embedding if in addition we
suppose that f is (d + 1)-connected, that is (see Lemma 7), that

f*: Wd-}-l(M’ aM) - ﬁd+1(Q, aQ)

is an epimorphism. For convenience in applications, we state this result in a rela-
tive form.

THEOREM 1. Let M™ and Q9 be bounded PL manifolds with q > m + 4, and
let f: M — Q be a propey mapping. Let R and S be compact codimension-zero PL
submanifolds of dM and 9Q, vespectively, such that f(R) c S and f | (6M - int R) is
a PL embedding of dM - int R into 9Q - int S. Let d =2m - q. If

(a) the pair (Q, S) is d-connected, and
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(b) the mapping £: (M, R) — (Q, S) is (d + 1)-connected,

then f is homotopic, as a map of triples (M, oM, R) — (Q, 9Q, S), to a proper PL
embedding of M info Q, with the homolopy being fixed on oM - int R.

Remavk. Under the assumption (b), Lemma 7 implies that d-connectivity of
(Q, S) is equivalent to d-connectivity of (M, R).

Proof. We may suppose that f is a nondegenerate PL map in general position.
For our purposes, it will suffice for this to mean that the dimension of the singulay
set S(f) =cl{x e M: f-1(x) # X} is at most d = 2m - q, and that the set of all those
points of S(f) that are not nice double points (a point x € S(f) is a nice double point
if f~1f(x) =x U x', with x and x' having neighborhoods that are embedded by £, with
their images being transverse in Q) is a subpolyhedron of S(f) of dimension at most
d - 1 (see Lemma 31 of [6] and Lemma 23 of [2]).

Let K and L be triangulations of M and Q, respectively, with respect to which
f is simplicial, with S(f) = IKOI , where Ky is a full subcomplex of K. Then f em-
beds and identifies pairwise the open d-simplexes of K.

Step 1. In order to pinpoint the place in Step 3 where codimension 4 is actually
needed for the proof, we shall now merely assume that q > m + 3.

By the remark above, (M, R) is d-connected. If (Q, S) were (d + 1)-connected,
we could proceed to engulf the singular set S(f), that is, to find polyhedra C € M and
D € Q collapsingto C NaM C int R and D N 3Q C int S, respectively, with
S(f) € C = £-1(D) (this is the method of proof of Theorem 8.2 of [3]). However, since
we only assume that (Q, S) is d-connected, we can at first engulf only the (d - 1)-
skeleton Xy of Kg. We would like to do this in such a way that C N S(f) collapses
to XO .

Corollary 1 gives a d-dimensional polyhedron Cy in M that collapses to
CoNaMcC int R and X3 € Cy. Another application of Corollary 1 gives a (d + 1)-
dimensional polyhedron Dg in Q that collapses to Dy N 8Q C int S and f(Cy) C Dy .
We may assume that Cy - X is in general position with respect to Y = IKO[ = S(f),
and that Dg - f(Cg) is in general position with respect to both f(M) and f(Y). Then

dim(Co N (Y -Xp)) < 2d-m < d- 3,

dim (£ 1(Dg) - Co) N (Y - X)) < d+1)+d-q < d-5,
and
dim (f"1(Dg) - Cy) < d+1)+m-q < d-2.

Therefore Lemma 5 (with k = d - 2) gives polyhedra C§ c M and Dﬁ C Q that
collapse to C§ N oM C int R and D§ N aQ C int S, respectively, and such that

Co € 171D © Cf = £1DF), dim(C-Co) <d-1, dim(D}-Dy <d,

and Cz - f'l(DO) is in general position with respect to Y.

The first step would be finished if C’(')‘ N'Y collapsed to Xy - However, all we
know at this stage is that C’('; NY=X,UX,, where X, is a polyhedron such that

dimX; <2d-m <d-3.
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From this and Lemma 1 it follows easily that some polyhedron Z; C Y collapses to
X and contains CO OY =X, UX,, where

dim(Z, - Xg) < dimX;)+1<d-2.

By two applications of Lemma 3, there exist polyhedra C; C M and D; C Q that
collapse to C; N dM C int R and D; N 9Q C int S, respectively, with

CoUZ <cCp, dim(C;-CH)<d-1i, ¢, ctlp), dimDd,-D} <d.

We may assume that C; - (CO U Z;) is in general position with respect to Y, and
that D, - £(C,) is in general pos1t10n with respect to both f(M) and £(Y), so that
dim(C, - (CUZ)NY <L (d-1)+d-m < d-4
and
dim(f"}(D;) - C;) < d+m-q <d-3.

