AN ISOMORPHIC CHARACTERIZATION OF
L, AND co-SPACES. II.

L. Tzafriri

In a previous paper of the same title [14], we have proved that a Banach space X
is isomorphic either to cq or to an L-space (1 < p <) over a finite measure
space if and only if it is a cyclic space X =clm {Px0| Pe #B} (xg € X) relative to
a 0-complete Boolean algebra % of projections that has a two-sided estimate. The
latter condition is to be interpreted in the sense that there exist a constant K and a
function ¥ (defined in the space of sequences of complex numbers) such that the in-
equalities

Ky Ieaxl D < 2]l < xw({|Pax|D

hold for each x € X and for each sequence of disjoint projections P, € & whose
sum is the identity I. ’

Other characterizations in terms of Boolean algebras of projections with two-
sided estimates have been obtained in [8] and [10] for the '#-spaces introduced by
J. Lindenstrauss and A. Petczyfiski in [7].

In the present paper we weaken this condition: we show that instead of the two-
sided estimate for % we need merely the existence of a similar function ¢, with

values in [0 °°] such that a series Z) =1 Pnxn is weakly convergent (not neces-
sarily to a vector in X) if and only if qs( { [I p xn” }) < = for each sequence

{x,} (x, € X) and each sequence of disjoint projections P, € %. We shall use this
result to prove our main theorem, which is another isomorphic characterization of
co and Ly, this time involving the existence of positive projections on every sublat-
ticeof a 0 Dedekmd complete (conditionally o-complete) Banach lattice. This theo-
rem represents an isomorphic version of a recent result of T. Ando [1].

1. CYCLIC SPACES ISOMORPHIC TO L, AND cgo

For the notions and the terminology used in this paper, we refer the reader to
[14] (see also [2], [3], and [7]).

We begin by showing that a cyclic space having enough subspaces isomorphic to
!lp (1 < p <) is in fact isomorphic itself to an Lp— space for the same p.

PROPOSITION 1. A Banach space X is isomorphic to an Ly-space (1<p<»)
over a finite measure space if and only if it is a cyclic space

X = M(xy) = clm {Ex0| E € €}

relative to a o-complete Boolean algebra & of projections such that for each x € X
and each infinite sequence of disjoint projections E, € & (Enx #0; n=1, 2, -*-) the
basis {Epx/ " Ean } is equivalent to the natural baszs of Lp
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Proof. If T is an isomorphism from LP(Q, 27, p,) 1<p<eo, u(Q) < ») on-
to X, we can set

E(o)x = 'rxo('r‘lx) (xe X, 0 € Z) .

Obviously, the projections E(o) ( o € E) form a o-complete Boolean algebra ©
of projections such that the basis {E(o,)x/[|E(c,)x||} is equivalent to the natural
basis of £, for each x € X and each infinite sequence of disjoint projections

E(o,) € € with E(c)x#0 (n=1, 2, ---). This proves the necessity. In order to
prove the suffi¢iency, we remark first that € can be considered the range of a spec-

tral measure E(o) defined on the Borel sets o € 27 ofa compact, topological
Hausdorff space 9 (see W. G. Bade [3]). We write

v, (0) = sup {E “E(Gk)x"p} (66 2 x€ X),
k

where the supremum is taken over all finite partitions {Gk} of 6 (if no finite upper
bound exists, we set v_(6)=). For 5,0 € 27 and 6 N 0 =, we have the inequal-
ities

1/p
v1/P(5uU o) = U sup(3 { 2 "E(ﬂi)XHP}
JNi=0yc i

1/
< sup { Z (& o)l + [E@sn P} < v1/P0) + v 1/20)

Suppose there exists a sequence {x,} (x, € X, |xy]| =1) such that g (2)>n
(n=1,2, ---). Then there exist an index n; and a partition o(s” (s=1,2, -, 4qy)
of @ for which

q1
(1) P P
Z 5o, P > 42

Then, since

a
v1/M@) < 32_31 v1/p(all)),

we can assume without loss of generality that lim,,_ . vxn(o ‘(111)) =, Let n; > m

be an index such that
(1) 2p ( (1) P
Y, (Oql) > 1+4%P+ ||E °q, )anu .

