AN ISOMORPHIC CHARACTERIZATION OF L_p AND c_0 -SPACES. II.

L. Tzafriri

In a previous paper of the same title [14], we have proved that a Banach space X is isomorphic either to c_0 or to an L_p -space $(1 \le p < \infty)$ over a finite measure space if and only if it is a cyclic space $X = \text{clm}\left\{Px_0 \middle| P \in \mathcal{B}\right\}$ $(x_0 \in X)$ relative to a σ -complete Boolean algebra \mathcal{B} of projections that has a *two-sided estimate*. The latter condition is to be interpreted in the sense that there exist a constant K and a function ψ (defined in the space of sequences of complex numbers) such that the inequalities

$$K^{-1}\psi(\{\|P_nx\|\}) \le \|x\| \le K\psi(\{\|P_nx\|\})$$

hold for each $x \in X$ and for each sequence of disjoint projections $P_n \in \mathcal{B}$ whose sum is the identity I.

Other characterizations in terms of Boolean algebras of projections with two-sided estimates have been obtained in [8] and [10] for the \mathscr{L}_p -spaces introduced by J. Lindenstrauss and A. Pełczyński in [7].

In the present paper we weaken this condition: we show that instead of the two-sided estimate for $\mathcal B$ we need merely the existence of a similar function ϕ , with values in $[0,\infty]$, such that a series $\sum_{n=1}^\infty P_n x_n$ is weakly convergent (not necessarily to a vector in X) if and only if $\phi(\{\|P_nx_n\|\})<\infty$ for each sequence $\{x_n\}$ $(x_n\in X)$ and each sequence of disjoint projections $P_n\in \mathcal B$. We shall use this result to prove our main theorem, which is another isomorphic characterization of c_0 and L_p , this time involving the existence of positive projections on every sublattice of a σ -Dedekind complete (conditionally σ -complete) Banach lattice. This theorem represents an isomorphic version of a recent result of T. Ando [1].

1. CYCLIC SPACES ISOMORPHIC TO $\mathbf{L}_{\mathbf{p}}$ AND $\mathbf{c}_{\mathbf{0}}$

For the notions and the terminology used in this paper, we refer the reader to [14] (see also [2], [3], and [7]).

We begin by showing that a cyclic space having enough subspaces isomorphic to ℓ_p (1 $\leq p < \infty$) is in fact isomorphic itself to an L_p -space for the same p.

PROPOSITION 1. A Banach space X is isomorphic to an $L_p\text{-space}$ (1 $\leq p < \infty$) over a finite measure space if and only if it is a cyclic space

$$X = \mathfrak{M}(x_0) = \operatorname{clm} \{Ex_0 \mid E \in \mathcal{E}\}\$$

relative to a $\sigma\text{-complete Boolean algebra } E$ of projections such that for each $x\in X$ and each infinite sequence of disjoint projections $E_n\in E$ $(E_nx\neq 0;\ n=1,\ 2,\ \cdots)$ the basis $\left\{E_nx/\left\|E_nx\right\|\right\}$ is equivalent to the natural basis of ℓ_p .

Received November 12, 1969.

Michigan Math. J. 18 (1971).

Proof. If τ is an isomorphism from $L_p(\Omega, \Sigma, \mu)$ $(1 \le p < \infty, \mu(\Omega) < \infty)$ onto X, we can set

$$E(\sigma)x = \tau \chi_{\sigma}(\tau^{-1}x) \quad (x \in X, \sigma \in \Sigma).$$

Obviously, the projections $E(\sigma)$ ($\sigma \in \Sigma$) form a σ -complete Boolean algebra \mathcal{E} of projections such that the basis $\{E(\sigma_n)x/\|E(\sigma_n)x\|\}$ is equivalent to the natural basis of ℓ_p for each $x \in X$ and each infinite sequence of disjoint projections $E(\sigma_n) \in \mathcal{E}$ with $E(\sigma_n)x \neq 0$ ($n = 1, 2, \cdots$). This proves the necessity. In order to prove the sufficiency, we remark first that \mathcal{E} can be considered the range of a spectral measure $E(\sigma)$ defined on the Borel sets $\sigma \in \Sigma$ of a compact, topological Hausdorff space Ω (see W. G. Bade [3]). We write

$$\nu_{\mathbf{x}}(\delta) = \sup \left\{ \sum_{\mathbf{k}} \|\mathbf{E}(\delta_{\mathbf{k}})\mathbf{x}\|^{\mathbf{p}} \right\} \quad \left(\delta \in \Sigma; \ \mathbf{x} \in \mathbf{X} \right),$$

where the supremum is taken over all finite partitions $\{\delta_k\}$ of δ (if no finite upper bound exists, we set $\nu_x(\delta) = \infty$). For δ , $\sigma \in \Sigma$ and $\delta \cap \sigma = \emptyset$, we have the inequalities

$$\nu_{\mathbf{x}}^{1/p}(\delta \cup \sigma) = \sup_{\mathbf{i}} \eta_{\mathbf{i}} = \delta \cup \sigma \left\{ \sum_{\mathbf{i}} \|\mathbf{E}(\eta_{\mathbf{i}})\mathbf{x}\|^{p} \right\}^{1/p}$$

$$\leq \sup \left\{ \sum_{i} \left(\left\| \mathbf{E}(\eta_{i} \cap \delta) \mathbf{x} \right\| + \left\| \mathbf{E}(\eta_{i} \cap \sigma) \mathbf{x} \right\| \right)^{p} \right\}^{1/p} \leq \nu_{\mathbf{x}}^{1/p}(\delta) + \nu_{\mathbf{x}}^{1/p}(\sigma) .$$

