INEQUALITIES FOR CONDENSERS, HYPERBOLIC CAPACITY,
AND EXTREMAL LENGTHS

F. W. Gehring

1. INTRODUCTION

In Section 3 of this paper, we give a pair of elementary estimates for the p-
capacity of a condenser in Euclidean n-space, taken with respect to an arbitrary
metric g. Various choices for g yield a number of useful bounds for the conformal
or n-capacity (Sections 4 and 5). We use two of these bounds to derive a distortion
theorem for plane quasiconformal mappings (Section 6) and to obtain sharp bounds
for the hyperbolic capacity of a plane set (Section 7). In Sections 8 and 9, we employ
two other bounds to study the relation between the moduli of the two families of Jor-
dan curves that link the interior and exterior, respectively, of a torus in 3-space.

2. NOTATION

We consider sets in Euclidean n-space R" (n > 2) and in its one-point com-
pactification R™ obtained by adding the point © to R™. Points in R™ are treated as
vectors, and for each x € R™ we let |x| denote the norm of x. For each set
E C R", we let oE, E, and C(E) denote the boundary, closure, and complement of E
in R®, while for E C R™ and k € (0, ), we let m;(E) denote the k-dimensional
Hausdorff measure of E. In particular, m, will denote Lebesgue measure in R™.

A condenser R is a domain in R® whose complement consists of two distin-
guished disjoint closed sets Co and C;. R is a 7ing if, in addition, Co and C; are
connected. For convenience of notation, we shall always assume that « € C; .

Suppose that g is a function that is positive and continuous in a condenser R.
Then, for p € (1, «), we define the p-capacity of R with vespect to g as

(1) cap, (R, g) = inf S |grad u|Pg”-Pdm,,
u R

where the infimum is taken over all functions u that are continuous in R® and ACT
(absolutely continuous in the sense of Tonelli) in R, with u=0 in Cyp and u=1 in
C; . We call any such function u an admissible function for R. The usual p-capa-
city of R [27] is then simply the p-capacity of R with respect to the function g =1,
that is,

(2) capp (R) = capp (R, 1),

while for the conformal or n-capacity of R [17] we have the relation
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(3) cap, (R) = cap, (R, g)

for all functions g. The conformal modulus of R is given by the formula
1/(n-1)

(4) mod,, (R) = ( E;{Sﬁ) ,

where w, = m,_;(@B") and B" is the unit ball {x: |x| <1} in R™.

An admissible function u for a condenser R is said to be a simiple admissible
Junction if 0 <u <1 in R and if the set where 0 < u < 1 is contained in the finite
union of closed n-simplices, in each of which u is linear. Arguing as in [6] or [18],
we see without difficulty that for each g and p,

(5) capp (R, g) = inf S lgrad ulpgn"pdmn,
u
R

where the infimum is taken over the subfamily of all simple admissible functions u
for R.

Suppose next that g is positive and continuous in an open set G C R™ and that ¢
is positive and continuous in the interval (0, c), where

c = S gidm_, c € (0, o],
G

We say that g is ¢-isoperimetric in G if

(6) SaF g tdm, | > ¢(SF gndmn)

for each closed polyhedron (finite union of closed simplices) F C G. For example,
the function g =1 is ¢-isoperimetric in R™ with

(7) ot) = wl/P@)P-/m (¢ e (0, ).
Another example: if n=2 and g is the hyperbolic metric
gx) = (1 - |x]H
in B2 then g is ¢-isoperimetric in B2 with
(8) #t) = 2(ttm +£) 12 (t e (0, =)).
Also, if n =2 and g is the spherical metric
gx) = (1+|x|%)!
in RZ, then g is ¢-isoperimetric in R2, where

(9) MY =2 - )2 (te (0, m).
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Finally, suppose that T is a family of continua in R®. We say that h is an ad-
missible density for T if h is nonnegative and Borel measurable in R”, with

S hdm; > 1

y-{} ‘
for each y € T, and we define the conformal or n-modulus of T'" as
(10) M(D) = inf | hPdm,,

where the infimum is taken over all admissible densities h for I' [25].

One can show that if R is a condenser in R™, then

where T is the family of all continua in R joining C, to C, (see [7] and [26]).

3. BOUNDS FOR THE p-CAPACITY

Suppose that R is a condenser in R® with C(R) = Cg U C;, that g is positive
and continuous in R, and that p € (1, ). We derive here upper and lower bounds for
cap, (R, g).