Then, in the second step, we can construct a partition 0(82) (s=1,2, -, q,) of 0((111)
such that
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(2) P 2p (1) P
El IE(o@) =, I7 > 422+ B (of))x, 7.

Repeating again the same arguments, we can assume that lim,_,, vy (0 élzz) = o0,
n

and we can choose an integer n3 > ny for which

uxn3(of]22’) > 1+43P+ ||E (ogzzi %n, | 7

and a partition og) (s=1,2, -, qs) of 0((?2) such that

a3

p P
Z e (0f) %, |” 2 €7 + 1B (o)) x|
s=1

Continuing thus, we obtain a sequence of disjoint sets ogr’ 1<Ls<L q, - 1;
r=1, 2, ---) with the property

q.-1
P - p p
o G EN TN T ENI S LICH BN
" Hence
R 9r-1
P .
Z I e (of) x 17 > 4% - [ (o) xag]®
r=1 s=

>4RP _MP (R=1,2, ),

where M is a bound on the norms of the projections E € &. Set

o q.-1
x= 20 22 E(ogﬂ)xn /2F
r=1 s=1 *

qr-1 :
(the series converges, since IIESZI E (cr(sr)) X, [ <M (x=1,2, ). Then
=

R 9.-1 . R 9,.-1
Z L (o8 x[? 2 2 2 |E GHEN
r=1 s=1 r=1 s=1

4RP _ MP

ko (B=L 2 ),

and this contradicts the fact that the basis {E(oc{")x/||E(c{"™)x|} 1 <s<q, -1
r=1, 2, ---) is equivalent to the natural basis of £,. In conclusion, we have just

proved the existence of a constant A such that v}jI)J(Q) < Alx| (x € X), in other

words, such that

1/
(Z I=@axl) ™ < alx

23
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for each x € X and each sequence of disjoint projections E(7n;) € €.

If p =1, then, in view of a result of C. A. McCarthy and L. Tzafriri [12, Theo-
rem 10], the space X is isomorphic to an L;-space over a finite measure space,
since the previous inequality shows that X is an & -space in the sense of [7].

When 1 < p < «, the cyclic space X is reflexive (see [15]) and therefore, for
each x* € X*, there exists an x € X such that | x| =1 and x*x = ||x*|. Conse-
quently, for each partition {6,} of @ we have the inequalities

Ix*| = x*x = 2 E*6)x*E(5,)x < 21 | E*(6 )x*| | E(6 x|
n n
1/p 1/q 1/q
< (ZUEExlP) 7 (T 1= ex ) < A (T [EHE0xx]?)
n n n
where p-1 +q-1 = 1. Thus, for each x* € X* and each partition {5,} of ©,

(2 Ieraxr|e) ' > ot ]

E*(s )x*
By applying this inequality to a vector En a, m, we obtain the inequality
n)X
1/q E*(6,)x*
q - X
(Zlan®) > A |Za,— o
n n " E*(6n)x ”

in other words, (a,) € 24 implies the convergence in X* of the series

[~

. E*(6,)x*
n=1 7 ”E*(Gn)x*" .

E*(5,)x*

n=l bnm converges in X*, and choose

Assume now that a series Z)
x, = E(6,)x, € X such that

B 60 xn = [E* et (sl = 15 n=1,2, ).

