THE RELATIVE GROWTH OF SUBORDINATE FUNCTIONS

Zbigniew Bogucki and Jozef Waniurski

1. INTRODUCTION

Suppose the functions f and F are regular in the unit disk K and vanish at the origin. The function f is said to be subordinate to F in K (in symbols: $f \prec F$) if there exists a function ω regular in K with the properties that $\omega(0) = 0$, $|\omega(z)| < 1$ ($z \in K$), and $f(z) \equiv F(\omega(z))$. In all sufficiently small disks $K_r = \{z: |z| < r\}$, functionals of r and f are in general dominated by corresponding functionals of r and F, whenever $f \prec F$. Many authors have studied the problem of determining the largest disk where such a domination takes place. For example, G. M. Golusin [4] proved the following result. Let a(r) and A(r) denote the areas of the Riemann surfaces $f(K_r)$ and $F(K_r)$, respectively. Then

$$a(r) \leq A(r)$$
 $(0 \leq r \leq 1/\sqrt{2})$,

provided $f \lt F$. E. Reich was the first to investigate a more general problem. He obtained estimates of the ratio a(r)/A(r) in the whole unit disk under the assumption that $f \lt F$, and he proved the inequality [7]

$$a(r)/A(r) \le mr^{2m-2} \quad \left(\frac{m-1}{m} \le r^2 \le \frac{m}{m+1}; m = 1, 2, \cdots\right),$$

which implies Golusin's result in the case where m = 1.

In this paper, we study the least upper bound of another ratio. The authors thank Professor J. G. Krzyż for suggesting this problem.

Let A_n (n = 1, 2, ...) denote the class of functions f regular in K such that

$$f(z) = a_n z^n + a_{n+1} z^{n+1} + \cdots \quad (a_n \ge 0).$$

Let S denote the class of functions regular and univalent in K, subject to the usual normalizations. Suppose S_0 is some fixed subclass of S, and suppose that for each η ($|\eta| < 1$), the function η^{-1} f(η z) belongs to S_0 whenever f ϵ S_0 . Define

$$\kappa(\mathbf{r}, \mathbf{n}, \mathbf{S}_0) = \sup \{ |f(\mathbf{z})/F(\mathbf{z})| : f \in \mathbf{A}_n, F \in \mathbf{S}_0, f \prec F, |\mathbf{z}| = r \}$$

(n is a positive integer, and 0 < r < 1). We are able to determine $\kappa(r, n, S^*)$ and $\kappa(r, n, S_c)$, where S^* denotes the class of functions starlike with respect to the origin and S_c denotes the class of convex functions.

Let B_n (n = 1, 2, \cdots) denote the class of functions ω regular in K and satisfying the conditions

$$\omega(z) = \alpha_n z^n + \alpha_{n+1} z^{n+1} + \cdots \qquad (\alpha_n \ge 0)$$

Received February 16, 1970.

Michigan Math. J. 18 (1971).

and

$$|\omega(z)| < 1$$
 (z ϵ K).

Arguments similar to those used in [5] show that for a fixed $z_1 \in K$, the set of all possible values of $\omega(z_1)$ ($\omega \in B_n$) constitutes the closed domain $H_n(z_1)$ (generalized Rogosinski domain) whose boundary consists of three arcs:

$$(1.1) \ z = z_0(\theta) = |z_1|^{n+1} e^{i\theta} \qquad \left(\arg z_1^n + \frac{1}{2} \pi \le \theta \le \arg z_1^n + \frac{3}{2} \pi \right),$$

(1.2)
$$z = z_1(\alpha) = z_1^n(\alpha + i |z_1|)/(1 + i\alpha |z_1|)$$
 $(0 \le \alpha \le 1)$,

(1.3)
$$z = z_2(\alpha) = z_1^n(\alpha - i|z_1|)/(1 - i\alpha|z_1|)$$
 $(0 \le \alpha \le 1)$.

We write $Q_n(z_1, S_0) = \{u: u = F(z_2)/F(z_1)\}$, where z_1 is a fixed point of K, z_2 ranges over $H_n(z_1)$, and F ranges over S_0 . Under our assumptions on S_0 , the set $Q_1(z_1, S_0)$ has the following properties (see [2]):

$$Q_1(z_1, S_0) = Q_1(|z_1|, S_0),$$

(1.5) if
$$0 < r_1 < r_2 < 1$$
, then $Q_1(r_1, S_0) \subset Q_1(r_2, S_0)$.

