SOME INTRICATE NONINVERTIBLE LINKS
Wilbur Whitten

Let L be an oriented, ordered link tamely imbedded in the oriented 3-sphere
S3, and let ¢ and « be.integers such that 1 < k< .. We shall say that L is a
generalized noninvertible link with vespect to the paiv (i, k) (or a (u, «)I-link) if it
satisfies the following three conditions:

(i) L has p components;
(ii) each sublink with k or fewey components is invertible;
(iii) each sublink with move than k components is noninvertible.

L is invertible provided it is of the same (oriented) type as its inverse. The in-
verse differs from L only in the orientation of each component.

Now (2, 1)I-links were exhibited in [6], and a (1, p - 1)I-link was given in [7]
for each p > 3 (see also Figure 1). In this paper, we complete the picture by con-
structing a generalized noninvertible link for each pair (u, k) suchthat 1 <k <p
and p > 3. As an example, a (4, 2)I-link is given in Figure 4.

1. TWO PROPOSITIONS

The following two propositions clear the way for the constructive proof of our
theorem in Section 3.

PROPOSITION 1. For each integey |1 > 2, theve exists a (1., 1)I-link in S3.

Proof. Each component of each (2, 1)I-link of [6] is of knot type 5; . As an in-
duction hypothesis, suppose that L is a (g, 1)I-link with g > 2 and that each com-
ponent of L is of knot type 5) . Let Ky 4] denote an oriented knot of type 5; in
S3 - L, and suppose that for each v =1, ..., u it represents an element of
m (s3- K, ) that cannot be mapped onto its inverse by any inversion [5] of this
group. By [6], such an element of m;(S? - K;) exists. In conjunction with the induc-
tion hypothesis, this means that each sublink of L. UKy 4] of two or more compo-
nents is noninvertible. Hence, L. UKy ) isa (p +1, 1)I-link, and the conclusion
follows by induction.

PROPOSITION 2. For each integer |t > 2, theve exists a (i, u - 1)I-link in S3.

Proof. This proposition states the combined contents of [6] and [7] However, in
view of our objective in this paper of constructing generalized noninvertible links, it
is fo]nvenient to give for each p >3 a (u, p - 1)I-link different from that described
in |7].

The link L of Figure 1 is assumed to have g > 3 components, each of which is
of trivial knot type. Note that the sublink L* =K, U --- U K is a link of Brunnian
type [1], so that L* is unsplittable while each of its proper sublinks is completely
splittable. Furthermore, it is easy to see that each proper sublink of L is inver-
tible. A proof that L is noninvertible can be constructed along the lines given in [7].
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Figure 1.

Instead of giving all details, we content ourselves with an outline of the steps in-
volved.

2. NONINVERTIBILITY OF L

Let V denote a closed solid torus tamely imbedded in S3 - K. Let the core of
V be of knot type 5; , and assume that Int V contains the sublink L* =K, U --- U Ku
of L in the obvious nice way.

Step 1. The first step is the establishment of a theorem to the effect that

(2 -L* ~ m(83-ImtVv) * g (V-L%.
ﬂl(aV)

Step 2. Let T denote the unbranched covering space of S3 - L* corresponding
to 111(83 - Int V), and assume that y is an inversion of L in S3. Lift y to an auto-
morphism ¢ of 7,(Z) that takes a certain element v of 7;(Z) onto its inverse.
Under the projection isomorphism, v corresponds to an element w of 7, (S3-Int V)
represented by the (oriented) component K; considered as a loop.

Step 3. Finally, we must show that no such automorphism ¢ of (Z) exists.
This is possible because of the particularly simple form of the automorphisms of
torus knot groups [4], and because in such groups the conjugacy problem can be
solved modulo the center (see Theorem 1.4, p. 40 of [3]).

Remark. The proof of noninvertibility as outlined here represents a slight
simplification over that in [7]. The difference lies in Steps 1 and 2.
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3. (i, K)I-LINKS

THEOREM. For each paiv of integers | and k (1 < k < ), there is a geneval-
ized noninvertible link £ in S3 satisfying conditions (i), (ii), and (iii) of the Intro-
duction.

Proof. By Propositions 1 and 2, we need consider only those pairs (i, k) for
which 2 < ¥k < p - 1. We relax this, however, and assume only that 2 < k< pu. Our
proof is constructive.

Let C* = {ahz, T, @y k+1t (A =1, -, v) denote the distinct comb1nat1ons of
the integers 2, .-+, u taken k at a time. To be definite, let us say that C? is the
ath combination in the lexicographical ordering of the combmatlons For
A=1, ---, v, define

= {1’ 29 T, a}\Z - 1’ a?xZ’ Tty a?t,lf+1} .

