THE RELATIVE GROWTH OF SUBORDINATE FUNCTIONS
Zbigniew Bogucki and Jdézef Waniurski

1. INTRODUCTION

Suppose the functions f and F are regular in the unit disk K and vanish at the
origin. The function f is said to be subordinate to F in K (in symbols: f < F) if
there exists a function w regular in K with the properties that w(0) = 0, Iw(z)l <1
(z € K), and f(z) = F(w(z)). In all sufficiently small disks K, = {z: Izl <r}, func-
tionals of r and f are in general dominated by corresponding functionals of r and
F, whenever f ~<F. Many authors have studied the problem of determining the
largest disk where such a domination takes place. For example, G. M. Golusin [4]
proved the following result. Let a(r) and A(r) denote the areas of the Riemann
surfaces f(K,) and F(K,), respectively. Then

a(r) <A(r) (0<r<1/V2),

provided f << F. E. Reich was the first to investigate a more general problem. He
obtained estimates of the ratio a(r)/A(r) in the whole unit disk under the assumption
that f < F, and he proved the inequality [7]

a(r)/A(r) < mr#m-2 (I—n‘;n_—l Sr2<—"5im=1,2, - )

which implies Golusin’s result in the case where m = 1.

In this paper, we study the least upper bound of another ratio. The authors
thank Professor J. G. Krzyz for suggesting this problem.

Let A, (n=1, 2, :--) denote the class of functions f regular in K such that

f(z) = apz™+a, 27"

+0 (ap>0).
Let S denote the class of functions regular and univalent in K, subject to the usual
normalizations. Suppose Sg is some fixed subclass of S, and suppose that for each
n (|17| < 1), the function n-1 f(nz) belongs to Sg whenever f € Sg. Define

k(r, n, Sg) = sup {|Hz)/F(z)|: € Ay, F e So, {=<F, |z| =1}

(n is a positive integer, and 0 <r < 1). We are able to determine «(r, n, S*) and
k(r, n, Sc), where S* denotes the class of functions starlike with respect to the
origin and S_. denotes the class of convex functions.

Let B, (n=1, 2, -**) denote the class of functions w regular in K and satisfy-
ing the conditions

+1

w(z) = anz®+ay 12"+ (@n>0)
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and

lw(z)] <1 (z € K).

Arguments similar to those used in [5] show that for a fixed z; € K, the set of all
possible values of w(z;) (w € B,) constitutes the closed domain H,(z;) (generalized
Rogosinski domain) whose boundary consists of three arecs:

(1.1) 2 =20(6) = |z |1 et (argzf+3n<o<argzi+3n),

(1.2) z=2z,(a)= zrl"(oz +i|zll)/(1 +ioz|zl|) 0<a<l),
(1.3) z=2zy(@) =z)(a - iz, |)/(1 - ia|z,]) (0<a<1).
We write Qn(z], So) = {u: u= F(z2)/F(z1)}, where z) is a fixed point of K, z,

ranges over Hn(z 1), and F ranges over S;. Under our assumptions on Sy, the set
Q;(z;, Sg) has the following properties (see [2]):

(1.4) Qi(z;, Sg) = Ql(lzll, So) »

(1.5) if 0 < r < Iro < 1, then Ql(rl , SO) C QI(I'Z, So) .

2. MAIN RESULTS

Let
Qn(z1, So) = {w: w=1(z1)/F(z1), f € Ap, Fe S, £ <F},

where z; is a fixed point of K.
THEOREM 1. Qn(zl ’ So) = Qn(Z]_ ’ So).

Proof. Suppose u € Q,(z;, Sg). This means that there exist f € A, and F € S,
such that £ < F and u = f(z1)/F(z1). The condition f << F implies that there exists
w € B, such that f(z) = F(w(z)), and hence f(z;) = F(w(z1)). ¥ z, = w(z;), then
z, € H (z) [6]. We now have the relations

u = (z)/Fz;) = Now(z,))/¥(z}) = Kz,)/F(z,),

and thus u € Qu(z;, So).

Suppose now q € Q. (z;, Sg). Then q = F(z,)/F(z;), where F € S, and
z, € H_(z,). By [5], there exists w € B, such that z, = w(z;). Consequently,

q = Flw(z)))/F(z,) = £z,)/F(z,),

where f = Fow € A . Hence q € Q,(z;, Sp).
COROLLARY 1. If z € K., f € A, Fe Sy, and £ < F, then

sup |f(z)/F(z)| = sup {le: w e Q.(z, So)} .