For the lower bound, suppose that g can be extended to C; so that, for some
function ¢, g is ¢-isoperimetric in R U C;,, and set

Ao = ‘S. gndmn, A]. = S gndmn.
Co RUC,

We then have the following extension of a well-known inequality due to T. Carleman
[4].

THEOREM 1.

1-p
(11) cap (R g) > (S ¢(t)P/(1 p)dt)

Proof. From (5), we see that it is sufficient to prove that

A
(12) S |grad u|P g" Pdm_ > (‘S‘

R Ag

1 1-p
#(t)p/ (1-p) dt)

for each simple admissible function u for R.

Choose such a function u; for t € [0, 1), let
F(t) = {x: u(x) <t}, F(1) = {x: u(x) <1},

and for t € [0, 1], let
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AQt) = 5 gndmn.
F(t)

Then A is increasing in [0, 1], and Ag < A(0) < A(1) <A ;. Choose t € (0, 1) so
that m_(u~1(t)) = 0. Then, since A <« in [0, 1), Lebesgue’s dominated-convergence
theorem implies that

A(t) = lim A(s),

s —t

and because u is a simple admissible function, we conclude that A is continuous at
all but a finite set of points in (0, 1).

Suppose that [a, b] is a subinterval of (0, 1) in which A is continuous. We
shall show that

1/P / ~A(b) (p-1)/p
(13)b-a < (S |grad ulpgn'pdmn) (S ¢(t)P/(1-P)dt) .
F(b)-F(a) A(a)

For this, let a =ty <t; < --- <ty =b be any subdivision of [a, b], let m, denote
the minimum of $oA in [t)_;, tx], and set

Ak = A(tk), Ek = F(tk) - F(tk-l) .

For t € (0, 1), F(t) is a closed polyhedron in R UCy, and aF(t) C u~l(t). Hence (8)
implies that

$oA(t) < S gn-ldm__,
u-l(t)

for t € [a, b], and with help of the co-area formula (see Theorem 3.1 in [5]) and
Holder’s inequality, we obtain the estimates

e
my(ty - te_p) < S (S 1 gn‘ldmn_l) dt = S Igrad ul gn'ldmn
tk-1 u-1(t) Ex

He (p-1)/
< S |grad u|Pg”-Pdm, (A - Ay )PP,
Ex

Next, let M, denote the maximum of ¢P/(1-P)in [A, |, Ai]. Then (14), together
with a second application of HSlder’s inequality, yields the inequality

1i/p/f ™ (p-1)/p
b-a< (S |grad ulpgn‘Pdmn) (Z} M (A - Ax_y) ;
F(b)-F(a) 1

together with the continuity of ¢ and A, this implies (13).

Now, given d € (0, 1), we can choose disjoint subintervals [a;, b, ] of (0, 1)
such that A is continuous in each subinterval and
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N .
(15) d < 27 (by - 2y).
1

From (13), (15), and Holder’s ihequality we obtain the estimate
A(by) l-p

m
S [gra.d u!pgn'pdmn Z dp(z S (;b(t)p/(l-P)dt)
R i

Alay)

Ay l-p
> dP (5 ¢(t)p/(l-P)dt) :
2 o

if we let d — 1, this yields (12), and the proof of Theorem 1 is complete.

For the upper bound, suppose for convenience that

lim sup g(x) < «.
x— Cyp

Then each x € R can be joined to Cg by a polygonal arc y C R on which g is
bounded, and we set

v(x) = inf S gdm, ,
v 7

where the infimum is taken over all such y. It is easy to verify that v is Lipschitz-
ian, with |grad v| <g a.e. in R, and that v(x) — 0 as x — C,. Let

T = lim inf v(x) > 0,
x—Cy

and for t € (0, »), set

L(t) = g?-ldm__,.
v=1(t)

We then have the following extension of a result due to G. P6lya and G. Szegd [20].
THEOREM 2.