Suppose there exists a sequence $\{x_n\}$ $(x_n \in X, \|x_n\| = 1)$ such that $\nu_{x_n}(\Omega) \ge n$ $(n = 1, 2, \dots)$. Then there exist an index n_1 and a partition $\sigma_s^{(1)}$ $(s = 1, 2, \dots, q_1)$ of Ω for which

$$\sum_{s=1}^{q_1} \| E(\sigma_s^{(1)}) x_{n_1} \|^p \ge 4^p.$$

Then, since

$$u_{\mathbf{x_n}}^{1/p}(\Omega) \leq \sum_{s=1}^{q_1} \nu_{\mathbf{x_n}}^{1/p}(\sigma_s^{(1)}),$$

we can assume without loss of generality that $\lim_{n\to\infty} \nu_{x_n}(\sigma_{q_1}^{(1)}) = \infty$. Let $n_2 > n_1$ be an index such that

$$\nu_{\mathbf{x}_{n_2}}\left(\sigma_{q_1}^{(1)}\right) \, \geq \, 1 + 4^{2p} + \big\| \mathbf{E}\left(\sigma_{q_1}^{(1)}\right) \mathbf{x}_{n_1} \!\big\|^{\, p} \, .$$

Then, in the second step, we can construct a partition $\sigma_s^{(2)}$ (s = 1, 2, ..., q₂) of $\sigma_{q_1}^{(1)}$ such that

$$\sum_{s=1}^{q_2} \left\| \mathbf{E} \left(\sigma_s^{(2)} \right) \mathbf{x}_{n_2} \right\|^p \ge 4^{2p} + \left\| \mathbf{E} \left(\sigma_{q_1}^{(1)} \right) \mathbf{x}_{n_1} \right\|^p.$$

Repeating again the same arguments, we can assume that $\lim_{n\to\infty} \nu_{x_n}(\sigma_{q_2}^{(2)}) = \infty$, and we can choose an integer $n_3 > n_2$ for which

$$u_{\mathbf{x}_{n_{3}}}\left(\sigma_{\mathbf{q}_{2}}^{(2)}\right) \geq 1 + 4^{3p} + \|\mathbf{E}\left(\sigma_{\mathbf{q}_{2}}^{(2)}\right)\mathbf{x}_{n_{2}}\|^{p}$$

and a partition $\sigma_s^{(3)}$ (s = 1, 2, ..., q_3) of $\sigma_{q_2}^{(2)}$ such that

$$\sum_{s=1}^{q_3} \| \mathbf{E} \left(\sigma_s^{(3)} \right) \mathbf{x}_{n_3} \|^p \ge 4^{3p} + \| \mathbf{E} \left(\sigma_{q_2}^{(2)} \right) \mathbf{x}_{n_2} \|^p.$$

Continuing thus, we obtain a sequence of disjoint sets $\sigma_s^{(r)}$ ($1 \le s \le q_r - 1$; $r = 1, 2, \cdots$) with the property

$$\sum_{s=1}^{q_{r}-1} \left\| \mathbf{E} \left(\sigma_{s}^{(r)} \right) \mathbf{x}_{n_{r}} \right\|^{p} \geq 4^{rp} + \left\| \mathbf{E} \left(\sigma_{q_{r}-1}^{(r-1)} \right) \mathbf{x}_{n_{r}-1} \right\|^{p} - \left\| \mathbf{E} \left(\sigma_{q_{r}}^{(r)} \right) \mathbf{x}_{n_{r}} \right\|^{p}.$$

Hence

$$\sum_{\mathbf{r}=1}^{R} \sum_{\mathbf{s}=1}^{\mathbf{q_r}-1} \|\mathbf{E}\left(\sigma_{\mathbf{s}}^{(\mathbf{r})}\right) \mathbf{x}_{\mathbf{n_r}}\|^{P} \ge 4^{Rp} - \|\mathbf{E}\left(\sigma_{\mathbf{q}_R}^{(R)}\right) \mathbf{x}_{\mathbf{n}_R}\|^{P}$$

$$\ge 4^{Rp} - \mathbf{M}^{p} \quad (R = 1, 2, \dots),$$

where M is a bound on the norms of the projections $E \in \mathcal{E}$. Set

$$x = \sum_{r=1}^{\infty} \sum_{s=1}^{q_r-1} E\left(\sigma_s^{(r)}\right) x_{n_r}/2^r$$

