SOME INTRICATE NONINVERTIBLE LINKS

Wilbur Whitten

Let L be an oriented, ordered link tamely imbedded in the oriented 3-sphere S^3 , and let μ and κ be integers such that $1 \le \kappa < \mu$. We shall say that L is a generalized noninvertible link with respect to the pair (μ, κ) (or a (μ, κ) I-link) if it satisfies the following three conditions:

- (i) L has μ components;
- (ii) each sublink with κ or fewer components is invertible;
- (iii) each sublink with more than κ components is noninvertible.

L is *invertible* provided it is of the same (oriented) type as its inverse. The *inverse* differs from L only in the orientation of each component.

Now (2, 1)I-links were exhibited in [6], and a $(\mu, \mu - 1)$ I-link was given in [7] for each $\mu \geq 3$ (see also Figure 1). In this paper, we complete the picture by constructing a generalized noninvertible link for each pair (μ, κ) such that $1 \leq \kappa < \mu$ and $\mu \geq 3$. As an example, a (4, 2)I-link is given in Figure 4.

1. TWO PROPOSITIONS

The following two propositions clear the way for the constructive proof of our theorem in Section 3.

PROPOSITION 1. For each integer $\mu \geq 2$, there exists a $(\mu, 1)$ I-link in S^3 .

Proof. Each component of each (2, 1)I-link of [6] is of knot type 5_1 . As an induction hypothesis, suppose that L is a $(\mu, 1)$ I-link with $\mu \geq 2$ and that each component of L is of knot type 5_1 . Let $K_{\mu+1}$ denote an oriented knot of type 5_1 in S^3 - L, and suppose that for each $\nu=1,\cdots,\mu$ it represents an element of π_1 (S^3 - K_{ν}) that cannot be mapped onto its inverse by any inversion [5] of this group. By [6], such an element of π_1 (S^3 - K_{ν}) exists. In conjunction with the induction hypothesis, this means that each sublink of L \cup K $_{\mu+1}$ of two or more components is noninvertible. Hence, L \cup K $_{\mu+1}$ is a $(\mu+1,1)$ I-link, and the conclusion follows by induction.

PROPOSITION 2. For each integer $\mu \geq 2$, there exists a $(\mu, \mu - 1)$ I-link in S^3 .

Proof. This proposition states the combined contents of [6] and [7]. However, in view of our objective in this paper of constructing generalized noninvertible links, it is convenient to give for each $\mu \geq 3$ a $(\mu, \mu - 1)$ I-link different from that described in [7].

The link L of Figure 1 is assumed to have $\mu \geq 3$ components, each of which is of trivial knot type. Note that the sublink $L^* = K_2 \cup \cdots \cup K_{\mu}$ is a link of Brunnian type [1], so that L^* is unsplittable while each of its proper sublinks is completely splittable. Furthermore, it is easy to see that each proper sublink of L is invertible. A proof that L is noninvertible can be constructed along the lines given in [7].

Received March 21, 1970.

Michigan Math. J. 18 (1971).

Figure 1.

Instead of giving all details, we content ourselves with an outline of the steps involved.

2. NONINVERTIBILITY OF L

Let V denote a closed solid torus tamely imbedded in S³-K¹. Let the core of V be of knot type 5_1 , and assume that Int V contains the sublink L* = K² $\cup \cdots \cup K_\mu$ of L in the obvious nice way.

Step 1. The first step is the establishment of a theorem to the effect that

$$\pi_1(S^3 - L^*) \approx \pi_1(S^3 - Int V) * \pi_1(\partial V) \pi_1(V - L^*).$$

- Step 2. Let Σ denote the unbranched covering space of S^3 L* corresponding to $\pi_1(S^3$ Int V), and assume that ψ is an inversion of L in S^3 . Lift ψ to an automorphism ϕ of $\pi_1(\Sigma)$ that takes a certain element v of $\pi_1(\Sigma)$ onto its inverse. Under the projection isomorphism, v corresponds to an element w of $\pi_1(S^3$ Int V) represented by the (oriented) component K_1 considered as a loop.
- Step 3. Finally, we must show that no such automorphism ϕ of $\pi_1(\Sigma)$ exists. This is possible because of the particularly simple form of the automorphisms of torus knot groups [4], and because in such groups the conjugacy problem can be solved modulo the center (see Theorem 1.4, p. 40 of [3]).

Remark. The proof of noninvertibility as outlined here represents a slight simplification over that in [7]. The difference lies in Steps 1 and 2.

3. (μ, κ) I-LINKS

THEOREM. For each pair of integers μ and κ (1 $\leq \kappa < \mu$), there is a generalized noninvertible link $\mathscr L$ in S^3 satisfying conditions (i), (ii), and (iii) of the Introduction.