T
(16) cap, (R, g < (S L(t)ll(l-P) dt)
0

l1-p

Proof. We may assume that T > 0 and that capp(R, g) > 0, for otherwise, (16)
follows trivially. Next, for t € (0, T), let

R(t) = {x e R:v(x) <t}, C,({t) = C(R(t) UCy),
and let

f(t) = inf S |grad u|PgP-Pdm,,
U OUR(L)
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where the infimum is taken over all admissible functions u that are continuous in
R" and ACT in R", with u=0 in Cy and u=1 in C,(t). Then f is nonincreasing,
and

(17) 0 < capp(R, g) < £(t) < =

in (0, T). Hence, in order to establish (16), we need only show that for each sub-
interval [a, b] of (0, T),

b
(18) f(p)!/(1-P) > S L)t/ (1-Plgi .

a

For (17) and (18) imply that

b l-p
cap, (R, g) < (S L(t)!/ “"p’dt) ;
a

and letting a — 0 and b — T, we obtain (16).
Choose t;, t; € (0, T) with t; < tz[, let u; be an admissible function for R(t,),
0

and set u, = cu; + (1 - ¢)w, where c € [0, 1] and
0 if x € R(t;) U Cp,
wx) = { Y® U e f e L) - Rt
-t 2 15
1 if x € Cy(ty).

Then u, is admissible for R(t,); also,

f(t,) < cP S |grad u, |pg“'Pdmn+(1 - c)PI,
R(t;)
where
I=(t-t)7P |grad v|Pg"Pdm,_,
- TR(t,)-R(ty)

and taking the infimum over all such u; , we find that
(19) (t;) < cPft;) + (1 - e)PI.
Since I € (0, «), we can choose ¢ so that
c(f(tl)l/(l_p) +I1/(l-p)) - f(tl)”“_p),
and with the help of (19) we obtain the inequality
(20) f(tz)l/(l-p) - f(tl)ll(l'P) > /1-p)

Also, since [grad v| < g a.e. in R, the co-area formula implies that
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t2
(21) 1< (t,-t)P S L(t) dt .
t

Now the function £!/(1-P) js nondecreasing in (0, T). Moreover, since L is
integrable over each closed subinterval of (0, T), (20) and (21) imply that

4 (1P > L/ P ae in (0, ),
and thus that

b
f(b)l/(l-P) > f(b)l/(l-P) _ f(a)I/(I-P) > S L(t)ll(l_p)dt

a

for each subinterval [a, b] of (0, T). This completes the proof of (18), and hence of
Theorem 2.

4. APPLICATIONS OF THEOREM 1

We give here several applications of Theorem 1 by making special choices for
n, g, and p.

For the first application, suppose that R is a condenser in R™ with
m (C,) = 7,a%, m(RUCy) =7, b",

where 7 =m_(B").
COROLLARY 1.

b 1-p
(22) cap,(R) > wn(S rq-ldr) (q = g:_rll)

a

Proof. Let g=1 in R®. Then g is ¢-isoperimetric in R U C; , where ¢ is
the function given in (7), and (22) follows directly from (11).

If R* is a ring in R™, bounded by concentric spheres of radii a and b (a <b),
then

b l-p
capp(R*) = wn<5 rq"ldr) (q = -E——p - L
a

Hence Corollary 1 simply says that
(23) : cap,(R) > cap,(RY),

where R¥* is a spherical ring with m (Co) m_(C,) and m (R* U C}) =m_(RU C).
(See Lemma 2 in [8] or (9) in [10].)

For the second application, suppose that R is a condenser in the unit disk B2
and that Ay and A, denote the hyperbolic areas of C; and R U C, .
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COROLLARY 2.

1 Ag+m A, .

5 log ! A1+1r) if Aj<e,
(24) mod, (R) <

1 Ag+m .

Elog( Ao ) if Aj= o,

Proof. Let g(x)=(1 - |x|‘2)'1 in B, Then g is ¢-isoperimetric in R U Co,
where ¢ is as given in (8), and we obtain (24) by substituting this function in (11).

For the third application, suppose that R is a condenser in R2 and that Ay and
A, denote the spherical areas of C; and R U C .

COROLLARY 3.

- A
(25) mods (R) < %"g(ﬂAOAOﬂ-kI)-

Proof. Set g(x) =(1+ |x| 2y-1 , and substitute the function given in (9) into (11).

Corollary 3 obviously holds for condensers R C RZ, if we extend the definition
of cap,(R) by means of a M&bius transformation.

Inequalities (24) and (25) hold w1th equality when R is bounded by concentnc
circles in the hyperbolic metric of B? and in the spherical metric of R2 , respec-
tively. Hence the conclusions of Corollarles 2 and 3 can be expressed by means of a
single inequality like (23), where R* is an equivalent annulus in the appropriate
metric (see [14] and [16])

Finally, for the fourth application, suppose that H is the upper half-plane
{x: x, >0} in RZ, that R is a condenser in RZ with Co C H and C; = C(H), that g
is the hyperbolic metr1c in H,

g(x) = 5
2X2 ’
and that A denotes the hyperbolic area of Cg;.
COROLLARY 4.