(the series converges, since $\|\sum_{s=1}^{q_r-1} E\left(\sigma_s^{(r)}\right) x_{n_r}\| \le M$ (r = 1, 2, ...). Then

$$\begin{split} \sum_{\mathbf{r}=1}^{R} \sum_{\mathbf{s}=1}^{\mathbf{q_r}-1} & \| \mathbf{E} \left(\sigma_{\mathbf{s}}^{(\mathbf{r})} \right) \mathbf{x} \|^{\mathbf{p}} \geq \frac{1}{2^{\mathrm{Rp}}} \sum_{\mathbf{r}=1}^{R} \sum_{\mathbf{s}=1}^{\mathbf{q_r}-1} \| \mathbf{E} \left(\sigma_{\mathbf{s}}^{(\mathbf{r})} \right) \mathbf{x}_{\mathbf{n_r}} \|^{\mathbf{p}} \\ & \geq \frac{4^{\mathrm{Rp}} - \mathbf{M}^{\mathrm{p}}}{2^{\mathrm{Rp}}} \quad (\mathbf{R} = 1, 2, \dots) , \end{split}$$

and this contradicts the fact that the basis $\left\{E(\sigma_s^{(r)})x/\left\|E(\sigma_s^{(r)})x\right\|\right\}$ $(1\leq s\leq q_r-1;$ $r=1,\,2,\,\cdots)$ is equivalent to the natural basis of ℓ_p . In conclusion, we have just proved the existence of a constant A such that $\nu_x^{1/p}(\Omega)\leq A\left\|x\right\|$ $(x\in X),$ in other words, such that

$$\left(\sum_{i} \|E(\eta_{i})x\|^{p}\right)^{1/p} \leq A \|x\|$$

for each $x \in X$ and each sequence of disjoint projections $E(\eta_i) \in \mathcal{E}$.

If p = 1, then, in view of a result of C. A. McCarthy and L. Tzafriri [12, Theorem 10], the space X is isomorphic to an L_1 -space over a finite measure space, since the previous inequality shows that X is an \mathcal{L}_1 -space in the sense of [7].

When $1 , the cyclic space X is reflexive (see [15]), and therefore, for each <math display="inline">x^* \in X^*$, there exists an x \in X such that $\|x\| = 1$ and $x^*x = \|x^*\|$. Consequently, for each partition $\left\{\delta_n\right\}$ of Ω we have the inequalities

$$\begin{split} \|x^*\| &= x^*x = \sum\limits_n E^*(\delta_n) x^* E(\delta_n) x \leq \sum\limits_n \|E^*(\delta_n) x^*\| \ \|E(\delta_n) x\| \\ &\leq \left(\sum\limits_n \|E(\delta_n) x\|^p\right)^{1/p} \left(\sum\limits_n \|E^*(\delta_n) x^*\|^q\right)^{1/q} \leq A \left(\sum\limits_n \|E^*(\delta_n) x^*\|^q\right)^{1/q} \end{split}$$

where $p^{-1} + q^{-1} = 1$. Thus, for each $x^* \in X^*$ and each partition $\{\delta_n\}$ of Ω ,

$$\left(\sum_{n} \|\mathbf{E}^*(\delta_n)\mathbf{x}^*\|^{q}\right)^{1/q} \geq \mathbf{A}^{-1} \|\mathbf{x}^*\|.$$

By applying this inequality to a vector $\sum_{n} a_{n} \frac{E^{*}(\delta_{n})x^{*}}{\|E^{*}(\delta_{n})x^{*}\|}$, we obtain the inequality

$$\left(\left. \sum_{n}\left|a_{n}\right|^{q}\right)^{1/q} \geq A^{-1} \left\| \sum_{n}a_{n}\frac{E^{*}(\delta_{n})x^{*}}{\left\|E^{*}(\delta_{n})x^{*}\right\|} \right\|\;;$$

in other words, (a_n) ε $\ell_{\rm q}$ implies the convergence in $X^{\boldsymbol *}$ of the series

$$\sum_{n=1}^{\infty} a_n \frac{E^*(\delta_n)x^*}{\|E^*(\delta_n)x^*\|}.$$

Assume now that a series $\sum_{n=1}^{\infty} b_n \frac{E^*(\delta_n)x^*}{\|E^*(\delta_n)x^*\|}$ converges in X*, and choose

 $x_n = E(\delta_n)x_n \in X$ such that

$$E^*(\delta_n)x^*x_n = ||E^*(\delta_n)x^*|| (||x_n||^2 = 1; n = 1, 2, \cdots).$$