In view of our hypotheses, a series En 1 CnXn converges if and only if (c,) € ﬂ
Thus the relation

oC

E*(6,)x* <
bp —— Z) CmXm = 27 bpe
n=1 E "E*(5 )X*" m=1 mem n=1 neR

shows that Z)n 1 bnc, converges for every sequence (c,) € 2 Hence (b,) € !Zq,
and the basis {E*(6,)x*/||E*(6,)x*||} is equivalent to the natural basis of ¢, for
each x* € X* and each partition {6,} of Q.
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Because of reflexivity, X* itself is a cyclic space (see W. G. Bade [3, Theorem
8.4], and by applying the conclusions of the first part of the proof we obtain the exist-
ence of a constant B such that

1/
(ZIE 1) < Blx]
J

for each x* € X* and each sequence of disjoint pr0]ect10ns E*(nJ) e &* (the adjoint
Boolean algebra of projections) whose sum is I*.

It follows that X* is a cyclic space relative to a Boolean algebra of projections
having a two-sided estimate; consequently, X* is isomorphic to L ,and X is iso-
morphic to Ly over a finite measure space (see [14, Theorem 4])

PROPOSITION 2. A Banrach space X is isomorphic to cq if and only if it is a
cyclic space X = M(xg) = clm {Fx0] Fed% } relative to a 0-complete Boolean
algebra #. of projections such that for each x € X and each infinite sequence of dis-
joint-projections F, e F (F,x#0; n=1, 2, ---) the basis {F x/"F x“} is equi-
valent to the mztm’al basis of cg.

Proof. First notice that X* contains no subspace isomorphic to co (see C.
Bessaga and A. Pelczyfiski [4, Theorem 4] and the proof of Lemma 4 of [15]). Hence,
in view of [15, Lemma 4], # * = {F*| Fe #} is a 0-complete Boolean algebra of
projections on X*, and X* is a cyclic space relative to #* (see W. G. Bade [3,
Theorem 8.4]).

o]
Suppose 2in-1 an E¥(6)x*/ || E*(6,)x* | converges in X*, and choose
xp = E(6)xp € X ([|x,]] =1) so that

E*(5_)x*
E*(6,)x*x, > Mz“ll (n=1,2, ).
. . E (Gn)x
In view of [15, Lemma 1), the series E 1 lag | —2— TE o] is also convergent,
and therefore
o> B fanl B B o lx, 2 L 2 fal o,
"E*(6 )X*" m=1 m m = 2 n=1 n n

[~ ]
for each series Z)m=1 Idml X, belonging to X. Since E =1 |d Ix
if and only if {d,,} € ¢q, we conclude that {a,} € £,.

m converges

We have now shown that X* satisfies the conditions of Proposition 1 for p =1
and is thus isomorphic to an Lj-space over a finite measure space. Consequently,
X is a cyclic subspace of X** and the latter is an 2.,-space. We can now complete
the proof by using a result of C A. McCarthy and L. Tzafriri [12 Theorem 16] (in-
stead of this theorem, one can also use A. Pelczyfiski [13 Theorem 4.1]).

Remark. The equivalence between two bases {un} and {vn} generates an iso-
morphism between clm {u,} and clm {v,}. It seems that the rich structure of a
cyclic space enables us to skip conditions of uniform boundedness for the norms of
the isomorphisms between clm {E(o,)x/||E(c)x|| } and ¢ p» respectively cp, i
Propositions 1 and 2.
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Definition 3. A cyclic space X = M(xg) (xg € X) relative to a o-complete
Boolean algebra of projections # is weakly homogeneous if there exists a function
¢, with values in [0, «] (defined in the space of sequences of complex numbers) such
that the series Eo::: 1 PLx, is weakly convergent (not necessarily to a vector in X)
if and only if the inequality ¢({]P,xn[}) <« holds for each x,, € X and for each
sequence of disjoint projections P, € &.