Therefore Lemma 5 (with k =d - 3) gives polyhedra C} C M and D} C Q that .
collapse to C* N M C int R and D* N 2Q C int S, respectlvely, and such that

c, ct'(p) cct =1}, dim(Ct-c)<d-2, dim@D}-D)<d-1,
and CT - £-1(D,) is in general position with respect to Y. Therefore
dim(C}]-C)NY<(d-2)+d-m <d-5.

Therefore C N Y =Xy U Z; U X, , where dim X, <d - 4.

Thus, in constructing C¥ from C’('j , we have reduced by 1 the dimension of the
polyhedron X;,; that prevents C{ N Y from collapsing to X, . After a finite num-
ber of repetitions of this tedious construction, we finally obtain the desired poly-
hedra C* ¢ M and D* C Q that collapse to C* N aM C int R and D* N 3Q C int S,
respectively, with X, € C* = f-1(D*), and such that C* N S(f) collapses to the (d - 1)-
skeleton X, of S(f).

Step 2. We can now greatly simplify the singular set of f by shrinking C* and
D* into R and S, respectively. Let K* and L* be subdivisions of K and L, with
respect to which f is simplicial and Xy, S(f), C*, D* R, S are all subcomplexes.
Let V and W be the second barycentric derived neighborhoods of C* U R (mod 9aR)
and D* UQ (mod 8Q) in K* and L*, respectively. Then, since

C*\N C*NaM CintR and D*\ D*NjQ c int S,

V and W are relative regular neighborhoods of R (mod dR) and S (mod 8S), re-
spectively, and f-1(W) =

Next we construct a PL homotopy G;: M — M (t € [0, 1]) such that

G is the identity and G, | (8M - R) is the identity for all t € [0, 1],

G, is a homeomorphism of M onto c1(M - V), and

G(R)CV forall t e [0, 1],
and a PL homotopy H;: Q — Q such that
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H, = identity and H,| 8Q = identity for all t € [0, 1],
H; is a homeomorphism of c¢l1(Q - W) onto Q,
H;(W) =S and H(W) CW for all t € [0, 1].

These homotopies are constructed by stretching and shrinking across the relative
product neighborhoods V and W in the obvious manner.

Then the composition g = Hy o f © G; is homotopic to Hyof o Gy =1 by a
homotopy of triples (M, aM, R) — (Q, 9Q, S) that is fixed on M - R. The result of
this deformation is that the singular set S(f) is very attractive. Because C* N S(f)
collapses to the (d - 1)-skeleton of S(f), which contains all the points of S(f) that are
not nice double points, S(f) - inty; V is a finite collection of mutually disjoint closed
d-balls that are pairwise identified and properly embedded into Q - into W by f. It
follows that S(g) is the union of a collection of mutually disjoint d-balls
AJf s AT, e, Af; , Ap properly embedded in M with their boundaries in int R, and
that g embeds each of them properly in Q, so that g(S(g)) is a collection of d-balls
Ay, -+, A, with their boundaries in int S and with A; = g(A}) = g(A]) (i=1, -, p).

If we were working in the metastable range of dimensions q > 3(m + 1)/2, the
remainder of the proof would be quite simple. We could find mutually disjoint
(d + 1)-balls Bf and Bj in M, intersecting neither Af nor A for i> 1, such
that

AT c 9BT and 0BT - A] C intR.

Moreover we could use hypothesis (b) to choose B]L and B; so that the proper

(d +1)-ball B = g(B]) U g(B]) C Q represents the trivial element of 74,,(Q, S).
We could then embed a (d + 2)-ball D in Q such that B; ¢ 9D, 9D - B; C int S, and
g'l(D) =C = Bf UB;. Since C and D would then obviously collapse to their inter-
sections with R and S, respectively, we could eliminate the two components A‘f and

A7{ by shrinking C and D into R and S, as above. A finite number of such steps
would complete the proof.

Step 3. We attempt to carry through the program indicated above, keeping track
of the dimensions of the singularities resulting from the fact that we are only assum-
ing q > m +4.

Let 19%! pe the cube [-1, 1]9!c B4*! and 1$ the spanning d-cube consisting
of those points of 19! whose last coordinate Xgq4+1 is 0. Denote by If“ , I‘_1+1 ,
1871 1¢ the sub-balls of 19" determined by the conditions

1 1
Xd+lZO’ xd+1SO, Xd+1§‘§, X441 :_5’
respectively. Finally, write If _ IEH A a1dtl . so that s1dtl — If urd.

Since 74(M, R) = 0, each of the d-balls Aii can be deformed (relative to its
boundary) into R. It follows that for each i =1, -:+, p, there exist mappings
¢f: 1971 — M such that

¢7(19) = AT and 471 = A],

6719 U ;1Y) cint R,

and
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d+1

¢(I ):piGR'

Since g maps each of the balls A+ and A; homeomorphically onto A;, we may
assume that g¢+| Id =go; I IO ; therefore

W = go@f ue): 1t - Q

is a (well-defined) mapping with ;(319*!) € S. Let a; = [y;] € 144,(Q, 9).