In view of our hypotheses, a series $\sum_{n=1}^{\infty} c_n x_n$ converges if and only if $(c_n) \in \ell_p$. Thus the relation

$$\sum_{n=1}^{\infty} b_n \frac{\mathbf{E}^*(\delta_n)\mathbf{x}^*}{\left\|\mathbf{E}^*(\delta_n)\mathbf{x}^*\right\|} \sum_{m=1}^{\infty} \mathbf{c_m} \mathbf{x_m} = \sum_{n=1}^{\infty} b_n \mathbf{c_n}$$

shows that $\sum_{n=1}^{\infty} b_n c_n$ converges for every sequence $(c_n) \in \ell_p$. Hence $(b_n) \in \ell_q$, and the basis $\{E^*(\delta_n)x^*/\|E^*(\delta_n)x^*\|\}$ is equivalent to the natural basis of ℓ_q , for each $x^* \in X^*$ and each partition $\{\delta_n\}$ of Ω .

Because of reflexivity, X* itself is a cyclic space (see W. G. Bade [3, Theorem 8.4], and by applying the conclusions of the first part of the proof we obtain the existence of a constant B such that

$$\left(\sum_{j}\left\|E^{*}(\eta_{j})x^{*}\right\|^{q}\right)^{1/q}\leq B\left\|x^{*}\right\|$$

for each $x^* \in X^*$ and each sequence of disjoint projections $E^*(\eta_j) \in E^*$ (the adjoint Boolean algebra of projections) whose sum is I^* .

It follows that X^* is a cyclic space relative to a Boolean algebra of projections having a two-sided estimate; consequently, X^* is isomorphic to L_q , and X is isomorphic to L_p over a finite measure space (see [14, Theorem 4]).

PROPOSITION 2. A Banach space X is isomorphic to c_0 if and only if it is a cyclic space $X=\mathfrak{M}(x_0)=\operatorname{clm}\left\{\mathbf{F}x_0\middle|\ \mathbf{F}\in\mathscr{F}\right\}$ relative to a σ -complete Boolean algebra \mathscr{F} of projections such that for each $x\in X$ and each infinite sequence of disjoint projections $\mathbf{F}_n\in\mathscr{F}$ $(\mathbf{F}_nx\neq 0;\ n=1,\ 2,\ \cdots)$ the basis $\left\{\mathbf{F}_nx/\middle\|\mathbf{F}_nx\middle\|\right\}$ is equivalent to the natural basis of c_0 .

Proof. First notice that X^* contains no subspace isomorphic to c_0 (see C. Bessaga and A. Pełczyński [4, Theorem 4] and the proof of Lemma 4 of [15]). Hence, in view of [15, Lemma 4], $\mathscr{F}^* = \{F^* \mid F \in \mathscr{F}\}$ is a σ -complete Boolean algebra of projections on X^* , and X^* is a cyclic space relative to \mathscr{F}^* (see W. G. Bade [3, Theorem 8.4]).

Suppose $\sum_{n=1}^{\infty} a_n E^*(\delta_n) x^* / \|E^*(\delta_n) x^*\|$ converges in X^* , and choose $x_n = E(\delta_n) x_n \in X$ ($\|x_n\| = 1$) so that

$$E^*(\delta_n)x^*x_n \ge \frac{\|E^*(\delta_n)x^*\|}{2}$$
 (n = 1, 2, ...).

In view of [15, Lemma 1], the series $\sum_{n=1}^{\infty} |a_n| \frac{E^*(\delta_n)x^*}{\|E^*(\delta_n)x^*\|}$ is also convergent, and therefore

$$\infty > \sum_{n=1}^{\infty} |a_n| \frac{E^*(\delta_n)x^*}{\|E^*(\delta_n)x^*\|} \sum_{m=1}^{\infty} |d_m| x_m \ge \frac{1}{2} \sum_{n=1}^{\infty} |a_n| |d_n|$$

for each series $\sum_{m=1}^{\infty} |d_m| x_m$ belonging to X. Since $\sum_{m=1}^{\infty} |d_m| x_m$ converges if and only if $\{d_m\}$ ϵ c_0 , we conclude that $\{a_n\}$ ϵ ℓ_1 .

We have now shown that X^* satisfies the conditions of Proposition 1 for p=1 and is thus isomorphic to an L_1 -space over a finite measure space. Consequently, X is a cyclic subspace of X^{**} , and the latter is an \mathscr{L}_{∞} -space. We can now complete the proof by using a result of C. A. McCarthy and L. Tzafriri [12, Theorem 16] (instead of this theorem, one can also use A. Pełczyński [13, Theorem 4.1]).

Remark. The equivalence between two bases $\{u_n\}$ and $\{v_n\}$ generates an isomorphism between clm $\{u_n\}$ and clm $\{v_n\}.$ It seems that the rich structure of a cyclic space enables us to skip conditions of uniform boundedness for the norms of the isomorphisms between clm $\{E(\sigma_n)x/\|E(\sigma_n)x\|\}$ and ℓ_p , respectively c_0 , in Propositions 1 and 2.