2. MAIN RESULTS

Let

$$\Omega_{n}(z_{1}, S_{0}) = \{w: w = f(z_{1})/F(z_{1}), f \in A_{n}, F \in S_{0}, f < F\},$$

where z_1 is a fixed point of K.

THEOREM 1. $\Omega_n(z_1, S_0) = Q_n(z_1, S_0)$.

Proof. Suppose $u \in \Omega_n(z_1, S_0)$. This means that there exist $f \in A_n$ and $F \in S_0$ such that $f \prec F$ and $u = f(z_1)/F(z_1)$. The condition $f \prec F$ implies that there exists $\omega \in B_n$ such that $f(z) \equiv F(\omega(z))$, and hence $f(z_1) = F(\omega(z_1))$. If $z_2 = \omega(z_1)$, then $z_2 \in H_n(z_1)$ [5]. We now have the relations

$$u = f(z_1)/F(z_1) = F(\omega(z_1))/F(z_1) = F(z_2)/F(z_1),$$

and thus $u \in Q_n(z_1, S_0)$.

Suppose now q \in Q_n(z₁, S₀). Then q = F(z₂)/F(z₁), where F \in S₀ and z₂ \in H_n(z₁). By [5], there exists $\omega \in$ B_n such that z₂ = ω (z₁). Consequently,

$$q = F(\omega(z_1))/F(z_1) = f(z_1)/F(z_1),$$

where $f = F \circ \omega \in A_n$. Hence $q \in \Omega_n(z_1, S_0)$.

COROLLARY 1. If $z \in \overline{K_r}$, $f \in A_n$, $F \in S_0$, and $f \lt F$, then

$$\sup |f(z)/F(z)| = \sup \{|w|: w \in \Omega_n(z, S_0)\}.$$

By Corollary 1, we have the relations

$$\kappa(\mathbf{r}, n, S_0) = \sup \{ |\mathbf{w}| : \mathbf{w} \in \mathbf{Q}_n(\mathbf{z}, S_0) \} = \sup \{ |\mathbf{w}| : \mathbf{w} \in \Omega_n(\mathbf{z}, S_0) \}.$$

Let $S_{1/2}^*$ denote the class of all functions $F \in S^*$ that satisfy the inequality

$$\Re (zF'(z)/F(z)) > 1/2 \quad (z \in K).$$

THEOREM 2. Suppose $S_0 = S_{1/2}^*$, and let 0 < r < 1. Then

(2.1)
$$\kappa(\mathbf{r}, 1, \mathbf{S}_{1/2}^*) = \max \left\{1, \frac{\mathbf{r}}{1-\mathbf{r}}\right\},$$

(2.2)
$$\kappa(\mathbf{r}, \mathbf{n}, \mathbf{S}_{1/2}^*) = \mathbf{r}^{n-1} \frac{1+\mathbf{r}}{1-\mathbf{r}^n} \quad (\mathbf{n} \geq 2).$$

It is well known [6] that $S_c \subset S_{1/2}^*$. Hence $|f(z)/F(z)| \le \kappa(r, n, S_{1/2}^*)$, provided $F \in S_c$, $f \in A_n$, and $f \lt F$. On the other hand, if F(z) = z/(1+z) and $f(z) \equiv F(z)$, then $|f(z)/F(z)| \equiv 1$, and for the same F and $f(z) = F(-z^2)$ we have the relation

$$\sup_{|z|=r} |f(z)/F(z)| = r/(1-r).$$

Thus we have established the following result.

COROLLARY 2. $\kappa(r, 1, S_c) = \max\{1, r/(1-r)\}\ (0 < r < 1)$.

For $n \geq 2$, let

$$F(z) = z \left(1 - z \exp \frac{in\pi}{n-1}\right)^{-1}$$
 and $f(z) = F(z^n)$.

Then $\mathbf{F} \in S_c$, $\mathbf{f} \in A_n$, and for $z_0 = \mathbf{r} \exp \frac{-i\pi}{n-1}$, we obtain the relation

$$|f(z)/F(z)| = r^{n-1}(1+r)/(1-r^n).$$

COROLLARY 3. $\kappa(r, n, S_c) = r^{n-1} \frac{1+r}{1-r^n} \ (n \ge 2, 0 < r < 1).$

THEOREM 3. Suppose $S_0 = S^*$, and let 0 < r < 1. Then

$$\kappa(\mathbf{r}, 1, \mathbf{S}^*) = \max\{1, \mathbf{r}(1-\mathbf{r})^{-2}\}$$
 and $\kappa(\mathbf{r}, \mathbf{n}, \mathbf{S}^*) = \mathbf{r}^{n-1}\left(\frac{1+\mathbf{r}}{1-\mathbf{r}^n}\right)^2$ $(\mathbf{n} \geq 2)$.