We assign to each G2 a link in S3 as follows. Let Qy (A =1, -**, v) denote a
collection of disjoint (tame) 3-cells in S3. In fact, we shall assume that each Q) is
in the shape of a solid cylinder. For A =1, -*-, v, construct the oriented, ordered
link

A A

Ly =Kj U UKy, , 1 UKy U UK gy

in Q) as shown in Figure 2. All of L), except two small arcs of each component is

to lie in Int Q) ; the exceptional arcs are to lie on 9Q,) as indicated. Ly has the
following properties:

1. For j=1, -+, @), - 1, the sublink Ki‘ UK)z U - U K) k4] is of the same
(oriented) type as the link L of Figure 1 taken with ¥+ 1 components.

2. Any sublink of L) obtained by removal of one of the components
Kx2, =+, K\ k+1 is completely splittable.

In the final phase of the construction, the components of the L) are composed
among themselves. In order to describe how the compositions are to be formed, it
is convement to change the name of each component to a pair of numbers. In Lh,
denote K by (A, j) for j=1, - 1, and Ky by (A, ayy) for k=2, --- k+1.

Now, for @ =1, -+, p, let (hl , a), e (At(a), a) be the collection of all those
pairs whose second coordinate is @. Assume that A) <. <2Ay(y). Now set

Heoy =@y, a)# - #(At(a), a) .

(For a complete and interesting account of the composition operation #, see R. H.
Fox [2, Section 7, p. 139].) The compositions, formed inductively with respect to «,
are made by running two parallel arcs (each with proper orientation) from (A, @)
to A\yy1, @) (m=1, -« t(a) - 1), as indicated in Figure 3; then delete the appro-
priate small arc on aQAm as well as the one on aQ}‘mH . The two arcs used in

composing (A,,, @) with (A, @) are to lie in a small, closed, tubular neighbor-
hood N(m, a) of one of the arcs. The closed tubular neighborhoods N(m, «)
m=1, -, t{e) - 1; @ =1, ---, ) are to be pairwise disjoint, and each N(m, o)
meets the two 3-cells Q;\m and leﬂ and no others. Furthermore, the intersec-

tion of N(m, o) with each of Q) and Q) 1 is to be a small disk on the boundary
m m
of each cell. Finally, set & = U - U o, .
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Figure 2.
It is evident from the definition of the sets G that £ has exactly . compo-
nents, and hence, satisfies (i). To see that 2 satisfies (ii), let @) U--UHA ay

be any sublink of & with k¥ components. (Since the proberty of invertibility or non-
invertibility of a link is independent of the order of the components of the link, we
may assume that o) <--- <@, .) We have two cases: either {e;, -+, o} is one

of the v = (p. ;{1) combinations C* = {a,,, -, a;\,,{“} , or it is not.

Figure 3.
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In the first case, {a;, -, @y} = {@yz, =+, &) g+1} for some A, and the link
Hyy U Uy, is of the same (oriented) type as the sublink

Ly = Ky U UKy gy
of L, . Infact, we can arrange an isotopic deformation of S3 that takes
H @, U UH oy onto LA, as may be seen by studying Figure 2. (In this connec-

tion, note property 2 above of L, .) In the second case, A ay U- U Ky, is com-

pletely splittable, as may agam be seen by considering Figure 2. In the f1rst case,
the invertibility of &, @) U--uUaxH @, follows from the fact that L)\ is invertible

(see property 1 above of Ly ). In the second case, the invertibility is obvious. Thus,
& satisfies (ii).
To see that £ satisfies (iii), let o ay VU Ha, be any sublink of & with

k+1 components. Then {a,, -, @gy1} = {ay,, =, @) gy} for some
A=1, .-, v, so that J{az U-..-u ‘%‘)‘KH is of the same (driented) type as LA (We

assume that @; <-.-- <ay,;.) By Step 1 of Section 2, it follows that

~ 3 _ * -
o +1) 7 (S Int V) 7 (V J{az U U J{aKH
HI(BV)

T (S - Hy, U - U K, ),

az

Figure 4.
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where V is an appropriate solid torus. To prove the noninvertibility of

Ji’al U--u J(O,KH, we now follow Steps 2 and 3 of Section 2. The only point that

should be noted here is that the (oriented) component # o, , considered as a loop,

represents an element of 111(83 - Int V). This is easy to see by referring to Fig-
ure 2 and considering the construction. This completes the proof of the theorem.

In conclusion, we illustrate in Figure 4 one of the (u, k)I-links constructed in
the above theorem; it covers the simplest case: u =4, k=2,
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