Remark. If # has a two-sided estimate with a constant K and function ¢ (see

[14, Definition 2] or the introduction to this paper), then X is weakly homogeneous
with respect to the function

Hay, ap, v, a,, 7)) =supYla;, a,, -+, ay, 0,0, ).
N

This follows from the fact that the series E:=1 P_x  converges weakly if and only
N

if supy || 27,-; Pnxpl| < (the problem is discussed in [15]), that is, if and only if

supy W([| Pyx |, -, | Py, 0, 0, ) <o

However, the function ¢ involved in the definition of weak homogeneity does not
generally lead to a two-sided estimate. For instance, in LI(O, 1) we can set

0 if 21, |ag| <,
#{a,}) =
o if 20, [ag] = .

THEOREM 4. A Banach space X is isomorphic to cg or L (1<p< =) on
some finite measure space if and only if it is a weakly homogeneous cyclic space
X = M(xq) (xg € X) velative to a 0-complete Boolean algebra B of projections.

Proof. The necessity follows from [14, Theorem 4] and the preceding remark.
In order to prove the sufficiency, let us first assume that X contains no subspace

isomorphic to c¢g. Then, by [15, Lemmas 1 and 3], a series 211 Pn Xn/ || Pan"
converges st;‘ongly provided it is weakly convergent. Consider now a basis of the
type {P,x/||P, x|} (x € X), and write

Pk+1

P,
Wk = Z) An—nx (k = 1, 2, -es) ,
n=ptl || Pox|

where the A, are scalars such that [|wy] =1 k=1, 2, ...) and {px} is anin-
creasing sequence of positive integers. Notice that a'series Ek a; Wy converges

(strongly) if and only if ¢({a; }) < =, that is, if and only if 27 a,Pox/||Pnax| does
so. In the terminology of [4], this means that the basis {P, xn" P,x| } is perfectly
homogeneous, hence, by M. Zippin [18], the basis is equivalent to the natural basis of
¢, for some p (1 < p < ). Since it is obvious (because all the bases having this
form are equivalent to the natural basis of £, for the same p (1 <p <«)), we can
complete the proof in this case by using Proposition 1. :

I X contams subspaces isomorphic to cg, then there exist an x € X and a par-
tition {o,} (n=1, 2, ---) such that the basis {P(0,)x/ || P(c )x||} is equivalent to

the natural basis of ¢cg and the subspace clm {P(a )xl n=1, 2, } is
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complemented in X (see for example the remark at the end of [15]). Let Z be the
closure of clm {P(0)x/||P(o )x|| } in X** in the o (X**, X*)-topology; one can
easily see that Z is isomorphic to ¢, since it is in fact the set of all weakly con-

o0
vergent series of the type 24,1 anP(o)x/ || P(o )x] .

In view of our hypotheses, a series having the form 27, a, P(6,)y/ ]| P(6,)y]
(y € X) converges in X** in the o(X** X*)-topology if and only if

27 a, P(o,)x/[| Ploy)x]|

n

does so. The positivity of the mapping

P(U n)X E P( 6n)y

720 Ay T — 2Ja ———r

n o IPex] L PGyl
implies it is an isomorphism from the closure in X** of clm {P( Gn)y| n=1,2, -}
in the o(X**, X*)-topology onto a space isomorphic to ¢, . We can now complete
the proof by using [12, Theorem 16 and Proposition 2].

2. APPLICATIONS TO BANACH LATTICES

The terminology used in this section will be that of W. A. J. Luxemburg and
A. C. Zaanen [11]. Accordingly, a normed Riesz space is a lattice Lp endowed with
a norm p satisfying the condition p(u) < p(v) if |u| < |v| . The space Ly is called

o -Dedekind-complete if every order-bounded sequence has a least upper bound.
For the convenience of the reader, we reproduce here a result proved in [16].

LEMMA 5 [16, Lemma 15]. Let Ly be a normed Riesz space that is 0-
Dedekind-complete and satisfies the condition

xnl 0 implies lim p(xn) = 0 for each decreasing sequence
(* n — oo

{x,} (x,eLpn=1,2..).