3. PROOFS OF THEOREMS 2 AND 3

Proof of Theorem 2. Suppose n=1. In [3], we have proved that $\kappa(r, 1, S_{1/2}^*) = 1$ ($0 < r \le 1/2$); hence we may assume that 1/2 < r < 1. If $F \in S_{1/2}^*$ and z_1 , $z_2 \in K$ ($z_1 \ne 0$), then the point $u = F(z_2)/F(z_1)$ lies inside the circle

(3.1)
$$w(\theta) = \frac{z_2}{z_1} (1 - z_1 e^{-i\theta}) (1 - z_2 e^{-i\theta})^{-1} \qquad (-\pi \le \theta \le \pi)$$

(see [8]). The center s and radius R of this circle are

(3.21)
$$s = \frac{z_2/z_1 - |z_2|^2}{1 - |z_2|^2},$$

(3.22)
$$R = \left| \frac{z_2}{z_1} \right| \cdot \frac{|z_2 - z_1|}{1 - |z_2|^2}.$$

The boundary $\partial H_1(r)$ of $H_1(r)$ consists of three circular arcs with equations

(3.3)
$$z = z_0(t) = r^2 e^{it}$$
 $\left(\frac{1}{2}\pi \le t \le \frac{3}{2}\pi\right)$,

(3.4)
$$z = z_1(\alpha) = r(\alpha + ir)/(1 + i\alpha r) \quad (0 \le \alpha \le 1),$$

(3.5)
$$z = z_2(\alpha) = r(\alpha - ir)/(1 - i\alpha r) \quad (0 \le \alpha \le 1).$$

For fixed θ , for $z_1 = r$, and for $z_2 \in H_1(r)$, the right-hand side of (3.1) is an analytic function of z_2 ; hence the boundary points of $Q_1(r, S_{1/2}^*)$ correspond to points $z_2 \in \partial H_1(r)$. In order to establish relation (2.1), we must verify that the inequality

$$h(z_2, \theta) = \frac{|z_2|}{r} \left| \frac{1 - re^{-i\theta}}{1 - z_2 e^{-i\theta}} \right| \leq \frac{r}{1 - r} \quad (z_2 \in \partial H_1(r), -\pi \leq \theta \leq \pi)$$

holds and that equality is attained for each $r \in (1/2, 1)$.

Recall that the boundary of $H_1(r)$ consists of three circular arcs with equations (3.3), (3.4), and (3.5). If z_2 lies on the arc (3.3), then

$$h(z_2, \theta) = r \left| \frac{1 - re^{-i\theta}}{1 - r^2 e^{-i(\theta - t)}} \right| \le r \frac{1 + r}{1 - r^2} = \frac{r}{1 - r},$$

and equality is attained for $\theta = t = \pi$. We proceed to verify that the inequality $h(z_2, \theta) \le r/(1 - r)$ holds on the arcs (3.4) and (3.5). By (3.1), (3.21), and (3.22), we need to verify the inequality

$$|s| + R \le r/(1 - r)$$
 $(1/2 < r < 1)$.

Using (3.21), (3.22), and (3.4) or (3.5), we find that the inequality above becomes

$$\frac{(\alpha^{2} + \mathbf{r}^{2})^{1/2}}{1 - \mathbf{r}^{4}} \left[((1 - \alpha \mathbf{r}^{2})^{2} + \mathbf{r}^{2}(\alpha - \mathbf{r}^{2})^{2})^{1/2} + \mathbf{r}(1 - \alpha)(1 + \mathbf{r}^{2})^{1/2} \right] \\
\leq \frac{\mathbf{r}}{1 - \mathbf{r}} \quad (1/2 < \mathbf{r} < 1, \ 0 < \alpha < 1).$$

In order to verify (3.6), we use an elementary but tedious argument. We first multiply both sides of (3.6) by $(1 - r^4)(1 + r^2)^{-1/2}$, and then we subtract the term $r(1 - \alpha)(\alpha^2 + r^2)^{1/2}$ from both sides. Having squared both sides and rearranged terms, we find the equivalent inequality

(3.7)
$$\alpha^2(1-r)^2(1+r) + 2r^2(1-\alpha)\sqrt{(\alpha^2+r^2)(1+r^2)} \leq 2r^3(1+r).$$

We define the auxiliary functions

$$\phi(\alpha, \mathbf{r}) = \alpha^{2}(1 - \mathbf{r})^{2}(1 + \mathbf{r}) + 2\mathbf{r}^{2}(1 - \alpha)\sqrt{(\alpha^{2} + \mathbf{r}^{2})(1 + \mathbf{r}^{2})},$$

$$\psi(\mathbf{r}) = 2\mathbf{r}^{3}\sqrt{1 + \mathbf{r}^{2}} + (3 - \sqrt{5})/8,$$

$$\chi(\mathbf{r}) = 2\mathbf{r}^{3}(1 + \mathbf{r}),$$

and we shall show that $\phi(\alpha, r) \leq \psi(r) \leq \chi(r)$ $(1/2 < r < 1, 0 < \alpha < 1)$.