(26) cap3 /2 (R, g) > 2”( AIH)IM - (Aﬁn)wl)

Proof. The function g is ¢-isoperimetric in H, with ¢ as given in (8), and we
obtain (26) from (11).
5. APPLICATIONS OF THEOREM 2

We consider next some applications of Theorem 2.

First, for t € (0, 1), let Rg(t) denote the ring R C R™ with C; = C(B") and Cy
the closed segment joining the point (t, 0, ---, 0) to the origin. Then the function

r,(t) = mod, (Rg(t)) +1log t

is positive and nonincreasing in (0, 1) with
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log A, = lim r (t) <
t—0

(see [3], [6], and [18]). Unfortunately the values of the constants )\, are unknown
except when n = 2, in which case A = 4. We have, however, the following bounds
for A3 .

COROLLARY 5.

(27) 8 <3 < 8e

Proof. The upper bound in (27) was derived in [6]. For the lower bound, choose
te(0,1) andlet g=1 in B3. Then, in the notation of Theorem 2, T =1 - t,

L(s) = 4ns? + 2nst
for s € (0, T), and from (16) we obtain the inequality

1-t -1/2
st
mod (R(t)) > SO (2+3)  as.

An elementary calculation shows that A3 > 8.

Theorem 2 can be used in the same way to get lower bounds for A, for n > 3.
Upper bounds have already been found in [3].

For the second application, suppose that R is a condenser in RZ with C, C B2
and C; = C(B?%), and that P denoctes the infimum of the hyperbolic lengths of the Jor-
dan curves in B? that separate Cop and C;. We call P the hyperbolic perimeter of
CO in :B2 .

COROLLARY 6.

(P2 + 72)1/2 4 4
5 )

(28) mod, (R) > log

Proof. 1t is sufficient to show that for each P'e€ (P, »), (28) holds with P re-
placed by P'.

Now, if P' € (P, »), there exists a Jordan curve y C B% that separates Cy and
C;, and whose hyperbolic length does not exceed P'. Let Dy denote the component
of C(y) that contains Cy, and C the closed hyperbolically convex hull of Dy. That
is, let Cy denote the interséction of all closed sets F C B2 that are hyperbolically
convex and contain Dg. Then y' =3Cy C B? is a Jordan curve that separates Cg
and C; and whose hyperbolic length does not exceed P'. Next, by joining a suitably
chosen set of consecutive points on y' by hyperbolic segments, we can find a hyper-
bolically convex polygon " C B2 that separates Cy and C; and whose hyperbolic
length again does not exceed P'. Let Dj§ denote the component of C(y") that con-
tains Cy, and R" the ring bounded by Cy =Dj and Cj = C;. Then

(29) mod, (R) > mod, (R") ,
and since the right-hand side of (28) is decreasing in P, we conclude from (29) and

the remark above that it is sufficient to prove (28) in the special case where 9Cy is
a hyperbolically convex polygon with hyperbolic length P.
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For this case, set g(x) = (1 - [x|®)-! in B?. Then T = =, and it is not difficult
to verify, either directly or with the help of the Gauss-Bonnet formula (see [2]), that

(30) L(t) = P cosh 2t + (7 + 2A)sinh 2t for t € (0, =),

where A is the hyperbolic area of Cg. The isoperimetric inequality applied to Cg
implies that

(31) / P? > 4A(A +7),
and from (30) and (31) it follows that

dL(t)

B 174 2 2y1/2
S < 2(L(H? +12)

(32)

in (0, »). If we now combine (16) and (32), we obtain the desired inequalities

[}

2)1/2 4+
P

© 2
fd({')' > ﬂS t-1 (2 +72)-1/2qt = log (P”+a

mod, (R) > 2n |
P

0
Inequality (28) holds with equality when Cy is a closed disk in B?.

Finally, for the third application, let H denote the upper half-plane in RZ , Ra
condenser in R2 with Co C H and C; = C(H), g the hyperbolic metric in H, and P
the hyperbolic perimeter of Cy in H.