Then there exists a family € of projections of Ly such that & restricted to the
invariant subspace M(x) = clm {Ex| E € €} (x € Lp) is a 0-complete Boolean alge-
bra of projections and Lp can be decomposed into a direct sum (not necessarily
countable) of cyclic spaces M(xy) =clm {EXaI Ee€ €} (xg € Lp), with the property
Xg NXg =0 for a #8.

Moreover, if W is a separable subspace of Ly, then X can be chosen so that
WC M(xp).

The following result is a version of Proposition 1 for nonseparable spaces.

PROPOSITION 6. A o-Dedekind-complete, normed Riesz space Lp is iso-
movphic to an Lp-space for some p (1 < p <) provided for each sequence of dis-
joint elements x, € Lp (x,#0; n=1,2, ..-) the basis {x,/p(x,)} is equivalent to
the natural basis of !Zp.
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Proof. First notice that Lpﬂmust satisfy condition (*) of Lemma 5 (see [16,
Theorem 20 and its proof]). Therefore, in view of Proposition 1, the cyclic sub-
spaces M (xy) defined by Lemma 5 for L, are respectively isomorphic to Lp-

spaces L(pa); and, moreover, there exist constants A, and B, such that

/
8ap) < (T pPEL0) T < Bapl)  (xe Mxg)),

n

for each sequence of disjoint projections E, € € (n=1, 2, ---) satisfying the condi-

tion (En E,/x=Xx (¢ is defined by Lemma 5). By the last part of Lemma 5, one
can choose constants A and B, independent of a, such that

a0 < (T po(E,0) P < Bo  (xe L)

for each sequence of disjoint projections E, € & for which ( En En) x = Xx. Thus
L, is isomorphic to the direct sum in the £,-sense of the spaces Lp(a), that is, L‘p
itself is isomorphic to an Lp- space.

We can prove a version of Proposition 2 for nonseparable spaces in a similar
manner, provided we assume L, satisfies condition (*). Without this condition, the
following result is not correct.

PROPOSITION 7. A o-Dedekind-complete, normed Riesz space Lp satisfying
condition (¥) (of Lemma 5) is isomovphic to co(T") (defined in [14)) for some abstract
set T provided for each sequence of disjoint elements xn€ Lp (xn#0; n=1, 2, ---)
the basis {x,/p(x,)} is equivalent to the natural basis of cg .

The spaces cg(I") and Lp(ﬂ, 'E, ,u.) (1 < p < ») are o-Dedekind-complete,
normed Riesz spaces with remarkable characteristic properties. For instance, it is
well known that they are the only Banach lattices (up to an isometry) in which the
condition

] \x, =y, Ay, =0  (o(x;) = plyy), i=1,2)

implies that p(x; +x,) = p(y; +y,) (see F. Bohnenblust [6]). The isomorphic ver-
sion of this result is stated in Theorem 4 (see also [14, Theorem 4]) for cyclic
spaces, and it can easily be restated in normed Riesz spaces.

Using Bohnenblust’s theorem, T. Ando [1] has recently shown that co(T") and Lp
(1 < p < ) are the only Banach lattices (again up to an isometry) in which every
sublattice is the range of a positive contractive projection. In the remainder of this
paper, we shall present an isomorphic version of Ando’s theorem by dropping the
condition imposed on the norms of the projections. '

THEOREM 8. A o-Dedekind-complete, normed Riesz space Lp is isomorphic
either to co(T) for some abstract set T, or to L, (1 < p <®) on some measure
space, provided every closed sublattice of Lp is the vange of a positive projection.

Proof. Let {u,} and {v,} be two sequences of positive elements in Lp for
which the conditions ‘

(a) pluy) = plvy) = 1 m=1,2, ),
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() upy Aupyy = Vg Avy, =0 for n#m,

() uyy Av, =0 for all n and m
hold.

The first step will be to prove that {u,} and {v,} are equivalent unconditional
bases. Evidently, it suffices to show that a series E:=1 @,u, is convergent if
E:z 1 @, Vv, converges. We shall do this by considering two different cases.