Proof. By Propositions 1 and 2, we need consider only those pairs (μ, κ) for which $2 \le \kappa < \mu$ - 1. We relax this, however, and assume only that $2 \le \kappa < \mu$. Our proof is constructive.

Let $C^{\lambda} = \{\alpha_{\lambda 2}, \cdots, \alpha_{\lambda, \kappa+1}\}$ $(\lambda = 1, \cdots, \nu)$ denote the distinct combinations of the integers 2, \cdots , μ taken κ at a time. To be definite, let us say that C^{λ} is the λ th combination in the lexicographical ordering of the combinations. For $\lambda = 1, \cdots, \nu$, define

$$\mathfrak{C}^{\lambda} = \{1, 2, \dots, \alpha_{\lambda 2} - 1, \alpha_{\lambda 2}, \dots, \alpha_{\lambda, \kappa+1}\}$$
.

We assign to each \mathfrak{C}^{λ} a link in S^3 as follows. Let Q_{λ} ($\lambda=1,\cdots,\nu$) denote a collection of disjoint (tame) 3-cells in S^3 . In fact, we shall assume that each Q_{λ} is in the shape of a solid cylinder. For $\lambda=1,\cdots,\nu$, construct the oriented, ordered link

$$L_{\lambda} = K_1^{\lambda} \cup \cdots \cup K_{\alpha_{\lambda} 2^{-1}}^{\lambda} \cup K_{\lambda 2} \cup \cdots \cup K_{\lambda, \kappa+1}$$

in Q_{λ} as shown in Figure 2. All of L_{λ} except two small arcs of each component is to lie in Int Q_{λ} ; the exceptional arcs are to lie on ∂Q_{λ} as indicated. L_{λ} has the following properties:

- 1. For $j=1,\,\cdots,\,\alpha_{\lambda 2}\,$ 1, the sublink $K_j^\lambda\cup K_{\lambda 2}\cup\cdots\cup K_{\lambda,\,\kappa+1}$ is of the same (oriented) type as the link L of Figure 1 taken with $\kappa+1$ components.
- 2. Any sublink of L_{λ} obtained by removal of one of the components $K_{\lambda 2}$, ..., $K_{\lambda, K+1}$ is completely splittable.

In the final phase of the construction, the components of the L_{λ} are composed among themselves. In order to describe how the compositions are to be formed, it is convenient to change the name of each component to a pair of numbers. In L_{λ} , denote K_{j}^{λ} by (λ, j) for $j=1, \cdots, \alpha_{\lambda 2}$ - 1, and $K_{\lambda k}$ by $(\lambda, \alpha_{\lambda k})$ for $k=2, \cdots, \kappa+1$.

Now, for $\alpha=1, \dots, \mu$, let $(\lambda_1, \alpha), \dots, (\lambda_{t(\alpha)}, \alpha)$ be the collection of all those pairs whose second coordinate is α . Assume that $\lambda_1 < \dots < \lambda_{t(\alpha)}$. Now set

$$\mathcal{K}_{\alpha} = (\lambda_1, \, \alpha) \, \# \, \cdots \, \# \, (\lambda_{\mathsf{t}(\alpha)}, \, \alpha) \; .$$

(For a complete and interesting account of the composition operation #, see R. H. Fox [2, Section 7, p. 139].) The compositions, formed inductively with respect to α , are made by running two parallel arcs (each with proper orientation) from (λ_m, α) to (λ_{m+1}, α) (m = 1, ..., t(α) - 1), as indicated in Figure 3; then delete the appropriate small arc on ∂Q_{λ_m} as well as the one on $\partial Q_{\lambda_{m+1}}$. The two arcs used in composing (λ_m, α) with (λ_{m+1}, α) are to lie in a small, closed, tubular neighborhood N(m, α) of one of the arcs. The closed tubular neighborhoods N(m, α) (m = 1, ..., t(α) - 1; α = 1, ..., μ) are to be pairwise disjoint, and each N(m, α) meets the two 3-cells Q_{λ_m} and $Q_{\lambda_{m+1}}$ and no others. Furthermore, the intersection of N(m, α) with each of Q_{λ_m} and $Q_{\lambda_{m+1}}$ is to be a small disk on the boundary of each cell. Finally, set $\mathscr{L} = \mathscr{K}_1 \cup \cdots \cup \mathscr{K}_{\mu}$.

Figure 2.