COROLLARY 1.

p2 2y1/2 _ P -1/2
(33) cap3/2(R, g) <7 (( +ﬂ2)p ) :

Proof. As in Corollary 6, it is sufficient to consider the case where 9Cj is a
hyperbolically convex polygon with hyperbolic length P. Then T = o, L(t) is given
by (30), and (33) follows from (16) and (32) as above.

It is easy to verify that the right-hand sides of inequalities (26) and (33) are
equal whenever (31) holds with equality. From this it follows that (26) and (33) both
hold with equality when C; is a closed disk in H.

6. DISTORTION THEOREM

We apply here two of the previously derived bounds to obtain a distortion theo-
rem for quasiconformal mappings.

For K € [1, ©) and t € (0, ), let

_ 2B (2 +1)1/2 4 K _ tH/K
(34) ¢x(t) = (@ +1)172 +1)2K - 2K’ Ykt = Cr)l/E_{/K"

Then ¢, and Y, are increasing in (0, «),
dp(t) ~ 21-KtK  and  yg(t) ~ t1/K

as t— 0, and
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B®~ g and Y® ~ g

as t — o,

Next, suppose that D is a simply connected domain of hyperbolic type in R2 and

that f is a conformal mapping of D onto B2. Then the function
Lot
1- [1]2

is independent of the choice of f, and it defines the hyperbolic metric in D. More-
over, E C D is a hyperbolic disk (circle) in D if and only if f(E) is a disk (circle)
in B2.

We have the following sharp bounds for the change in hyperbolic perimeter and
area, under a quasiconformal mapping.

THEOREM 3. Suppose that £ is a K-quasiconformal mapping of D and that E
ts a closed hyperbolic disk in D. Then

(35) 5' _¢K(P) ‘A{;I'S"”K(%)’

where P and P' denole the hyperbolic perimeters and A and A' the hyperbolic
areas of E and 1(E) in D and (D), respectively.

Proof. If we compose f with two appropriate auxiliary conformal mappings, we
may assume without loss of generality that D = (D) = B2 .

Let E be a closed disk in B%, and let R be the ring in R? with Cy = E and
C; = C(B%). Then
(P2 +72)1/2 4 ¢

- =1
(36) log P = mod; (R) = 5 log

A+t+rw
A

since E is a disk,

(P2 +7%)!/2 44
Pl

A' +
< mod, (i(R)) < 3 log 23T

(37) log
by inequalities (24) and (28), and

(38) + mod; (R) < mod, (f(R)) < K mod, (R)

because f is K-quasiconformal. The inequalities in (35) then follow from(36), (37),
and (38).

When E is a disk about the origin, the mapping |x|K-1x and its inverse show
that the bounds in (35) are sharp. A preliminary Mobius transformation reduces the
general situation to this special case.

Theorem 3 also yields a sharp bound for the change in the hyperbolic length of a
hyperbolic circle C C D under a K-quasiconformal mapping f of D. For if L and
L' denote the hyperbolic lengths of C and f(C) in D and f(D), respectively, then
L =P and L' > P', where P and P' are the hyperbolic perimeters of the sets
bounded by C and f(C) in D and f(D), and with the help of (35) we obtain the in-
equality
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L L)
T 2 ¢K(1r :

We can combine the argument used in Theorem 3 with inequality (25) to relate
the change in spherical area of two spherically concentric disks under a K-quasi-
conformal mapping. The case where K =1 was considered in [12] (see also [14]).

7. HYPERBOLIC CAPACITY

Suppose that D is a simply connected domain of hyperbolic type in ﬁz, and that
f is a conformal mapping of D onto B2. For each compact set E C D, the hyper-
bolic capacity of E in D is defined as
) 1/(n(n-1))

(see [23] or [24]). This quantity does not depend on the choice of the mapping f, and
hence it is a conformal invariant. Moreover, if F is compact and 0E C F C E, then
(39) and the maximum principle imply that

£(z3) - £(z;)
1- f(Zi) f(ZJ)

(39) caph(E) = lim ( max 1l

n—: 1° "',ZnGE i#j

(40) caph (E) = caph(F).

Also, if D = D(r) denotes the open disk of radius r about the origin, then for each
compact set E C R2,.

(41) lim r caph(E) = cap(E),

T —» 00

where cap(E) denotes the usual Euclidean capacity for E,

cap(E) = lim max I |z - 2 I)l/(n(n-l))
n-— oo Zl'".’anE i ¢j
(see [22]).

We give here sharp bounds for caph(E) in terms of the hyperbolic perimeter
and hyperbolic area of E in D. (For earlier results in this direction, see [22].)