Since.g is homotopic (as a map of pairs) to f, and f: (M, R) — (Q, S) is (d + 1)-
connected, it follows from Lemma 7 that g,: 7Td+1(M R) — 74,,(Q, 8) is epimorphic.

Therefore, for i =1, -+, p, there exists a mapping ¢;: (IdJrl BIdH) — (M, R) such
that ¢; (Id) is the basepomt p; and the composition

goﬁ%a$4,m$“>~(Q,s

represents the element - ; in 74,(Q, S). If we redefine ¢; (only) on Id+l so that

it equals ¢1 there, then the altered mapping y; = (¢ U ¢5) represents the
trivial element of 7Td+l(Q, S).

If the mappings. ¢ii were PL embeddings with mutually disjoint images, then the
polyhedron
p

x = U ¢l

i=1

would contain S(g) and collapse to its intersection with R. The set of singularities
that prevents such a collapse is

S = U S(¢7) U U (¢9)” l(U oT(1$H) U U o (1fH) )

Assuming that the ¢ii are PL general-position maps with (¢ii)_1(8M) = If , We con-
clude that the set Sy is a polyhedron with -

dimS¢§ 2@+1)-m=d+2+(d-m) <d-2,
because d - m = m - q < -4 (this is our only essential use of the codimension-4

hypothesis).

Denote by Jg4 the union of all “vertical” line segments in d+1 through points of
S¢; then dim Jp <d - 1. If

P

- +qd
- il;J1 $T(If L Ty,

then X collapses to Xy, by Lemma 6, and
p

xnam=xon oM = U ¢fad c int r.
i=1
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An application of Lemma 4 (with k=d -1 and C = @) then yields a polyhedron

C C M that contains X and collapses to C N 9M C int R, with dim C =d + 1. In fact,
the proof of Lemma 4 shows that C = X U C', where dim C' <d and

dim (C' N X) <d - 1.

Next we want to construct a polyhedron D C Q that contains f(C) and collapses
to D N 3Q C int S. Since the mapping ;: (I9¥1 | 914+t1) — (Q, S) is nullhomotopic as
a map of pairs, there exists for each i=1, .-+, p a mapping

¥ (192 =4+l x Jo, 1]) — Q
such that
Ti(x, 0) = yi(x) and ¥y(x,1) € intS for all x e 19+

T;(x,t) € int S forall x € 3191 and t e [0, 1],

and \Pgl(aQ) =1%l x {1} U a19t! x [0, 1]. If the mappings ¥; were PL embeddings
p -
with mutually disjoint images, then the polyhedron Ui:l ¥.(19*2) would contain g(X)
(but not g(C')), and it would collapse to its intersection with S. Let
P

Sy = U (o' a(sy) U S(E;) Ui lg(c) n vy (192) u U T H(w,(1942) 0w (192) ).
i=1 j#i

We can easily compute that if the singular balls \I/i(Id+2) are moved into PL
general position with respect to each other and g(C'), but without moving the faces
;(19*1) | then

dim Sg < d - 1
(actually, dim S(¥;) < 2(d +2) - q <d - 4; the larger dimension d - 1 comes from

g(X N C')). Therefore, if Jy is the union of all vertical line segments in jd+2
through points of Sy, then dim Jg < d. Now, if

P P
v=gc)u U a™? and v, =gc)u U g ueenwattd),

i=1 i=1
then Y collapses to Yy (by Lemma 6), Yo N Q=Y N 9Q C int S, and
dim (Y3 -9Q) <d <dimY =d+2.

Consequently, an application of Lemma 4 (with k =d and C = @) gives a poly-
hedron D C Q that collapses to D N 9Q C int S, with g(C) C YC D and
dim D =dim Y = d + 2. This uses the d-connectedness of (Q, S) and hence requires
that we know that dim (Y, - 8Q) = dim C' < d (note that we have finally applied co-
dimension 4).

Assuming that D is in general position with respect to g(M) modulo g(C), we
find that

dim(g-1(D)-C) < (@+2)+m-q <d-2.
Hence an application of Lemma 5 (with k = d - 2) provides polyhedra C* and D¥* in

M and @ that collapse to C* N 3M C int R and D* N 3Q C int S, respectively, and
such that S(g) € X € C c C* = -1(D*).
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Finally, by shrinking C* and D* into R and S by the construction of Step 2, we
obtain the desired proper PL embedding of M into Q.

