JOIN-PRINCIPAL ELEMENTS AND THE PRINCIPAL-IDEAL THEOREM

E. W. Johnson and J. P. Lediaev

In [2], R. P. Dilworth introduced the concept of a principal element of a multiplicative lattice and used it to isolate a class of multiplicative lattices in which many of the important theorems of classical ideal theory hold. He called these lattices Noether lattices and showed, among other things, that a Noether lattice satisfies the Noether decomposition theorems and the Krull Principal Ideal Theorem.

Since the concept of a Noether lattice is an abstraction of the lattice of ideals of a Noetherian ring, it is natural to ask when a Noether lattice can be represented as, or embedded in, the lattice of ideals of such a ring. Some results relating to this problem can be found in [1], [4], [5], and [6]. In particular, in [5], we proved that if $\mathscr L$ is a Noether lattice in which every maximal element is meet-principal, then every element of $\mathscr L$ is principal and $\mathscr L$ can be represented as the lattice of ideals of a ring. In this paper, we show that if 0 is prime in $\mathscr L$, then the same conclusion holds if every maximal element is join-principal (Theorem 2). This result is a consequence of Theorem 1, which generalizes the Principal-Ideal Theorem to elements that are either meet- or join-principal. Since, in general, the lattice of ideals of a Noetherian ring may have many elements that are join-principal but not principal, this extends the results of both Krull and Dilworth.

We use the notation and terminology of [2].

LEMMA 1. Let $\mathscr L$ be a local Noether lattice in which 0 is prime. Let $E \neq 0$ be a join-principal element that is primary for the maximal element M. Then the rank of M does not exceed 1.

Proof. Let d denote the rank of M. By the results of [3], there exists a polynomial p(x) of degree d-1 such that, for all sufficiently large n, p(n) is the number of elements in a minimal representation of E as a join of principals. Let E_1, \dots, E_k be principal elements of $\mathscr L$ with join E, and let n be some positive integer. Then

$$\mathbf{E}^{\mathrm{nk+n}} = \mathbf{E}^{\mathrm{nk}}(\mathbf{E}_{1}^{\mathrm{n}} \vee \cdots \vee \mathbf{E}_{k}^{\mathrm{n}}),$$

and therefore $E^n = E_1^n \vee \cdots \vee E_k^n$, since E^{nk} is join-principal and 0 is prime. It follows that $p(n) \leq k$ for all sufficiently large n, and hence that $d \leq 1$.

THEOREM 1. Let $\mathscr L$ be a local Noether lattice, and let E be an element of $\mathscr L$ that is either meet- or join-principal. Then the rank of every minimal prime of E does not exceed 1.

Proof. Let P be a minimal prime of E. If E is meet-principal, then $\{E\}$ is meet-principal, and therefore it is join-irreducible in \mathscr{L}_P . It follows that $\{E\}$ is principal in \mathscr{L}_P and therefore P has rank at most 1. On the other hand, if E is join-principal and P_0 is a second prime with $P_0 < P$, then $\{E \lor P_0\}$ is join-

Received August 18, 1969.

Michigan Math. J. 17 (1970).

principal and primary for the maximal element in $(\mathscr{L}/P_0)_P$. It follows that P has rank at most 1 in \mathscr{L}/P_0 and hence also in \mathscr{L} , since P_0 was arbitrary.

LEMMA 2. Let \mathscr{L} be a local Noether lattice in which 0 is a prime. If the maximal element M of \mathscr{L} is join-principal, then M is principal.

Proof. Let E be a principal element of $\mathscr L$ such that $E \leq M$ and $E \not \leq M^2$. By the previous theorem, the rank of M does not exceed 1; hence E is M-primary. Let n be the least positive integer such that $M^n \leq E$. If n > 1, then $M^n < E$. But in this case, $M^n \leq ME$, and therefore

$$M^{n-1} = M^n : M \le ME : M = E$$
.

Hence n = 1 and M = E.

THEOREM 2. Let \mathscr{L} be a Noether lattice in which 0 is prime and every maximal element is join-principal. Then every element is principal, and \mathscr{L} can be represented as the lattice of ideals of a Noetherian ring.

Proof. Let P be a maximal prime of \mathscr{L} . Since P is join-principal in \mathscr{L} , the prime $\{P\}$ is join-principal in \mathscr{L}_P . Hence $\{P\}$ is principal in \mathscr{L}_P , and the non-zero elements of \mathscr{L}_P are precisely the powers of $\{P\}$ [5]. It follows [5] that every element of \mathscr{L} is principal and that \mathscr{L} can be represented as the lattice of ideals of a Noetherian ring.

REFERENCES

- 1. K. P. Bogart, Structure theorems for regular local Noether lattices. Michigan Math. J. 15 (1968), 167-176.
- 2. R. P. Dilworth, Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481-498.
- 3. E. W. Johnson, A-transforms and Hilbert functions in local lattices. Trans. Amer. Math. Soc. 137 (1969), 125-139.
- 4. E. W. Johnson and J. A. Johnson, \mathcal{M} -primary elements of a local Noether lattice. Canad. J. Math. (to appear).
- 5. E. W. Johnson and J. P. Lediaev, Representable distributive Noether lattices. Pacific J. Math. 28 (1969), 561-564.
- 6. E. W. Johnson, J. P. Lediaev, and J. A. Johnson, A structural approach to Noether lattices. Canad. J. Math. (to appear).

The University of Iowa Iowa City, Iowa 52240