By Corollary 1, we have the relations
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k(r, n, Sg) = sup{lwl: w € Quz, So)} = sup{lwl: w e 2.z, So)}.
Let ST /2 denote the class of all functions F € S™ that satisfy the inequality
R(zF'(z)/F(z)) > 1/2 (z € K).

THEOREM 2. Suppose S, = ST/Z: and let 0 <r <1. Then

r
(2.1) k(r, 1, S’{/g = max{l, T r}’
: *  wn-ll+r .
(2.2) k(r,n, §1,,) =1 — (n>2).

It is well known [6] that S_ C S{,, . Hence |f(z)/F(z)| < x(r, n, S},5), pro-
vided F € S;, f € A, and f <<F. On the other hand, if F(z) = z/(1 +z) and
f(z) = F(z), then |f(z)/F(z)| =1, and for the same F and f(z) = F(-z2) we have the
relation

sup If(z)/F(z)[ =r/(1-71).
Z|=T
Thus we have established the following result.
COROLLARY 2. k(r, 1, 8.)) =max{1, r/(1-r)} (0<r <1).
For n > 2, let

. -1
F(z) = z (1 - Z exp nu_ml ) and f(z) = F(z").

1111 , we obtain the relation

Then F € S., f € A, and for zg=r exp

|#(z)/F(z)| = v 1 (1 +1)/(1 - ).

n-1 1+11'
1-rn

COROLLARY 3. k(r,n, Sc) =r (n>2, 0<r<1).

THEOREM 3. Suppose Sg=S*, and let 0 <r <1. Then

k(r, 1, §% = max {1, r(1 - )%} and «(r,n, % = ™! (

3. PROOFS OF THEOREMS 2 AND 3

Proof of Théorem 2. Suppose n=1. In [3], we have proved that
k(r, 1, 8T,,) =1 (0 <r < 1/2); hence we may assume that 1/2 <r <1. ¥ F e 87/,
and z; , z; € K (z; #0), then the point u = F(zp)/F(z)) lies inside the circle

(3.1) w(6) = % (1-2,e10)(1-2,e10)01 (-1<0<m)

(see [8]). The center s and radius R of this circle are
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_ Z/7y - |2, |°
1- |z,

(3.21)

’

. |22 - 2|
1- |z,

Z2

(3.22) : R = -y

The boundary 9H;(r) of H;(r) consists of three circular arcs with equations

(3.3) z = z,(t) = r2eit (Fr<t<in),
(3.4) z = z;(a) = r(a +ir)/(1 +iar) (0<a<1),

(3.5) z = zy(a) = r(a - ir)/(1 -ier) (0<a<1).

For fixed 6, for z; =r, and for z, € H;(r), the right-hand side of (3.1) is an ana-
lytic function of z, ; hence the boundary points of Q y(r, ST/Z) correspond to points
z, € 0H;(r). In order to establish relation (2.1), we must verify that the inequality
-if
-i8

|22
r

1-re

h(z,, 8) = (z2 € 80H (x), -1 < 6 < 7)

r
— 1 -

1-2z,e
holds and that equality is attained for each r € (1/2, 1).

Recall that the boundary of H;(r) consists of three circular arcs with equations
(3.3), (3.4), and (3.5). I z, lies on the arc (3.3), then

1-re-if
1 - r2e-i(8-t)

1+r r
2 1-1r’

h(Zz,Q)"—'I‘ _<_r

1-r

and equality is attained for 6 =t = 7. We proceed to verify that the inequality
h(z,, 6) <r/(l - r) holds on the arcs (3.4) and (3.5). By (3.1), (3.21), and (3.22), we
need to verify the inequality

|s| +R < r/(1-r) (1/2<r<1).
Using (3.21), (3.22), and (3.4) or (3.5), we find that the inequality above becomes

(@2 +r2)L/2

- ar?)? +r¥(a - 2?2 1 r(1 - o) (1 +1r2)1/?]
-r

(3.6)

<15 (@/2<r<1,0<a<1).

In order to verify (3.6), we use an elementary but tedious argument. We first
multiply both s1des of (3.6) by (1 - r%)(1 +r?)-1/2 and then we subtract the term
r(l - a)(a? + r2)1/2 from both sides. Having squared both sides and rearranged
terms, we find the equivalent inequality

(3.7) a?(1 - r)2(1 +r) +2r%(1 - o)V (@? +1r2)(1+12) < 2r3(1 +1).