It is easy to verify that the expression

(3.8)
$$k(1 - \alpha)\sqrt{\alpha^2 + c^2}$$
 $(k > 0, 1/2 \le c \le 1)$

decreases as α increases (0 < α < 1). A straightforward computation shows that

(3.9)
$$\phi(\alpha, 1/2) < 3/8 = \psi(1/2) \quad (0 < \alpha < 1).$$

Moreover, $\phi'_{\mathbf{r}}(\alpha, \mathbf{r}) \leq \psi'(\mathbf{r})$ (1/2 < \mathbf{r} < 1), where $\phi'_{\mathbf{r}}(\alpha, \mathbf{r}) = \partial \phi(\alpha, \mathbf{r})/\partial \mathbf{r}$. In fact,

$$\phi_{\mathbf{r}}'(\alpha, \mathbf{r}) = \alpha^{2}(3\mathbf{r}^{2} - 2\mathbf{r} - 1) + 4\mathbf{r}(1 - \alpha)((\alpha^{2} + \mathbf{r}^{2})(1 + \mathbf{r}^{2}))^{1/2}$$

$$+ 2\mathbf{r}^{3}(1 - \alpha)[(\alpha^{2} + \mathbf{r}^{2})^{-1} + (1 + \mathbf{r}^{2})^{-1}]((\alpha^{2} + \mathbf{r}^{2})(1 + \mathbf{r}^{2}))^{1/2}.$$

We see that $\phi_r'(\alpha, r)$ has the form (3.8), and therefore

$$\phi_{\mathbf{r}}'(\alpha, \mathbf{r}) \leq \phi_{\mathbf{r}}'(0, \mathbf{r}) = \psi'(\mathbf{r}).$$

The inequality above, together with (3.9), implies that $\phi(\alpha, r) \leq \psi(r)$. The inequality $\psi(r) \leq \chi(r)$ is obvious. We have verified inequality (3.7), and therefore (3.6), and Theorem 2 is established for the case n = 1.

Now suppose $n \ge 2$. The boundary $\partial H_n(z_1)$ of the generalized Rogosinski domain $H_n(z_1)$ is given by equations (1.1), (1.2), and (1.3). Setting $z_1 = re^{it}$, we obtain from (1.1) and (3.1) the relation

$$\max_{t,\theta} |w(t,\theta)| = |w(0,\pi)| = r^n \frac{1+r}{1-r^{n+1}}.$$

Moreover, using (3.1) together with (1.2) or (1.3), we find that

$$\max_{\alpha,t,\theta} \left| w(\alpha,t,\theta) \right| = \left| w\left(1,-\frac{1}{n-1}\pi,-\frac{n}{n-1}\pi\right) \right| = r^{n-1}\frac{1+r}{1-r^n}.$$

It follows that for $n \geq 2$,

$$\kappa(\mathbf{r}, \mathbf{n}, \mathbf{S}_{1/2}^*) = \mathbf{r}^{n-1} \frac{1+\mathbf{r}}{1-\mathbf{r}^n} \quad (0 < \mathbf{r} < 1),$$

and Theorem 2 is proved.

Proof of Theorem 3. Suppose first that n=1. If $0 < r < (3-\sqrt{5})/2$, then $\kappa(r,1,S^*)=1$ [4]. Thus we may assume that $(3-\sqrt{5})/2 < r < 1$. It is well known [8] that the domain of variability of the point $u=[F(z_2)/F(z_1)]^{1/2}$, where z_1 $(z_1 \neq 0)$ and z_2 are fixed points in K and where F ranges over S^* , is the closed disk with boundary

(3.10)
$$w(\theta) = \left(\frac{z_2}{z_1}\right)^{1/2} \frac{1 - z_1 e^{-i\theta}}{1 - z_2 e^{-i\theta}} \quad (-\pi \le \theta \le \pi).$$

