THE QUALITATIVE BEHAVIOR OF THE SOLUTIONS OF
A NONLINEAR VOLTERRA EQUATION

Stig-Olof Londen
1. INTRODUCTION
In this paper, we consider the equation

t
(1.1) x'(t) = X b(t - 7)gx(T))dT +1E) (0 <t <),
0

where x(0) is a prescribed real number and b(t), f(t), g(x) are prescribed real func-
tions. The following is our main result.

THEOREM 1. Let

(1.2) b(t) € L1(0, 1),

(1.3) e M) <0 (0<t<o;k=0,1,2),
(1.4) b(t) # b(0+),

(1.5) g(x) € C(-, =),

(1.6) f(t) € C[0, ©) N L [0, =),

and let x(t) be a solution of (1.1) on 0 <t < = such that

(1.7) sup lx(t)l <L oo,
0t

Then lim, _,  g(x(t)) exists and

(1.8) lim g(x(t)) = 0.
t— oo

If, in addition,

(1.9) lim f(t) = 0,
t— o0

then limt—)oo X'(t) =0,

In (1.3), we assume that b"(t) exists and is finite on 0 < t < . Theorem 1 ob-
viously remains true if (1.3) is replaced by

[-1I*b®t) >0 (0<t<eo;k=0,1,2).
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By way of comments, we note first that the existence of a bounded solution x(t)
on 0 <t < ig part of the hypothesis. Applying a result in [6], we see immediately
that under the present assumptions, (1.1) has a local solution x(t) (not necessarily
unique). However, a somewhat different hypothesis is needed for a nonlocal exist-
ence proof. To see this, it suffices to take f(t) =0 and g(x) = -x1*9 in (1.1), for
some 6> 0, and to apply Theorem 2 of [4]; the theorem implies that if g(x) has this
particular form, if (1.2), (1.3), and (1.4) are satisfied, and if x(0) is large enough,
then x(t) has a finite escape time.

The asymptotic behavior of solutions of (1.1) has been considered in several
papers, under hypotheses related to those of Theorem 1. See for example [1], [2],

(3], [5].

In [5], J. J. Levin and J. A. Nohel analyze the equation (1.1) under the hypothesis
that

b(t) € [0, =), [-1FbNt) <0 (k=0,1,2 3;0<t <), bt)#b0),

xg(x) >0 (x#0), g(x) € C(-o, ), G(x) = Sx g(u)du — (lxl — o),
0

lex)]| < K[1+GX)],

and they prove that lim 0 xUt) =0 (j = 0, 1). (They also consider nonintegrable
perturbations.) K. B. Hannsgen in [2] extends this result to a nonpositive, nonde-
creasing concave kernel b(t) such that b(t) € C(0, ©») N L;(0, 1). The assumptions
on g(x) remain the same as in [5]. However, to obtain asymptotic results, Hannsgen
also assumes that either b(0+) > - or b(t) € L;(0, ).

In Theorem 1, we show that continuity is the only hypothesis on g(x) needed in
the proof that lim; _,» g(x(t)) exists (assuming the existence of a bounded solution).
Also, b(0+) = -, b(t) ¢ L;(0, =) is not excluded in our result. Note that this
answers a problem posed by Nohel [6, Section 6].

As to f(t), we observe that Theorem 1 only requires (1.6) to hold. In [5]
|£'(t)] < K is assumed (in addition to (1.6)). In [2], either |f(t)] <K or |f'(t)] <K
is assumed (depending upon the hypothesis on b(t)), again together with (1.6).

The proofs of the existence of lim;_, o x(t) have essentially rested upon the
Lyapunov function

t 2 t t 2
B = ) - 30| | ex(rar | +3 { vee- 7)[ { etxtenas | ar,
' 0 T

0

introduced in [3]. Namely, if x(t) is a solution of (1.1), f(t) =0, and (1.3) holds, then

E'(t) < 0. In the proof of Theorem 1 we show, however, that the equation (1.1) may be
written in a form that immediately brings out the importance of (1.3) to the existence

of lim; _, « g(x(t)). Consequently, we prove Theorem 1 without recourse to Lyapunov
techniques.