We define the auxiliary functions
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#a, r) = o®(1 - r)%(1 + 1)+ 2r%(1 - @)V (a2 +1r2)(1 +1r2),
Yr) = 2r3V1 +r2+(3- V5)/8,
x(r) = 2r3(1 +r),

and we shall show that ¢(a, r) < yY(r) < x(r) (1/2<r <1, 0<a <1).

It is easy to verify that the expression
(3.8) k(1-a)YaZ+c? (k>0,1/2<c<1)
decreases as @ increases (0 < @ <1). A straightforward computation shows that
(3.9) ola, 1/2) < 3/8 = y(1/2) (0<a<1).
Moreover, ¢ (o, r) <¢'(r) (1/2 <r < 1), where ¢.(a, r) =3¢(a, r)/or. In fact,
oi(a, r) = a?(8r? - 2r - 1) + 4r(1 - &) ((@? +r?) (1 +r?)!/?
+2r3(1 - o)[(@? + 1?1+ (1 +r2) (a2 +12)(1 +r¥)t/2,
We see that ¢.(a, r) has the form (3.8), and therefore
¢.(a, r) < ¢.(0, r) = ¢'(r).
The inequality above, together with (3.9), implies that ¢(a, r) < ¥(r). The inequality

Y(r) < x(r) is obvious. We have verified inequality (3.7), and therefore (3.6), and
Theorem 2 is established for the case n=1.

Now suppose n > 2. The boundary 9H,(z;) of the generalized Rogosinski do-
main H,(z;) is given by equations (1.1), (1.2), and (1.3). Setting z) = re't, we obtain
from (1.1) and (3.1) the relation

- - pn_1+T
IE%XIW(t’ )| = |w(o, m)| = rn1 ol

Moreover, using (3.1) together with (1.2) or (1.3), we find that

max Iw(a:t:9)|=|w(1,— 11”" n1ﬂ) _rn-11+r
a,t,0 n- n - 1-r0
It follows that for n > 2,
k(r, n, S"I‘/Z) - pn-1 1L (0<r<1),

1-r2
and Theorem 2 is proved.

Proof of Theovem 3. Suppose first that n=1. If 0 <r < (3 - ¥5)/2, then
k(r, 1, S*) =1 [4]. Thus we may assume that (3 - V5)/2 <r < 1. It is well known
[8] that the domain of variability of the point u = [F(z,)/F(z;)]}/2, where z; (z; #0)
and z, are fixed points in X and where F ranges over S*, is the closed disk with
boundary
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(3.10) w(6) = (—1)

The center S and radius R of this disk are
- Jz2]2970)/(1 - |2,]?),
lz2[ [a - a /(1 - |2,]2),

where q = (z2/2z1)}/2. An argument similar to the one used in the proof of Theorem
2 leads to the inequality

[(«? +r(21)(1 +4;2r2)]1/2 [(1 - ar?)2+r2(a - £2)2) /2 4 (1 - a1 +12]°
-r

(3.111) S

1l

(3.112) R

(3.12)
r

L<-—,
—~(1-r)?

where 0 <@ <1 and (3-+V5)/2<r<1l. For 0<a<1and 0<r<vV2- 1 the
left-hand side of (3.12) does not exceed 1 [2]. Hence it suffices to verify (3.12) for
0<a<1and 2/5 <r <1. One can show that (3.12) is equivalent to the inequality

(e +12) (1 +a?r?)1/2(1 - r2)(1 +1)
(3.13)
+2r(1 - a)((@? +r2) (1 + a2r2)1/4(r(1 + r2)L/2 <r(l+1)(1 +r2) .

Calculations similar to those in the proof of Theorem 2, this time with the auxiliary
functions

#e, r) = (@ +1r2) (1 +a?r2)1/2(1 - r)2 (1 + 1)
+2r(1 - @) ((@? + r2) (1 + a2r2) /4 (c(1 + r2)1/2]

_ 2 406
Y(r) = 1+12 4= 125 V2 - 395 and

x(r) = r(1 +1)(1 +1r?3),

show that- ¢(a, r) < Y(r) < x(r). These inequalities establish (3.13), and therefore
(3.12). It follows that k(r, 1, % = max {1, r(1 - r)-2}.

The assertion about k(r, n, S*) (n>2) can be proved with arguments similar
to those we used to establish the bound k(r, n, S7/,).
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