Definition 3. A cyclic space $X = \mathfrak{M}(x_0)$ $(x_0 \in X)$ relative to a σ -complete Boolean algebra of projections \mathscr{B} is weakly homogeneous if there exists a function ϕ , with values in $[0, \infty]$ (defined in the space of sequences of complex numbers) such that the series $\sum_{n=1}^{\infty} P_n x_n$ is weakly convergent (not necessarily to a vector in X) if and only if the inequality $\phi(\{\|P_n x_n\|\}) < \infty$ holds for each $x_n \in X$ and for each sequence of disjoint projections $P_n \in \mathscr{B}$.

Remark. If \mathcal{B} has a two-sided estimate with a constant K and function ψ (see [14, Definition 2] or the introduction to this paper), then X is weakly homogeneous with respect to the function

$$\phi(a_1, a_2, \dots, a_n, \dots) = \sup_{N} \psi(a_1, a_2, \dots, a_N, 0, 0, \dots)$$
.

This follows from the fact that the series $\sum_{n=1}^{\infty} P_n x_n$ converges weakly if and only if $\sup_{N} \|\sum_{n=1}^{N} P_n x_n\| < \infty$ (the problem is discussed in [15]), that is, if and only if $\sup_{N} \psi(\|P_1 x_1\|, \cdots, \|P_N x_N\|, 0, 0, \cdots) < \infty$.

However, the function ϕ involved in the definition of weak homogeneity does not generally lead to a two-sided estimate. For instance, in L₁(0, 1) we can set

$$\phi(\{a_n\}) = \begin{cases} 0 & \text{if } \sum_n |a_n| < \infty, \\ \\ \infty & \text{if } \sum_n |a_n| = \infty. \end{cases}$$

THEOREM 4. A Banach space X is isomorphic to c_0 or L_p $(1 on some finite measure space if and only if it is a weakly homogeneous cyclic space <math>X = \mathfrak{M}(x_0)$ $(x_0 \in X)$ relative to a σ -complete Boolean algebra \mathscr{B} of projections.

Proof. The necessity follows from [14, Theorem 4] and the preceding remark. In order to prove the sufficiency, let us first assume that X contains no subspace isomorphic to c_0 . Then, by [15, Lemmas 1 and 3], a series $\sum_{n=1}^{\infty} P_n x_n / \|P_n x_n\|$ converges strongly provided it is weakly convergent. Consider now a basis of the type $\{P_n x/\|P_n x\|\}$ ($x \in X$), and write

$$w_k = \sum_{n=p_k+1}^{p_{k+1}} \lambda_n \frac{P_n x}{\|P_n x\|}$$
 (k = 1, 2, ...),

where the λ_n are scalars such that $\|\mathbf{w}_k\| = 1$ ($k = 1, 2, \cdots$) and $\{p_k\}$ is an increasing sequence of positive integers. Notice that a series $\sum_k a_k \mathbf{w}_k$ converges (strongly) if and only if $\phi(\{a_k\}) < \infty$, that is, if and only if $\sum_n a_n P_n \mathbf{x} / \|P_n \mathbf{x}\|$ does so. In the terminology of [4], this means that the basis $\{P_n \mathbf{x} / \|P_n \mathbf{x}\|\}$ is perfectly homogeneous; hence, by M. Zippin [18], the basis is equivalent to the natural basis of ℓ_p for some p $(1 \le p < \infty)$. Since it is obvious (because all the bases having this form are equivalent to the natural basis of ℓ_p for the same p $(1 \le p < \infty)$), we can complete the proof in this case by using Proposition 1.

If X contains subspaces isomorphic to c_0 , then there exist an $x\in X$ and a partition $\left\{\sigma_n\right\}$ $(n=1,\,2,\,\cdots)$ such that the basis $\left\{P(\sigma_n)x/\left\|P(\sigma_n)x\right\|\right\}$ is equivalent to the natural basis of c_0 and the subspace clm $\left\{P(\sigma_n)x\right|$ $n=1,\,2,\,\cdots$ $\right\}$ is

complemented in X (see for example the remark at the end of [15]). Let Z be the closure of clm $\{P(\sigma_n)x/\|P(\sigma_n)x\|\}$ in X** in the $\sigma(X^{**}, X^*)$ -topology; one can easily see that Z is isomorphic to ℓ_∞ , since it is in fact the set of all weakly convergent series of the type $\sum_{n=1}^\infty a_n P(\sigma_n)x/\|P(\sigma_n)x\|$.