In Theorem 2, we weaken the assumptions

xg(x) >0 ([x] <), G&x)—= (jx| -=), |gx)] <K[1+G6E)] (|x] <),
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made in [2] and [5] to obtain boundedness of solutions. In particular, we do not ex-
clude lim inf G(x) = -« (|x| — ),

By imposing the additional conditions

(1.10) S [B(7) - B()]dT < ©, B(w) = lim B(t) > -,
0

f — o0

t
where B(t) = S b(7)d7, we may extend our method to equations with infinite lag,
0

t
x'(t) = S bt - 7)gx(T)dT + 1) (0 <t < ),

with initial function ¢(t) (-0 <t < 0). In fact, if g(¢(t)) is bounded and (1.3) and
(1.10) hold, then

0
S b(t - 7)g((7))dr € C[0, =) n Ly [0, ).

-c0

This improves upon a result by Hale [1, Section 5.1}, since we do not require that
b{k)0) is finite (k =0, 1, 2). Also, in [1] it is assumed that G(x) is bounded from
below and f(t) = 0.

THEOREM 2. Let (1.2), (1.3), (1.5), and (1.6) hold. Also, let

(1.11) lim sup G(x) = « (|x| — ),  where G(x) = SX g(u)du,
0

K[1+ max G(y)] (x>0,
0<y<x
(1.12) lex)| < ‘
K[1+ max G(y)] <0),
x<y<L0

for some constant X. Then theve exists a solutiorn x(t) of (1.1) on 0 <t < o,
Moveover, undev this hypothesis each solution of (1.1) on 0 <t < = satisfies the
condition SUPy < (< w lx(t)l < 0,

2. PROOF OF THEOREM 1

Conditions (1.5) and (1.7) imply that

(2.1) sup Ig(x(t))] =M < o,
OSt<oo

Define
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G(x) = S glw)du  (]x]| < ).
0
Multiplication of (1.1) by g(x(t)), followed by integration, gives the formula
t T t
(2.2) G(x(t) = G(x(0)) + S g(x(T)) 5 b(7 - s)g(x(s))dsdr +5 £(7) glx(7))dT
0 0 0
and thus, by (1.6) and (2.1),
(2.3)

t T
(et " v(r - eeNasar| <x (O <t<w)
0 0

for some constant K, because supg <« t<w IG(x(t))] < %, We also have the relation

t T

{ atte) [ (7 - )gi(e) asar

0 0

t T T 2 t
(2.4) = %5\0 5‘0 b"(7T - S)l: Ss g(x(u))du] dsd7 +p?|: So g(X('T))dT]
t t 2 t T 2
1 1
-=\ b't-17) g(x(s))ds | d7 -% \ Db'(7) g(x(s))ds | a7,

where g(x(7)) may of course be replaced by an arbitrary continuous function of 7
(07 <L),

We can easily verify that (2.4) holds, by differentiating both sides and then per-
forming an integration by parts. Note that the rigour necessary for the case where
one or more of b(0+), b'(0+), b"(0+) are infinite is provided by Lemma 4 of [3] and
Lemma 1 of [2]. By (1.3), (2.3), and (2.4), there exists a constant K such that

2

t T
(2.5) S X b"(v)¢X(1)dvdT > -K  (0<t< ),
c 0

where ¢,(T) = ST g(x(s))ds.
T-v
We need the following two lemmas.
LEMMA 1. Let (1.3) and (1.4) hold. Then theve exists an interval [n; , 1, ]
(0 <7y < nz) such that b'(t;) - b'(ty) > 0 for any t; and t, such that
m Lt <t <y .
Proof of Lemma 1. Let b(0+) > -«. By (1.3), b'(t) € C(0, ). Thus, if the con~

clusion of the lemma does not hold, then by (1.3), b'(t) =0 (0 <t < ), and b(t) = b(0+)
(0 <t < ); this violates (1.4). If b(0+) = -, the conclusion is obvious.
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LEMMA 2. Let (1.2), (1.3), (1.5), (1.6), and (1.7) hold. Then

(2.6) sup < o,

t
S b(t - 7)gx(7))dr
0Lt

0

Proof of Lemma 2. For 1 <t <, we have the relation

t

t t
5 blt - 7)gx(r)dT = - S bi(t - 7) S e(x(s))ds |d7
0 T

t-1

t-1 t t
- S b'(t - ‘r)l: S g(x(s)) ds :] d7 + b(t) S g(x(s))ds .
T 0

0

(2.7)