Setting R =M and S = 9Q in Theorem 1, we obtain the following special case.

COROLLARY 2. Let M™ and Q? be bounded PL manifolds (q > m +4), and
let f: (M, oM) — (Q, 9Q) be a PL map. If (M, aM) is d-connected (d = 2m - q) and
f is (d + 1)-connected, then f is homotopic (as a map of paivs) to a propev embed-
ding.

4. THE CORRESPONDING UNKNOTTING THEOREM

Theorem 1 is stated and proved in a relative form that enjoys the familiar vir-
tue of combining with Hudson’s “concordance-implies-isotopy” theorem [4] to pro-
duce immediately an unknotting theorem.

THEOREM 2. Let M"™ and Q% be bounded PL manifolds with q > m + 4, and
let R and S be compact, codimension-0 PL submanifolds of oM and 0Q, vespec-
tively. Let f and g be two proper PL embeddings of M into Q that ave homotopic
as maps of pairs (M, R) — (Q, S), via a homotopy that keeps the image of oM - int R
fixed in 0Q - int S. If (Q, S) és (d + 1)-connected and f: (M, R) — (Q, S) is (d +2)-
connected, then {f and g ave ambient isotopic, as maps of paivs (M, dM) — (Q, 9Q),
keeping 1(8M - int R) fixed.

Proof. By Corollary 1.4 of [4], it suffices to construct an allowable concordance
between f and g that is fixed on oM - int R; in other words, a PL embedding
F:MXI— QXI such that

F-li@x0=Mx0, FlQx1)=Mx1, F-l@QxI)=aMxI, F,=f{, F =g,

and F(x, t) = (f(x)), t) for all x € 9M - int R and t € I.

The assumed homotopy between f and g provides a proper PL mapping
H: MXI— QXI such that

Hy,=f, H; =g,  HERXI) cSxI, H(@M-int R)XI) = (f(dM - int R)) X L.

Let M=MXI, Q=QXI, R=RXI, S=SxI,and d=2(m+1) - (q+1)=d+1.

Then H: M — Q is a proper PL mapping such that H(R) C S and H | (3M - int R)
is a PL embedding into 9Q - int S. From the commutative diagram

__ o=,
’ﬂ'i(M, R) —> Wi(Q, S)

Tri(Ms R) £ 2 ﬂi(Q; S)
*

in which the vertical isomorphisms are induced by inclusion, we see that (6, S) is
d-connected because (Q, S) is (d + 1)-connected, and (by Lemma 7) that

H: (M, R) — (Q, S) is (d + 1)-connected because f: (M, R) — (Q, S) is (d +2)-
connected. Theorem 1 therefore provides the desired allowable concordance between

f and g.
With R = aM and S = 3Q we obtain the following result.
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COROLLARY 3. Let f and g be two homotopic proper embeddings
(MM, aM) — (Q?,0Q) (g >m+4). If (M, aM) is (d + 1)-connected and f is (d + 2)-
connected, then f and g ave ambient isotopic as maps of pairs.

5. REMARKS

There is the obvious question whether the assumption q > m + 4 (rather than
q > m + 3) and the d-connectivity of (M, R) and (Q, S) in Theorem 1 are necessary
hypotheses.

Hudson has proved the following generalization of Irwin’s theorem on embedding
relative to the boundary. Let M™ and QY be compact PL manifolds (q > m + 3),
and let f: M — Q be a proper PL map such that fl oM is an embedding. If M is
(t + 2)-connected (t = 3m - 2q) and f is (d + 1)-connected (d =2m - q), then f is
homotopic (rel 9M) to a proper PL embedding [2].

The analogous generalization of Theorem 1 would be obtained by replacing the
codimension-4 hypothesis by q > m + 3 and the d-connectivity of (M, R) by (t + 2)-
connectivity (of course, t +2 <d if q > m + 3).

Notice that this generalization of Theorem 1 would imply the theorem of Hudson.
To see this, suppose M, Q, f are defined as above. Let A™ C int M and B9 C int Q
be PL balls such that f-1(B) = A, and write

M=M-intA, R=0A, Q=Q-intB, S=23B.
Since f: M — Q is (d + 1)-connected, the commutative diagram

£y
(M) —> 7 (Q)

I T, Tf
(M) —> 1. (Q)

implies that f =f I M: M — 6 is (d + 1)-connected. Therefore Lemma 7 and the
commutative diagram

1l
o

1 (R) ——> m (M) —> m (M, R) —> m_1(R)

7, l l¥*

0= m(S) —> m(Q —> m(Q, ) —> m_;(S) = 0

o
Il

~
~

imply that (M, R) is (t + 2)-connected and that the map of pairs f: (M, R) — Q, S)
is (d + 1)-connected.
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