THEOREM 4. Foy each compact set E C D,

1/2 (P2+7r2)1/2 .

(42) (x37)  <Seanm <1,

wheve P and A denote the hyperbolic perimeter and hyperbolic area of E in D.
There is equality in both parts of (42) when E is a hyperbolic disk.

Proof. By the conformal invariance of all quantities involved, it is sufficient to
consider the special case where D = B2,

Let R denote the component of BZ - E for which §B2 C R, and let
Co=B2-R, C; = C(B%. Then R is a condenser in R? with 8Co C E C Cy, and

(43) caph (E) = caph(Cy) ,



CONDENSERS, HYPERBOLIC CAPACITY, AND EXTREMAL LENGTHS 13

by (40). It is also easy to see that P is equal to the hyperbolic perimeter of Cy and
that A does not exceed the hyperbolic area of Cy. Therefore the argument for
Theorem 6 in [1] implies that
S log
Co

where the infimum is taken over all nonnegative measures p with support in Cy and
(Cy) = 1, and from [23] or [24, pp. 94-96] we conclude that

-mod2(R)

1 -
Z -

mod, (R) = inf S =
Bk ¥Cq

I du(z)dp(w),

(44) caph(Cy) = e

(see also [13] and [15]). Finally, (42) follows if we combine (43) and (44) with in-
equalities (24) and (28).

When E is a closed disk, both (24) and (28) hold with equality. Hence the same
is true of both parts of (42).

Suppose that E is a compact set in R? , that Pg is the infimum of the lengths of
the Jordan curves in R2 that separate E from «, and that A is the area of E. We
can then derive the usual estimates, [19] and [21], for the Euclidean capacity of E in
terms of Py and Ay from Theorem 4 as follows. For r € (0, »), let D denote the
open disk of radius r about the origin, and for large r let P, A, and caph(E) denote
the hyperbolic perimeter, hyperbolic area, and hyperbolic capacity of E in D. Then
it is easy to verify that

(45) Py = lim rP, A = lim r2A,

T —00 r—o0

and combining (40), (42), and (45), we obtain the desired inequalities

Ag \1/2 Py
(3) <em® <3

8. MODULI OF LINKING CURVE FAMILIES

A domain D C R3 is said to be a forus of revolutior if it is generated by revolv-
ing a plane Jordan domain E about a line L that lies in the plane of E and at posi-
tive distance from E. We say that D is a civcular torus if, in addition, E is a disk.
By means of the Schoenflies theorem, it is easy to show that for each pair of tori of
revo)lution D; and D, there exists a homeomorphism f of R3 onto R3 with
f(DI = Dz .

___ Adomain D C R3 is said to be a forus if some homeomorphism f of R3 onto
R3 maps D onto a torus of revolution. Since the exterior of each circular torus can
be mapped conformally (by means of a M&bius transformation) onto a second circular
torus, the exterior of each torus D is again a torus.

Given a torus D € R3, we denote by I'; = Iy(D) and T, = I' (D) the families of
Jordan curves in D and C(D) that are not homotopic to 0 in D and C(D), respec-
tively. We call these the inferior and exterior linking families for D. Obviously

TyD) = T(C(D)), TI,D) = IyCD).
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The modulus of a family I' of curves behaves like the electrical conductance of
a system of homogeneous wires: it is large when the curves in I" are plentiful or
short, and small when the curves in I" are few or long. Since each curve in I';
links each curve in T, it is natural to expect that the moduli of the families I'; and
I'. vary inversely. That is, the modulus of one family is large only if the modulus
of the other family is small. We have, in fact, the following result.

THEOREM 5. Theve exists an extended real-valued function  that is nonnega-
tive, continuous, and decrveasing in [0, «], with ¥(0) = o, (o) =0, yoy(t) =t, such
that

(46) M (1) < ¢(M3(Tp)), M3(T) < w(M5(Ty)
for each torus D C R3 .
Proof. Let
min(%(log%)—2,£(1+t)3) ifte[0,1),
#t) =

%(1+t)3 if t et o],

and set
- 1

(47) v = 4(5g)-

Then ¥ has all of the analytic properties listed above, and it remains to establish
inequality (46).

Choose a torus D C R3, and let r; and r, denote the infima of the radii of the
open balls in R3 that contain at least one curve in T'; and T, respectively. Then
r;, r, € (0, ), and it suffices to show that

(48) M3(l"i) < ¢(re/1'i), M3(I‘e) < ¢‘(1'i/1'e) s

since (46) follows from (4'7) and (48).