Suppose that there exists a sequence {t,} (t, — «) such that

(2.8) lim

n— <o

= ©0

tn
bit,) | ex(r)ar
0

Because |b(t)| < |b(1)| (1 <t < =), (2.8) impliés that

= ©0
’

lim

n—oo

th 2
lim b(tn)[:S g(x('r))d'r:| = - g
0

n — <0

tn
S gx(7))ar
0

and therefore

together with (1.3) and (2.4), this violates (2.3). Thus, observing in addition that
lim; — g+ b(t)t = 0, we conclude that the absolute value of the last term in (2.7) is
bounded on 0 <t < ., By (1.2) and (2.1), we also have the bound

t
S b'(t - 7)[ S g(x(s)) ds :ld'r
1 T

t-
Consequently, by (2.7), we see that if (2.6) does not hold, then

t 1
_<_M5 b (7)7dr < .
0

t-1

t
(2.9) sup S b'(t - T)I:S g(x(s))ds Jd? = o ,
T

0Lt 0
However, because (1.3) implies

o0

(2.10) S |b"(7)| TdT < =,
1
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there exists a constant K such that

d t-1 t
e b'(t - 7) (x(s))ds |d
dat ‘S‘O T [ ST gix\s S:l T
t-1 t :
= S bll(t _ T)[ S g(X(S)) dSi|dT
T

0

(2.11)

t-1 t
+ S b'(t - 7)gx(t)dr +b'(1) S a(x(7)) dr
0 t-1

t
<M § ] rar -0+ (<K @Q<E<).
1

Thus, if (2.6) does not hold, then by (1.6), (2.7), (2.9), and (2.11), we conclude, after
integrating (1.1), that supy< (< e Tx(t)] = o which violates (1.7). The lemma is
proved.

By (1.1) and (2.6),
|x(t)] < K+ |ft)] (0 <t <o),

for some constant K; therefore, remembering (1.6), we see that x(t) is uniformly
continuous on 0 <t < . Combined with (1.5) and (1.7), this implies that g(x(t)) is
uniformly continuous on 0 <t < o,

Choose any interval [771 s 172] satisfying the conclusion of L.emma 1. Obviously,
either lim;_, . ¢,(t) exists for all v € [n,, n,], or not. To begin, let

t
(2.12) lim S gx(7))dr existif ve [n;, n,].
t-v

t—oo

We assert that if (2.12) holds, then lim;_,  g(x(t)) exists and is 0. Differentiating,
we have the formula

ull) — e - alxtt - v).

(2.13)

Suppose that for some vq (v € [n1, n2]), lim;_, o [g(x(t)) - g(x(t - vy))] either
does not exist, or if it exists, is not equal to zero. Then there exist a sequence
{t,} (t, — =) and a number 7 > 0 such that for example

¢

(2.14) g(x(ty)) - gx(t, - vo)) > .

However, (2.13) and (2.14), combined with the uniform continuity of g(x(t)), contradict
(2.12). Thus

(2.15) lim [g(x(t)) - gx(t-v)]=0 (veln,n,]).

t—c0
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Assume now that lim, _, » g(x(t)) either does not exist, or if it exists, is not 0.
Then there exists a ;> 0 such that for example g(x(t,)) > 28; and

(2.16) gx(t) > 8 (tp - T, <t<ty),
for some {t,} and {T,} (t, — <). Let &, be such that
(2.17) gx(t)) > 6, (t,-06,<t<t);

by the uniform continuity of g(x(t)), such a 0 exists. Let 03 = min (62, 12 - 71).
Suppose that there exist a sequence {tp} (tp — ) and a constant 64 > 0 such that

(2.18) g(x(tp)) - glx(ty - 03)) > 04

for all sufficiently large p. By (2.15) and (2.18),

0
(2.19) glx(ty - 03 - 1) - glxlty - 203 - 11)) > 5 -

But also, by (2.15),
(2-20) g(x(tp - 63)) = g(x(tp - 03 - 771)) Z - Ep ’

where lim;_, o £, =0, and by (2.19) and (2.20),
04
(2.21) gx(ty - 63)) - glx(t, - 263 - 11)) > o

if p is sufficiently large; by (2.15), this is impossible.

Thus there exists no sequence {tp} (tp — «) such that (2.18) holds, no matter
how small 84 > 0 is taken. This, combined with the definition of 63, implies that
T, — . In particular, T, > > 5, . But then (1.3), (2.16), and the definition of
[n,, n,] obviously imply that

t T
(2.22) lim S S b"(v) ¢3(7)dvdT = -oo
o Yo

t— o0

which, by (2.5), is impossible. Thus lim;_, . g(x(t)) = 0, if (2.12) holds.
Suppose finally that for some v (n1 < v < 72) lim; o ¢>Vl(t) does not exist.

By rather obvious arguments using the uniform continunity of g(x(t)), we again arrive
at (2.22). This proves (1.8).