In view of our hypotheses, a series having the form $\sum_{n} a_n P(\delta_n) y / \|P(\delta_n)y\|$ (y \in X) converges in X** in the $\sigma(X^{**}, X^*)$ -topology if and only if

$$\sum_{n} a_{n} P(\sigma_{n}) x / \| P(\sigma_{n}) x \|$$

does so. The positivity of the mapping

$$\tau : \sum_{\mathbf{n}} \mathbf{a_n} \frac{\mathbf{P}(\sigma_{\mathbf{n}})\mathbf{x}}{\|\mathbf{P}(\sigma_{\mathbf{n}})\mathbf{x}\|} \to \sum_{\mathbf{n}} \mathbf{a_n} \frac{\mathbf{P}(\delta_{\mathbf{n}})\mathbf{y}}{\|\mathbf{P}(\delta_{\mathbf{n}})\mathbf{y}\|}$$

implies it is an isomorphism from the closure in X^{**} of clm $\{P(\delta_n)y \mid n=1, 2, \cdots\}$ in the $\sigma(X^{**}, X^*)$ -topology onto a space isomorphic to ℓ_{∞} . We can now complete the proof by using [12, Theorem 16 and Proposition 2].

2. APPLICATIONS TO BANACH LATTICES

The terminology used in this section will be that of W. A. J. Luxemburg and A. C. Zaanen [11]. Accordingly, a normed Riesz space is a lattice L_{ρ} endowed with a norm ρ satisfying the condition $\rho(u) \leq \rho(v)$ if |u| < |v|. The space L_{ρ} is called σ -Dedekind-complete if every order-bounded sequence has a least upper bound.

For the convenience of the reader, we reproduce here a result proved in [16].

LEMMA 5 [16, Lemma 15]. Let L_p be a normed Riesz space that is σ -Dedekind-complete and satisfies the condition

(*)
$$x_n \downarrow 0 \text{ implies } \lim_{n \to \infty} \rho(x_n) = 0 \text{ for each decreasing sequence}$$

$$\{x_n\} \quad (x_n \in L_\rho; \ n = 1, 2, \cdots) .$$

Then there exists a family \mathcal{E} of projections of L_{ρ} such that \mathcal{E} restricted to the invariant subspace $\mathfrak{M}(x) = \operatorname{clm} \{ Ex \mid E \in \mathcal{E} \}$ $(x \in L_{\rho})$ is a σ -complete Boolean algebra of projections and L_{ρ} can be decomposed into a direct sum (not necessarily countable) of cyclic spaces $\mathfrak{M}(x_{\alpha}) = \operatorname{clm} \{ Ex_{\alpha} \mid E \in \mathcal{E} \}$ $(x_{\alpha} \in L_{\rho})$, with the property $x_{\alpha} \wedge x_{\beta} = 0$ for $\alpha \neq \beta$.

Moreover, if W is a separable subspace of L_{ρ} , then x_0 can be chosen so that $W \subset \mathfrak{M}(x_0)$.

The following result is a version of Proposition 1 for nonseparable spaces.

PROPOSITION 6. A σ -Dedekind-complete, normed Riesz space L_{ρ} is isomorphic to an L_{p} -space for some p $(1 \le p < \infty)$ provided for each sequence of disjoint elements $x_{n} \in L_{\rho}$ $(x_{n} \ne 0; n = 1, 2, \cdots)$ the basis $\{x_{n}/\rho(x_{n})\}$ is equivalent to the natural basis of ℓ_{p} .

Proof. First notice that L_{ρ} -must satisfy condition (*) of Lemma 5 (see [16, Theorem 20 and its proof]). Therefore, in view of Proposition 1, the cyclic subspaces $\mathfrak{M}(x_{\alpha})$ defined by Lemma 5 for L_{ρ} are respectively isomorphic to L_{p} -spaces $L_{p}^{(\alpha)}$; and, moreover, there exist constants A_{α} and B_{α} such that

$$A_{\alpha} \rho(x) \leq \left(\sum_{n} \rho^{p}(E_{n}x)\right)^{1/p} \leq B_{\alpha} \rho(x) \quad (x \in \mathfrak{M}(x_{\alpha})),$$

for each sequence of disjoint projections $E_n \in \mathcal{E}$ (n = 1, 2, ...) satisfying the condition $\left(\sum_n E_n\right)x = x$ (\mathcal{E} is defined by Lemma 5). By the last part of Lemma 5, one can choose constants A and B, independent of α , such that

$$A\rho(x) \le \left(\sum_{n} \rho^{p}(E_{n}x)\right)^{1/p} \le B\rho(x) \quad (x \in L_{\rho})$$

for each sequence of disjoint projections $E_n \in \mathcal{E}$ for which $\left(\sum_n E_n\right)_x = x$. Thus L_ρ is isomorphic to the direct sum in the ℓ_p -sense of the spaces $L_p(\alpha)$, that is, L_ρ itself is isomorphic to an L_p -space.

We can prove a version of Proposition 2 for nonseparable spaces in a similar manner, provided we assume L_{ρ} satisfies condition (*). Without this condition, the following result is not correct.

PROPOSITION 7. A σ -Dedekind-complete, normed Riesz space L_{ρ} satisfying condition (*) (of Lemma 5) is isomorphic to $c_0(\Gamma)$ (defined in [14]) for some abstract set Γ provided for each sequence of disjoint elements $x_n \in L_{\rho}$ $(x_n \neq 0; n = 1, 2, \cdots)$ the basis $\{x_n/\rho(x_n)\}$ is equivalent to the natural basis of c_0 .