It is evident from the definition of the sets \mathfrak{C}^{λ} that \mathscr{L} has exactly μ components, and hence, satisfies (i). To see that \mathscr{L} satisfies (ii), let $\mathscr{K}_{\alpha_1} \cup \cdots \cup \mathscr{K}_{\alpha_K}$ be any sublink of \mathscr{L} with κ components. (Since the property of invertibility or non-invertibility of a link is independent of the order of the components of the link, we may assume that $\alpha_1 < \cdots < \alpha_K$.) We have two cases: either $\{\alpha_1, \cdots, \alpha_K\}$ is one of the $\nu = \binom{\mu-1}{\kappa}$ combinations $\mathbf{C}^{\lambda} = \{\alpha_{\lambda 2}, \cdots, \alpha_{\lambda, K+1}\}$, or it is not.

Figure 3.

In the first case, $\{\alpha_1, \cdots, \alpha_K\} = \{\alpha_{\lambda 2}, \cdots, \alpha_{\lambda, K+1}\}$ for some λ , and the link $\mathcal{K}_{\alpha_1} \cup \cdots \cup \mathcal{K}_{\alpha_K}$ is of the same (oriented) type as the sublink

$$L_{\lambda}^* = K_{\lambda 2} \cup \cdots \cup K_{\lambda, \kappa+1}$$

of L_{λ} . In fact, we can arrange an isotopic deformation of S^3 that takes $\mathscr{K}_{\alpha_1} \cup \cdots \cup \mathscr{K}_{\alpha_K}$ onto L_{λ}^* , as may be seen by studying Figure 2. (In this connection, note property 2 above of L_{λ} .) In the second case, $\mathscr{K}_{\alpha_1} \cup \cdots \cup \mathscr{K}_{\alpha_K}$ is completely splittable, as may again be seen by considering Figure 2. In the first case, the invertibility of $\mathscr{K}_{\alpha_1} \cup \cdots \cup \mathscr{K}_{\alpha_K}$ follows from the fact that L_{λ}^* is invertible (see property 1 above of L_{λ}). In the second case, the invertibility is obvious. Thus, \mathscr{L} satisfies (ii).

To see that $\mathscr L$ satisfies (iii), let $\mathscr K_{\alpha_1} \cup \cdots \cup \mathscr K_{\alpha_{\kappa+1}}$ be any sublink of $\mathscr L$ with $\kappa+1$ components. Then $\{\alpha_2\,,\,\cdots,\,\alpha_{\kappa+1}\}=\{\alpha_{\lambda\,2},\,\cdots,\,\alpha_{\lambda,\,\kappa+1}\}$ for some $\lambda=1,\,\cdots,\,\nu$, so that $\mathscr K_{\alpha_2} \cup \cdots \cup \mathscr K_{\alpha_{\kappa+1}}$ is of the same (oriented) type as L_λ^* . (We assume that $\alpha_1<\cdots<\alpha_{\kappa+1}$.) By Step 1 of Section 2, it follows that

$$\pi_1(\mathbb{S}^3 - \mathcal{K}_{\alpha_2} \cup \cdots \cup \mathcal{K}_{\alpha_{\kappa+1}}) \approx \pi_1(\mathbb{S}^3 - \operatorname{Int} \mathbb{V}) * \pi_1(\mathbb{V} - \mathcal{K}_{\alpha_2} \cup \cdots \cup \mathcal{K}_{\alpha_{\kappa+1}}),$$

Figure 4.

where V is an appropriate solid torus. To prove the noninvertibility of $\mathscr{K}_{\alpha_1} \cup \cdots \cup \mathscr{K}_{\alpha_{\kappa+1}}$, we now follow Steps 2 and 3 of Section 2. The only point that should be noted here is that the (oriented) component \mathscr{K}_{α_1} , considered as a loop, represents an element of $\pi_1(S^3$ - Int V). This is easy to see by referring to Figure 2 and considering the construction. This completes the proof of the theorem.

In conclusion, we illustrate in Figure 4 one of the (μ, κ) I-links constructed in the above theorem; it covers the simplest case: $\mu = 4$, $\kappa = 2$.

REFERENCES

- 1. H. Debrunner, Links of Brunnian type. Duke Math. J. 28 (1961), 17-23.
- 2. R. H. Fox, A quick trip through knot theory. Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), pp. 120-167. Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 3. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations. Pure and Applied Mathematics, Vol. XIII. Interscience Publishers, New York, 1966.
- 4. O. Schreier, $\ddot{U}ber\ die\ Gruppen\ A^a\ B^b=1$. Abh. Math. Sem. Univ. Hamburg 3 (1924), 167-169.
- 5. H. F. Trotter, Non-invertible knots exist. Topology 2 (1963), 275-280.
- 6. W. C. Whitten, Jr., A pair of non-invertible links. Duke Math. J. 36 (1969), 695-698.
- 7. ——, On noninvertible links with invertible proper sublinks. Proc. Amer. Math. Soc. 26 (1970), 341-346.

University of Southwestern Louisiana Lafayette, Louisiana 70501