Using (1.8), we show next that

(2.23) lim St bt - 7)gx(7))dT = 0.
0

t— 0

As earlier, we write (for 0 <t < )

t t t t
(2.24) S b(t - 7)gx(7))d7 = b(t) S gx(7))dr - S b'(t - 7)[ 5 g(x(s)) ds}d’r ;
0 0 0 T
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Also,

(2.25) & { o) { etx(rar } = 00 [ ex(r)ar +bo) glx(t)
) dt 0 0 ’

Differentiating the first term on the right side of (2.25) and estimating, we obtain by

(2.1) the bound
t
4 {b*(t) jo g(xu»d»r}

by (1.3) and (1.8) the second term on the right side of (2.26) tends to 0 as t — .
Suppose now that there exist {t,} (t, — ©) and 1> 0 such that

(2.26) < M|b"(t)t] + |b'(t) gx(t)] ;

(2.27) >n.

tn
b(t,) | ex(mar
0

By (2.10), (2.26), and (2.27), there exists a sequence {T,} (T, — «) such that

(2.28) > (4, - T, <t<t).

t
b(t) | et(r)ar
0

But then, by (1.3), (1.8), (2.25), and (2.28),

t tn-Tp
tim {b(t,) { e(r)ar - bt - T) { etmnar| = =,
0 0

n — co

which is impossible because the absolute value of the last term in (2.7) is bounded,
as stated in the proof of Lemma 2. Thus

t
(2.29) lim b'(t) S g(x(7))dT = 0,

t— o0 0

and by (1.8) and (2.25),

t
(2.30) lim %{b(t)So g(x(T))aT} = 0.

t— o0

Consider now the second term on the right side of (2.24). For each € > 0 and each
T

finite T, condition (1.8) together with the fact that S b'(7) 7d7 < o, implies that
0

the inequality

t t
S b'(t - 7) S g(x(s))ds]dT
0 T

t-

(2.31) <e+

)

0

T t
b'(t - T) S g(x(s))ds |dT
T
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holds for all sufficiently large t. Also, choosing T sufficiently large but fixed, we
deduce from (1.3), (1.8), (2.1), and (2.10) that

t-T

t
& SO b'(t - T) 57 e(x(s))ds |dr

t-T t
(2.32) = b"(t - 7) g(x(s))ds |dT
) )
t-T t
+ 5 b'(t - 7)e(x(t)dT + b'(T) S ex(r)dr| < ¢,
0 t-T

if t is sufficiently large. Combining (2.24), (2.30), (2.31), (2.32), we see that if
(2.23) does not hold, then, for example,

t

(2.33) (o - Deryar 20 >0 (- Ta<t<t),
. 0

for some {t,} and {T,} (lim, . t, =lim, _, o T, = ). Integrating (1.1) over
[t, - T,, t,] and invoking (1.6), we then obtain a contradiction to (1.7). The validity
of (2.23) now follows. Conditions (1.1), (1.9), and (2.23) together imply

Iimt—aoo X'(t) = 0.

This completes the proof.

3. PROOF OF THEOREM 2

Let x(t) be a solution of (1.1) on some t-interval (t > 0). Then, by (1.3), (1.6),
(1.12), (2.2), and (2.4), there exists a constant K; such that

t t
(3.1)  G&) < G(x(O))+S () gx() dr < K, +K§ |%(7)] G(r)d,
0 0

where the nonnegative, nondecreasing function G(t) is defined as

G(t) = max (0, max G(x(7))).
<7<t

In (3.1) we have also used the obvious inequalities

max G(y) < max G(x(s)) (x(7) > x(0)),
x(0) <y <x(T) 0<s<T

max G(y) < max G(x(s)) (x(7) < x(0).
%(T)Sy<x(0) 0<s<T

The inequalities in (3.1) are obviously valid if t is such that G(x(t)) = G(t). There-
fore, observing in addition that the last integrand in (3.1) is nonnegative, we conclude
that
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t

(3.2) G(t) _<_K1+KS l#(r)| G(r)d7  (t>0).
0

Applying the Gronwall inequality to (3.2), we see, by (1.6), that
(3.3) Gx(t) < Kz (t>0)

for some constant K. By (1.11) and (3.3),

(3.4) |x(t)] < K3 (t>0)

for some constant Kj.

The bound obtained in (3.4) is seen to be an @ priori bound. Thus any local solu-
tion (by the present hypothesis and a result in [6], such a solution exists) can be con-
tinued to 0 <'t < o,

This completes the proof.
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