Casel. The subspace clm {/un} is weakly sequentially complete. Suppose there

[
exists a convergent series E:=1 BnVn such that Z)n:l Bnu, diverges. By the
properties of the norm, we can assume without loss of generality that 8, > 0
(n=1, 2, ---). I the series E:=1 TIn Bnn converges for each sequence
{n,} € ¢y, then by C. Bessaga and A. Pelczyfiski [4, Lemma 2 and Theorem 5] the

0o
series Enzl Bnyu, is weakly unconditionally convergent and crllm {un} contains a

subspace isomorphic to cg; this contradicts our assumption of weak completeness.

Consequently, we can assume the existence of a sequence {nn } € ¢ such that
o0

En.—_ 1 Mn Bnun is still divergent. Consider now the positive projection P whose
range is the closed sublattice generated by |nn| u,+v,(n=12 ---). Since P is
positive and

o(| | up+vy) > plv) =1 (@=1,2 ),

there exist numbers ¢, and d, (0 <c, < ||P|| and 0 <d, < ”Pll for n=1, 2, --*)
such that :

Pu, = cn(|nn| u,+v,) and Pv, = dn(l'nnl u,+vy,) n=1,2, ).

Obviously, the condition cj, |77n| +d, =1 (n=1, 2, -**) implies that lim, _,  d, = 1.
Hence, the convergence of the series ‘E:;l Bn Vo implies the convergence of
©0

o0
En: 1 |nn| Bnun (apply again P on En= 1 Bnvn and take into account that
inf d,, > 0). This contradiction proves our assertion in the first case.
n

Case II. The subspace clm {un} is not weakly sequentially complete. Since
n

{un} is an unconditional basic sequence, some sequence of positive disjoint ele-
ments w; (w; € clm {u,}, j=1, 2, ---) is equivalent to the natural basis of ¢, (see
n

R. C. James [6, Lemma 1 and the proof thereafter]). We shall prove that {vn} is

[+e] .
equivalent to the usual basis of cg . Indeed, let En=1 K, v be a divergent series for
which lim, o k, =0, let P be the positive projection whose range is the closed
sublattice generated by |k,|!/2vy +w, (n=1, 2, ---). Repeating arguments already

o0
used in this proof, we can show that the convergence of the series 2s,-1 |y, |1/2 wy

=]
(recall that {|Kn| 1/2} € cg) implies the convergence of En=1 Ixn| v, , which is
contradictory. Now, replacing {v,} by {u,}, we can prove that {u,} has the

same property; hence {u,} and {v,} are both equivalent to the usual basis of c .
This proves completely the Case II.



30

L. TZAFRIRI

In order to finish the proof of the theorem, we consider a sequence {x,} of

positive normalized disjoint elements. Set

Pk+1

Yk = E X2n (k=1, 2: '”)’
n=pp+1

where {pk} is an increasing sequence of integers. By the previous part of the
proof used for {xzﬁ 1} and {yx/pyi) } (respectively, {x51_;} and {x,.}), we

conclude that {x,;

and {yy/p(yw) } are equivalent bases for any choice of the

sequence {py}. Thus, by a result of M. Zippin [18] (in the formulation found in J.

Lindenstrauss and M. Zippm [10, Lemma 2]), it follows that {x,_ } is equivalent

to the usual basis of ¢y or ¢  for some p (1 < p < ). Since any two sequences of
disjoint elements of Lp can always be imbedded in a sublattice generated by a third
sequence of positive disjoint elements, we can apply either Proposition 6 or 7, thus
proving the theorem completely. In the case when Proposition 7 is used, one should
notice that condition (*) of Lemma 5 is satisfied (see T. Ando [1, Theorem 1] or [16,
Theorem 20]).

Remark. In [17], we have used arguments similar to those in the proof of the

preceding theorem to obtain an isomorphic characterization of L,-spaces in terms
of conditional expectations.

10.

11.
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