For this, suppose first that r, <r;, and choose a and b so that
r, <a<b<r;. Then there exist a point y € R3 and a curve o € T', that is con-
tained in {x: |x - y| <a}. Let

-1
(Zlogh) 1 ifa<|x-y|<b,
h(x) = a/  |x-yl

0 otherwise,

and choose y € I';. Since 7y links & and is not contained in {x: Ix - y] < b}, v
contains two arcs joining {x: [x - y| =a} to {x: |x- y| =b} and

i,_{w} hdm, > 1.

Thus h is an admissible density for TI';,
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3 T b\~
M,(T') < S h’dmj = 5 (loga) ,
R3
and letting a —» r, and b — r;, we find that
(49) My(r) < 3 (105 5E)
310 S g8 ]

Suppose next that r; and r, are arb1trary, let a € (r., «), and choose y € R3
and @ € ', sothat a c {x: |x - | < a}. As above, it is not difficult to show that
the functmn

1

21 if |x-y|<r;+a,

h(x) =

0 otherwise

is an admissible density for I';. Hence

3
M3(Ty) < S 3 dmy = 1(1+3-)
— J.3 6 r;
R

and by letting a — r_, we obtain the inequality
T re \’
(50) M;(Ty) < 3(1 +—e)
i

Finally (49) and (50) imply the first half of (48), while the second half follows by
symmetry. This completes the proof|of Theorem 5.

By means of Corollary 4, we can|/establish the following more precise version of
Theorem 5 for tori of revolutmn For this, let Y, denote the extended real-valued
function defined on [0, <] by the equation

6 vdo = 4 ( () - () )’

THEOREM 6. The function  is nonnegative, continuous, and decreasing in
[0’ °°] with ll/o(O) =%, ll/o(°°) = 0: ’QDOOIPO(t) = t) and

(52) M,(T) < ¥oMy(T)), My(T) < oMy (T,)

for each torus D c R3 for which eithier D or C(D) is conformally equivalent to a
torus of vevolution. Moveover both pavts of (52) hold with equality whenever D (and
hence C(D)) is conformally equivalent to a civcular torus.

Proof. 1t is easy to verify that Y has all of the listed analytic properties.
Next, for (52), let H denote the upper half-plane in R2 whose boundary line is L.
The fact that ¢, is decreasing with 4’0 o l//o(t) =t means that each half of (52) im-
plies the other. Hence, by the conformal invariance of M,(D), it is sufficient to
establish the second half of (52) for the special case where D is the torus of revolu-
tion generated by revolving a plane Jordan domain E about L, where E c H.
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For this, suppose that R is the ring in R? with Cp =& and C; = C(H), that g
is the hyperbolic metric in H, and that P and A are the hyperbolic perimeter and
hyperbolic area of E in H. Following the argument in [9], we can easily see that

A
(53) M,(T,) < =

with equality whenever 9E has zero hyperbolic area. We also require the following
result, whose proof we outline in Section 9.

THEOREM 7.
(54) M;3(T,) = w(caps ;2 (R, g)) ™.
From (26), (33) and (54), we obtain for M3(T,) the sharp estimates

1 (P*+7H)2 - p 1 frA+a Mt A (%2
T 5P <myr) <5 (%2 (2% )

and the second half of (52) then follows from (53) and (55).

When D is a circular torus, then E is a disk and (55) holds with equality
throughout. Thus we get equality in the second half (and hence in the first half) of
(52); this completes the proof of Theorem 6.

COROLLARY 8. If D C R® is a torus for which either D or C(D) is con-
Jormally equivalent to a torus of revolution, then

(55)

2 1 2 1
(56) Ms(D)M3(F)” < 75, Ma(Ty) " Ms(Te) < 7=3.

Proof. 1t is easy to verify that ty, (t)? is decreasing and t% Yo(t) is increasing
in (0, »), and that

1
lim t2yp(t) = ——=;
t —y 00 1673

1
1673’

(57) lim tyy(t)? =
t—0

hence (52) implies (56).
For tori D that are conformally equivalent to circular tori, (57) implies that

1
1673’

lim M3(ri)M3(re)2=—1E1—3, lim  My(T)?Ms(T,) =

M;3(Ty) —0 m - M3(Ty) —eo

and hence the inequalities in (56) are asymptotically sharp.