The center S and radius R of this disk are

(3.111)
$$S = (q - |z_2|^2 q^{-1})/(1 - |z_2|^2),$$

(3.112)
$$R = |z_2| |q - q^{-1}|/(1 - |z_2|^2),$$

where $q = (z_2/z_1)^{1/2}$. An argument similar to the one used in the proof of Theorem 2 leads to the inequality

$$\frac{[(\alpha^{2} + \mathbf{r}^{2})(1 + \alpha^{2}\mathbf{r}^{2})]^{1/2}}{(1 - \mathbf{r}^{4})^{2}} [((1 - \alpha\mathbf{r}^{2})^{2} + \mathbf{r}^{2}(\alpha - \mathbf{r}^{2})^{2})^{1/2} + \mathbf{r}(1 - \alpha)\sqrt{1 + \mathbf{r}^{2}}]^{2}$$

$$\leq \frac{\mathbf{r}}{(1 - \mathbf{r})^{2}},$$

where $0 < \alpha < 1$ and $(3 - \sqrt{5})/2 < r < 1$. For $0 < \alpha < 1$ and $0 < r < \sqrt{2} - 1$, the left-hand side of (3.12) does not exceed 1 [2]. Hence it suffices to verify (3.12) for $0 < \alpha < 1$ and $2/5 \le r < 1$. One can show that (3.12) is equivalent to the inequality

$$((\alpha^2 + r^2)(1 + \alpha^2 r^2))^{1/2}(1 - r^2)(1 + r) + 2r(1 - \alpha)((\alpha^2 + r^2)(1 + \alpha^2 r^2))^{1/4}(r(1 + r^2))^{1/2} \le r(1 + 1)(1 + r^2).$$

Calculations similar to those in the proof of Theorem 2, this time with the auxiliary functions

$$\phi(\alpha, \mathbf{r}) = ((\alpha^2 + \mathbf{r}^2)(1 + \alpha^2 \mathbf{r}^2))^{1/2}(1 - \mathbf{r})^2(1 + \mathbf{r})$$

$$+ 2\mathbf{r}(1 - \alpha)((\alpha^2 + \mathbf{r}^2)(1 + \alpha^2 \mathbf{r}^2))^{1/4}(\mathbf{r}(1 + \mathbf{r}^2))^{1/2},$$

$$\psi(\mathbf{r}) = 2\mathbf{r}^2\sqrt{1 + \mathbf{r}^2} + \frac{8}{125}\sqrt{29} - \frac{406}{625}, \quad \text{and}$$

$$\chi(\mathbf{r}) = \mathbf{r}(1 + \mathbf{r})(1 + \mathbf{r}^2).$$

show that $\phi(\alpha, \mathbf{r}) \leq \psi(\mathbf{r}) \leq \chi(\mathbf{r})$. These inequalities establish (3.13), and therefore (3.12). It follows that $\kappa(\mathbf{r}, 1, S^*) = \max\{1, \mathbf{r}(1 - \mathbf{r})^{-2}\}$.

The assertion about $\kappa(\mathbf{r}, \mathbf{n}, \mathbf{S}^*)$ ($\mathbf{n} \geq 2$) can be proved with arguments similar to those we used to establish the bound $\kappa(\mathbf{r}, \mathbf{n}, \mathbf{S}^*_{1/2})$.

REFERENCES

- M. Biernacki, Sur quelques majorantes de la théorie des fonctions univalentes.
 C. R. Acad. Sci. Paris 201 (1935), 256-258.
- 2. Z. Bogucki, On a theorem of M. Biernacki concerning subordinate functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 19 (1965), 5-10.

- 3. Z. Bogucki and J. Waniurski, On a theorem of M. Biernacki concerning convex majorants. Ann. Univ. Mariae Curie-Skłodowska Sect. A 19 (1965), 11-15.
- 4. G. M. Goluzin, On majorants of subordinate analytic functions. I. (Russian) Mat. Sbornik N.S. 29 (71) (1951), 209-224.
- 5. Z. Lewandowski, Starlike majorants and subordination. (Polish and Russian summaries) Ann. Univ. Mariae Curie-Skłodowska Sect. A 15 (1961), 79-84.
- 6. A. Marx, Untersuchungen über schlichte Abbildungen. Math. Ann. 107 (1932), 40-67.
- 7. E. Reich, An inequality for subordinate analytic functions. Pacific J. Math. 4 (1954), 259-274.
- 8. E. Złotkiewicz, Subordination and convex majorants. Folia Societatis Scientiarum Lublinensis 2 (1962), 97-99.

Maria Curie-Skłodowska University Lublin, Poland