The spaces $c_0(\Gamma)$ and $L_p\left(\Omega,\sum,\mu\right)$ $(1\leq p<\infty)$ are σ -Dedekind-complete, normed Riesz spaces with remarkable characteristic properties. For instance, it is well known that they are the only Banach lattices (up to an isometry) in which the condition

$$x_1 \wedge x_2 = y_1 \wedge y_2 = 0$$
 $(\rho(x_i) = \rho(y_i), i = 1, 2)$

implies that $\rho(x_1 + x_2) = \rho(y_1 + y_2)$ (see F. Bohnenblust [5]). The isomorphic version of this result is stated in Theorem 4 (see also [14, Theorem 4]) for cyclic spaces, and it can easily be restated in normed Riesz spaces.

Using Bohnenblust's theorem, T. Ando [1] has recently shown that $c_0(\Gamma)$ and L_p $(1 \le p < \infty)$ are the only Banach lattices (again up to an isometry) in which every sublattice is the range of a *positive contractive* projection. In the remainder of this paper, we shall present an isomorphic version of Ando's theorem by dropping the condition imposed on the norms of the projections.

THEOREM 8. A σ -Dedekind-complete, normed Riesz space L_{ρ} is isomorphic either to $c_0(\Gamma)$ for some abstract set Γ , or to L_p $(1 \le p < \infty)$ on some measure space, provided every closed sublattice of L_{ρ} is the range of a positive projection.

Proof. Let $\{u_n\}$ and $\{v_n\}$ be two sequences of positive elements in L_ρ for which the conditions

(a)
$$\rho(u_n) = \rho(v_n) = 1$$
 (n = 1, 2, ...),

- (b) $u_n \wedge u_m = v_n \wedge v_m = 0$ for $n \neq m$,
- (c) $u_n \wedge v_m = 0$ for all n and m

hold.

The first step will be to prove that $\{u_n\}$ and $\{v_n\}$ are equivalent unconditional bases. Evidently, it suffices to show that a series $\sum_{n=1}^{\infty}\alpha_nu_n$ is convergent if $\sum_{n=1}^{\infty}\alpha_nv_n$ converges. We shall do this by considering two different cases.

Case I. The subspace clm $\{u_n\}$ is weakly sequentially complete. Suppose there exists a convergent series $\sum_{n=1}^{\infty} \beta_n v_n$ such that $\sum_{n=1}^{\infty} \beta_n u_n$ diverges. By the properties of the norm, we can assume without loss of generality that $\beta_n \geq 0$ $(n=1,2,\cdots)$. If the series $\sum_{n=1}^{\infty} \eta_n \beta_n u_n$ converges for each sequence $\{\eta_n\} \in c_0$, then by C. Bessaga and A. Pełczyński [4, Lemma 2 and Theorem 5] the series $\sum_{n=1}^{\infty} \beta_n u_n$ is weakly unconditionally convergent and clm $\{u_n\}$ contains a subspace isomorphic to c_0 ; this contradicts our assumption of weak completeness. Consequently, we can assume the existence of a sequence $\{\eta_n\} \in c_0$ such that $\sum_{n=1}^{\infty} \eta_n \beta_n u_n$ is still divergent. Consider now the positive projection P whose range is the closed sublattice generated by $|\eta_n| u_n + v_n$ $(n=1,2,\cdots)$. Since P is positive and

$$\rho(|\eta_n|u_n + v_n) \ge \rho(v_n) = 1$$
 (n = 1, 2, ...),

there exist numbers c_n and d_n (0 $\leq c_n \leq \|\,P\|\,$ and 0 $\leq d_n \leq \|\,P\|\,$ for n = 1, 2, \cdots) such that

$$Pu_n = c_n(|\eta_n| u_n + v_n)$$
 and $Pv_n = d_n(|\eta_n| u_n + v_n)$ $(n = 1, 2, \dots)$.

Obviously, the condition $c_n |\eta_n| + d_n = 1$ (n = 1, 2, ...) implies that $\lim_{n \to \infty} d_n = 1$. Hence, the convergence of the series $\sum_{n=1}^{\infty} \beta_n v_n$ implies the convergence of $\sum_{n=1}^{\infty} |\eta_n| \beta_n u_n$ (apply again P on $\sum_{n=1}^{\infty} \beta_n v_n$ and take into account that $\inf d_n > 0$). This contradiction proves our assertion in the first case.