Suppose that D is a torus of revolution in R3. Theorem 6 shows that, for each
value of the modulus of one linking family, the modulus of the other linking family is
maximized when D is a circular torus. Thus, roughly speaking, the curves in the
linking families of a torus of revolution are shortest and most plentiful when the
torus is circular. It seems reasonable to expect that the circular tori have this ex-
tremal property in the family of all tori, and we are led to the following conjecture.

CONJECTURE. Inequalities (52) and (56) hold for all torvi D C R3.
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9. PROOF OF THEOREM 7

We conclude this paper with a sketch of the proof of equation (54).
We begin by showing that

(58) M5(T,) > 7(caps/2 (R, g) 2.

For this it is sufficient to show that

(59) S ndms > 7 (S

-2
Igrad u|3/2g1/2dm2)
Rr3 R

for each admissible density h for e and each simple admissible function u for R.
Moreover, since I', is symmetric in the line L, it suffices to consider densities h
with this property, in which case (59) reduces to

(60) SH h3—;-dm2 > (5

-2
|grad u| 3/2g1/2dm2) .
R

Choose h and u. For each t € (0, 1), u~l(t) contains a polygonal Jordan curve
Y € R that separates Cy and C;, and hence is not homotopic to 0 in C(D). Thus
Yy € T's and

ISShdmISS hdm, .
Y u~Lt)

The co-area formula then implies that

v<§ (S

hdml)dt - S h |grad u| dm,,
u"l(t) R

and with the help of Holder’s inequality we obtain the desired inequality

2
1 S(S h3—;-dm2)(5 Igradu|3/2g1/2dm2)
H

R

It remains to show that

(61) M;(T,) < 7(caps/; (R, g)7°.

The argument for this inequality closely resembles the proof of Lemma 1 in [10],
and hence we omit some details. By the uniform convexity of Ly(u), with p = 3/2
and du = gl/2dm,, there exists an extremal vector-valued function v = (vy, v2)

defined in R such that

(62) { Ivp/zgt/zam, = caps2(R, 8,
R

and such that
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(63) S Iv]'llz(v-gradw)gl/zdm2 =0
R

for all functions w that are continuous in R%2 and ACT in R% with w=0 in
CO U Cl and

S |grad WI?’/Zgl/de2 < o,
R

Set 1 | 0 in Cop UC;, choose b € (0, oo) and let I" denote the subfamily of
all rectifiable ¥ € I" _ whose distance from D U L is at least b. Next, for each
a € (0, b), let

(64) h(x) = ﬁ S |v(x +y)|1/2 g(x + y)1/2 dm, (y)
B

for x € H- {~}, where B C R2 is the open disk of radius a about the origin.
Then, arguing as in [7] or [26], we see that the variational condition (63) implies that

(65) S hdm,; > cap;/; (R, g)
B

for each polygonal curve 8 C R that sepa.rates Co and C; and whose distance from
Co U C; exceeds a. Extend h to R3 so that it is symmetric in L. Then it follows
from (65) and the argument in [26] that

(66) S hdm, > cap; ,, (R, 2)
Y

for all v € T". Hence the function
-1
h; = (cap3/2(R, g)) ™" xgh

is an admissible density for I', where F is the set of points in C(D) whose distance
from D U L is at least b, and from (62), (64), and Minkowski’s inequality we obtain
the bounds

My(D) < (caps /2 (R, €)™ | hPam; < 7 (525 (caps /2 (R, €)%
F

If we now let a — 0, we see that
(67) M3(T) < 7(caps/»(R, &)~

Finally, arguing as in Section 3.4 in [11], we can easily show that (67) holds with
I' replaced by I'', where I' is the subfamily of all rectifiable y € I', lying at dis-
tance at least b from D instead of D U L. Then, since the subfamlly of nonrectifi-
able y € I', has modulus zero, it follows from Lemma 2.3 in [27] that

Ms(T,) = lim My(I") < m(cap;,, (R, £))7% .
b—0

This completes the proof of Theorem 7.
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Added December 14, 1970. The author has recently learned of two articles by

C. Bandle, Konstruktion isoperimetvischev Ungleichungen dev mathematischen
Physik aus solchen dev Geometrie and Einige Extvemialeigenschaften von Kreissek-
toven und Halbkugeln, in which inequalities similar to some of the consequences of
Theorem 1 are derived. These papers will appear shortly in the Commentarii
Mathematici Helvetici.
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