Case II. The subspace $\operatorname{clm} \left\{ u_n \right\}$ is not weakly sequentially complete. Since $\left\{ u_n \right\}$ is an unconditional basic sequence, some sequence of positive disjoint elements w_j ($w_j \in \operatorname{clm} \left\{ u_n \right\}$, $j=1,2,\cdots$) is equivalent to the natural basis of c_0 (see R. C. James [6, Lemma 1 and the proof thereafter]). We shall prove that $\left\{ v_n \right\}$ is equivalent to the usual basis of c_0 . Indeed, let $\sum_{n=1}^{\infty} \kappa_n v_n$ be a divergent series for which $\lim_{n \to \infty} \kappa_n = 0$, let P be the positive projection whose range is the closed sublattice generated by $\left| \kappa_n \right|^{1/2} v_n + w_n$ (n = 1, 2, ...). Repeating arguments already used in this proof, we can show that the convergence of the series $\sum_{n=1}^{\infty} \left| \kappa_n \right|^{1/2} w_n$ (recall that $\left\{ \left| \kappa_n \right|^{1/2} \right\} \in c_0$) implies the convergence of $\sum_{n=1}^{\infty} \left| \kappa_n \right| v_n$, which is contradictory. Now, replacing $\left\{ v_n \right\}$ by $\left\{ u_n \right\}$, we can prove that $\left\{ u_n \right\}$ has the same property; hence $\left\{ u_n \right\}$ and $\left\{ v_n \right\}$ are both equivalent to the usual basis of c_0 . This proves completely the Case II.

In order to finish the proof of the theorem, we consider a sequence $\{x_n\}$ of positive normalized disjoint elements. Set

$$y_k = \sum_{n=p_k+1}^{p_{k+1}} x_{2n}$$
 (k = 1, 2, ...),

where $\{p_k\}$ is an increasing sequence of integers. By the previous part of the proof used for $\{x_{2k-1}\}$ and $\{y_k/\rho(y_k)\}$ (respectively, $\{x_{2k-1}\}$ and $\{x_{2k}\}$), we conclude that $\{x_{2k}\}$ and $\{y_k/\rho(y_k)\}$ are equivalent bases for any choice of the sequence $\{p_k\}$. Thus, by a result of M. Zippin [18] (in the formulation found in J. Lindenstrauss and M. Zippin [10, Lemma 2]), it follows that $\{x_{2n}\}$ is equivalent to the usual basis of c_0 or ℓ_p for some p $(1 \le p < \infty)$. Since any two sequences of disjoint elements of L_ρ can always be imbedded in a sublattice generated by a third sequence of positive disjoint elements, we can apply either Proposition 6 or 7, thus proving the theorem completely. In the case when Proposition 7 is used, one should notice that condition (*) of Lemma 5 is satisfied (see T. Ando [1, Theorem 1] or [16, Theorem 20]).

Remark. In [17], we have used arguments similar to those in the proof of the preceding theorem to obtain an isomorphic characterization of L_1 -spaces in terms of conditional expectations.

REFERENCES

- 1. T. Ando, Banachverbände und positive Projektionen. Math. Z. 109 (1969), 121-130.
- 2. W. G. Bade, On Boolean algebras of projections and algebras of operators. Trans. Amer. Math. Soc. 80 (1955), 345-360.
- 3. ——, A multiplicity theory for Boolean algebras of projections in Banach spaces. Trans. Amer. Math. Soc. 92 (1959), 508-530.
- 4. C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151-164.
- 5. H. F. Bohnenblust, An axiomatic characterization of L_p -spaces. Duke Math. J. 6 (1940), 627-640.
- 6. R. C. James, Bases and reflexivity of Banach spaces. Ann. of Math. (2) 52 (1950), 518-527.
- 7. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_{p} -spaces and their applications. Studia Math. 29 (1968), 275-326.
- 8. J. Lindenstrauss and H. P. Rosenthal, *The* \mathscr{L}_{p} *spaces*. Israel J. Math. 7 (1969), 325-349.
- 9. J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis. J. Functional Analysis 3 (1969), 115-125.
- 10. ——, Banach spaces with sufficiently many Boolean algebras of projections. J. Math. Anal. Appl. 25 (1969), 309-320.
- 11. W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces. I. Nederl. Akad. Wetensch. Proc. Ser. A 66 (1963), 135-147.

- 12. C. A. McCarthy and L. Tzafriri, Projections in \mathscr{L}_1 and \mathscr{L}_{∞} -spaces. Pacific J. Math. 26 (1968), 529-546.
- 13. A. Pełczyński, On Banach spaces containing $L_1(\mu)$. Studia Math. 30 (1968), 231-246.
- 14. L. Tzafriri, An isomorphic characterization of L_p and c_0 -spaces. Studia Math. 32 (1969), 295-304.
- 15. ——, Reflexivity of cyclic Banach spaces. Proc. Amer. Math. Soc. 22 (1969), 61-68.
- 16. ——, Reflexivity in Banach lattices and their subspaces. J. Functional Analysis (to appear).
- 17. ——, Conditional expectations and an isomorphic characterization of L₁-spaces. Proc. Amer. Math. Soc. (to appear).
- 18. M. Zippin, On perfectly homogeneous bases in Banach spaces. Israel J. Math. 4 (1966), 265-272.

University of Washington Seattle, Washington 98105